首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 60 毫秒
1.
The origins of hybrid zones between parapatric taxa have been of particular interest for understanding the evolution of reproductive isolation and the geographic context of species divergence. One challenge has been to distinguish between allopatric divergence (followed by secondary contact) versus primary intergradation (parapatric speciation) as alternative divergence histories. Here, we use complementary phylogeographic and population genetic analyses to investigate the recent divergence of two subspecies of Clarkia xantiana and the formation of a hybrid zone within the narrow region of sympatry. We tested alternative phylogeographic models of divergence using approximate Bayesian computation (ABC) and found strong support for a secondary contact model and little support for a model allowing for gene flow throughout the divergence process (i.e. primary intergradation). Two independent methods for inferring the ancestral geography of each subspecies, one based on probabilistic character state reconstructions and the other on palaeo-distribution modelling, also support a model of divergence in allopatry and range expansion leading to secondary contact. The membership of individuals to genetic clusters suggests geographic substructure within each taxon where allopatric and sympatric samples are primarily found in separate clusters. We also observed coincidence and concordance of genetic clines across three types of molecular markers, which suggests that there is a strong barrier to gene flow. Taken together, our results provide evidence for allopatric divergence followed by range expansion leading to secondary contact. The location of refugial populations and the directionality of range expansion are consistent with expectations based on climate change since the last glacial maximum. Our approach also illustrates the utility of combining phylogeographic hypothesis testing with species distribution modelling and fine-scale population genetic analyses for inferring the geography of the divergence process.  相似文献   

2.
Understanding the factors promoting species formation is a major task in evolutionary research. Here, we employ an integrative approach to study the evolutionary history of the Californian scrub white oak species complex (genus Quercus). To infer the relative importance of geographical isolation and ecological divergence in driving the speciation process, we (i) analysed inter‐ and intraspecific patterns of genetic differentiation and employed an approximate Bayesian computation (ABC) framework to evaluate different plausible scenarios of species divergence. In a second step, we (ii) linked the inferred divergence pathways with current and past species distribution models (SDMs) and (iii) tested for niche differentiation and phylogenetic niche conservatism across taxa. ABC analyses showed that the most plausible scenario is the one considering the divergence of two main lineages followed by a more recent pulse of speciation. Genotypic data in conjunction with SDMs and niche differentiation analyses support that different factors (geography vs. environment) and modes of speciation (parapatry, allopatry and maybe sympatry) have played a role in the divergence process within this complex. We found no significant relationship between genetic differentiation and niche overlap, which probably reflects niche lability and/or that multiple factors, have contributed to speciation. Our study shows that different mechanisms can drive divergence even among closely related taxa representing early stages of species formation and exemplifies the importance of adopting integrative approaches to get a better understanding of the speciation process.  相似文献   

3.
Differential selection pressures caused by environmental disparities lead to populations to become differentiated as they adapt to local environments. In addition, natural selection during the species past can contribute to the observed differentiation. In this study, we examine the geographic variation in a set of four traits related to growth and plant architecture in cork oak (Quercus suber) and investigate to what extent this variation is the result of the effects of ongoing evolution in current environments and the past evolutionary history of the species. Cork oak saplings at the common garden trial exhibited differences in plant architecture associated to cpDNA lineage. Eastern lineages, exhibited the lowest apical dominance and highest branchiness, consistent with the analyses in other cork oak trials. In contrast, patterns linked to the evolutionary past were less evident in height and diameter. These results suggest that selective pressures after cpDNA divergence can have blurred patterns in some traits closely related to fitness, while conserving the past evolutionary imprints in plant architectural traits. Introgressed populations did not show significant differentiation in architecture, which suggests that allele exchanges via hybridization have had a limited effect on population differentiation in cork oak. Finally, populations within lineages also showed differences in growth and architecture. Correlation between population architecture and temperature patterns were observed indicating that environmental factors such as climate also could result crucial in the evolution of plant architecture of cork oak within lineages.  相似文献   

4.
Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate‐driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance‐based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein‐coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2–6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate‐associated selection.  相似文献   

5.
Recent phylogenetic evidence suggests that the extraordinary diversity of the Cape Floristic Kingdom in South Africa may be the result of widespread evolutionary radiation. Our understanding of the role of adaptive versus neutral processes in these radiations remains largely speculative. In this study we investigated factors involved in the diversification of Argyroderma, a genus within the most spectacular of the Cape radiations, that of the Ruschioid subfamily of the Aizoaceae. We used amplified fragment length polymorphisms and a suite of morphological traits to elucidate patterns of differentiation within and between species of Argyroderma across the range of the genus. We then used a matrix correlation approach to assess the influence of landscape structure, edaphic gradients, and flowering phenology on phenotypic and neutral genetic divergence in the system. We found evidence for strong spatial genetic isolation at all taxonomic levels. In addition, genetic differentiation occurs along a temporal axis, between sympatric species with divergent flowering times. Morphological differentiation, which previous studies suggest is adaptive, occurs along a habitat axis, between populations occupying different edaphic microenvironments. Morphological differentiation is in turn significantly associated with flowering time shifts. Thus we propose that diversification within Argyroderma has occurred through a process of adaptive speciation in allopatry. Spatially isolated populations diverge phenotypically in response to divergent habitat selection, which in turn leads to the evolution of reproductive isolation through divergence of flowering phenologies, perhaps as a correlated response to morphological divergence. Evidence suggests that diversification of the group has proceeded in two phases: the first involving divergence of allopatric taxa on varied microhabitats within a novel habitat type (the quartz gravel plains), and the second involving range expansion of an early flowering phenotype on the most extreme edaphic habitat and subsequent incomplete differentiation of allopatric populations of the early flowering group. These results point to adaptive speciation in allopatry as a likely model for the spectacular diversification of the ice-plant family in the dissected landscapes of the southern African winter rainfall deserts.  相似文献   

6.
We urgently need to predict species responses to climate change to minimize future biodiversity loss and ensure we do not waste limited resources on ineffective conservation strategies. Currently, most predictions of species responses to climate change ignore the potential for evolution. However, evolution can alter species ecological responses, and different aspects of evolution and ecology can interact to produce complex eco‐evolutionary dynamics under climate change. Here we review how evolution could alter ecological responses to climate change on species warm and cool range margins, where evolution could be especially important. We discuss different aspects of evolution in isolation, and then synthesize results to consider how multiple evolutionary processes might interact and affect conservation strategies. On species cool range margins, the evolution of dispersal could increase range expansion rates and allow species to adapt to novel conditions in their new range. However, low genetic variation and genetic drift in small range‐front populations could also slow or halt range expansions. Together, these eco‐evolutionary effects could cause a three‐step, stop‐and‐go expansion pattern for many species. On warm range margins, isolation among populations could maintain high genetic variation that facilitates evolution to novel climates and allows species to persist longer than expected without evolution. This ‘evolutionary extinction debt’ could then prevent other species from shifting their ranges. However, as climate change increases isolation among populations, increasing dispersal mortality could select for decreased dispersal and cause rapid range contractions. Some of these eco‐evolutionary dynamics could explain why many species are not responding to climate change as predicted. We conclude by suggesting that resurveying historical studies that measured trait frequencies, the strength of selection, or heritabilities could be an efficient way to increase our eco‐evolutionary knowledge in climate change biology.  相似文献   

7.
Ecological niche evolution can promote or hinder the differentiation of taxa and determine their distribution. Niche‐mediated evolution may differ among climatic regimes, and thus, species that occur across a wide latitudinal range offer a chance to test these heterogeneous evolutionary processes. In this study, we examine (a) how many lineages have evolved across the continent‐wide range of the Eurasian nuthatch (Sitta europaea), (b) whether the lineages’ niches are significantly divergent or conserved and (c) how their niche evolution explains their geographic distribution. Phylogenetic reconstruction and ecological niche models (ENMs) showed that the Eurasian nuthatch contained six parapatric lineages that diverged within 2 Myr and did not share identical climatic niches. However, the niche discrepancy between these distinct lineages was relatively conserved compared with the environmental differences between their ranges and thus was unlikely to drive lineage divergence. The ENMs of southern lineages tended to cross‐predict with their neighbouring lineages whereas those of northern lineages generally matched with their abutting ranges. The coalescence‐based analyses revealed more stable populations for the southern lineages than the northern ones during the last glaciation cycle. In contrast to the overlapping ENMs, the smaller parapatric distribution suggests that the southern lineages might have experienced competitive exclusion to prevent them from becoming sympatric. On the other hand, the northern lineages have expanded their ranges and their current abutting distribution might have resulted from lineages adapting to different climatic conditions in allopatry. This study suggests that niche evolution may affect lineage distribution in different ways across latitude.  相似文献   

8.
This paper investigates the usefulness of two mitochondrial genes (16S rRNA and cytochrome b) to solve taxonomical difficulties within the genus Hylomyscus and to infer its evolutionary history. Both genes proved to be suitable molecular markers for diagnosis of Hylomyscus species. Nevertheless the resolving powers of these two genes differ, and with both markers (either analyzed singly or in combination), some nodes remain unresolved. This is probably related to the fact that the species emerged during a rapid diversification event that occurred 2-6 Myr ago (4-5 Myr ago for most divergence events). Our molecular data support the recognition of an "aeta" group, while the "alleni" and "parvus" groups are not fully supported. Based on tree topology and genetic divergence, two taxa generally recognized as subspecies should be elevated at the species level (H. simus and H. cf kaimosae). H. stella populations exhibit ancient haplotype segregation that may represent currently unrecognized allopatric species. The existence of cryptic species within H. parvus is questioned. Finally, three potentially new species may occur in West Central Africa. The Congo and Oubangui Rivers, as well as the Volta and Niger Rivers and/or the Dahomey gap could have formed effective barriers to Hylomyscus species dispersal, favoring their speciation in allopatry. The pronounced shifts in African climate during the late Pliocene and Miocene, which resulted in major changes in the distribution and composition of the vegetation, could have promoted speciation within the genus (refuge theory). Future reports should focus on the geographic distribution of Hylomyscus species in order to get a better understanding of the evolutionary history of the genus.  相似文献   

9.
We reconstruct phylogenetic relationships among a well-studied group of toads and find relationships that differ greatly from the current taxonomic understanding. We use mitochondrial sequences encoding ND1, tRNA(Leu(UUR)), and part of 16S to infer relationships among members of the Bufo americanus complex. Focusing on the four taxa that historically have been most problematic due to morphological similarity and hybridization in sympatry, we sample 150 individuals from multiple populations across each species' geographic range. Our evidence conflicts with previous taxonomic hypotheses that were based on ability to hybridize, geographic distribution, and call variation. First, sequences from B. fowleri do not comprise the sister clade to sequences of B. woodhousii; therefore the previous classifications of B. fowleri as sister species to, or eastern subspecies of, B. woodhousii are both called into question. Second, sequences from B. americanus are more closely related to those of B. woodhousii than to those of B. terrestris, indicating that similar advertisement call characteristics evolved independently. Third, sequences of B. fowleri are paraphyletic, with sequences of B. terrestris embedded within. Lastly, sequences from B. fowleri cluster into three distinct mitochondrial clades, with some divergences corresponding to greater than 2mya. These clades are somewhat geographically structured, suggesting divergence in allopatry during the Pleistocene. These mitochondrial divergences are not accompanied by known phenotypic differences, however, suggesting either evolutionary stasis in morphology and behavior, cryptic phenotypic evolution, or that hybridization in secondary contact has homogenized phenotypic differences that may have arisen in allopatry.  相似文献   

10.
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence.  相似文献   

11.
Understanding the factors determining genetic diversity and structure in peripheral populations is a long‐standing goal of evolutionary biogeography, yet little empirical information is available for tropical species. In this study, we combine information from nuclear microsatellite markers and niche modelling to analyse the factors structuring genetic variation across the southernmost populations of the tropical oak Quercus segoviensis. First, we tested the hypothesis that genetic variability decreases with population isolation and increases with local habitat suitability and stability since the Last Glacial Maximum (LGM). Second, we employed a recently developed multiple matrix regression with randomisation (MMRR) approach to study the factors associated with genetic divergence among the studied populations and test the relative contribution of environmental and geographic isolation to contemporary patterns of genetic differentiation. We found that genetic diversity was negatively correlated with average genetic differentiation with other populations, indicating that isolation and limited gene flow have contributed to erode genetic variability in some populations. Considering the relatively small size of the study area (<120 km), analyses of genetic structure indicate a remarkable inter‐population genetic differentiation. Environmental dissimilarity and differences in current and past climate niche suitability and their additive effects were not associated with genetic differentiation after controlling for geographic distance, indicating that local climate does not contribute to explain spatial patterns of genetic structure. Overall, our data indicate that geographic isolation, but not current or past climate, is the main factor determining contemporary patterns of genetic diversity and structure within the southernmost peripheral populations of this tropical oak.  相似文献   

12.
Geographic separation that leads to the evolution of reproductive isolation between populations generally is considered the most common form of speciation. However, speciation may also occur in the absence of geographic barriers due to phenotypic and genotypic factors such as chemical cue divergence, mating signal divergence, and mitonuclear conflict. Here, we performed an integrative study based on two genome‐wide techniques (3RAD and ultraconserved elements) coupled with cuticular hydrocarbon (CHC) and mitochondrial (mt) DNA sequence data, to assess the species limits within the Ectatomma ruidum species complex, a widespread and conspicuous group of Neotropical ants for which heteroplasmy (i.e., presence of multiple mtDNA variants in an individual) has been recently discovered in some populations from southeast Mexico. Our analyses indicate the existence of at least five distinct species in this complex: two widely distributed across the Neotropics, and three that are restricted to southeast Mexico and that apparently have high levels of heteroplasmy. We found that species boundaries in the complex did not coincide with geographic barriers. We therefore consider possible roles of alternative drivers that may have promoted the observed patterns of speciation, including mitonuclear incompatibility, CHC differentiation, and colony structure. Our study highlights the importance of simultaneously assessing different sources of evidence to disentangle the species limits of taxa with complicated evolutionary histories.  相似文献   

13.
The complex and dynamic history of the Anatolian Peninsula during the Pleistocene set the stage for species diversification. However, the evolutionary history of biodiversity in the region is shrouded by the challenges of studying species divergence in the recent, dynamic past. Here, we study the Poecilimon bosphoricus (PB) species group to understand how the bush crickets' diversification and the regions' complex history are coupled. Specifically, using sequences of two mitochondrial and two nuclear gene segments from over 500 individuals for a comprehensive set of taxa with extensive geographic sampling, we infer the phylogenetic and geographic setting of species divergence. In addition, we use the molecular data to examine hypothesized species boundaries that were defined morphologically. Our analyses of the timing of divergence confirm the recent origin of the PB complex, indicating its diversification coincided with the dynamic geology and climate of the Pleistocene. Moreover, the geography of divergence suggests a history of fragmentation followed by admixture of populations, suggestive of a ring species. However, the evolutionary history based on genetic divergence conflicts with morphologically defined species boundaries raising the prospects that incipient species divergences may be relatively ephemeral. As such, the morphological differences observed in the PB complex may not to be sufficient to have prevented homogenizing gene flow in the past. Alternatively, with the recent origin of the complex, the lack of time for lineage sorting may underlie the discord between morphological species boundaries and genetic differentiation. Under either hypothesis, geography—not taxonomy—is the best predictor of genetic divergence.  相似文献   

14.
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic–phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene–early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene.  相似文献   

15.
Determining what factors affect the structuring of genetic variation is key to deciphering the relative roles of different evolutionary processes in species differentiation. Such information is especially critical to understanding how the frequent shifts and fragmentation of species distributions during the Pleistocene translates into species differences, and why the effect of such rapid climate change on patterns of species diversity varies among taxa. Studies of mitochondrial DNA (mtDNA) have detected significant population structure in many species, including those directly impacted by the glacial cycles. Yet, understanding the ultimate consequence of such structure, as it relates to how species divergence occurs, requires demonstration that such patterns are also shared with genomic patterns of differentiation. Here we present analyses of amplified fragment length polymorphisms (AFLPs) in the montane grasshopper Melanoplus oregonensis to assess the evolutionary significance of past demographic events and associated drift-induced divergence as inferred from mtDNA. As an inhabitant of the sky islands of the northern Rocky Mountains, this species was subject to repeated and frequent shifts in species distribution in response to the many glacial cycles. Nevertheless, significant genetic structuring of M. oregonensis is evident at two different geographic and temporal scales: recent divergence associated with the recolonization of the montane meadows in individual sky islands, as well as older divergence associated with displacements into regional glacial refugia. The genomic analyses indicate that drift-induced divergence, despite the lack of long-standing geographic barriers, has significantly contributed to species divergence during the Pleistocene. Moreover, the finding that divergence associated with past demographic events involves the repartitioning of ancestral variation without significant reductions of genomic diversity has intriguing implications - namely, the further amplification of drift-induced divergence by selection.  相似文献   

16.
Many examples of cryptic marine species have been demonstrated with biochemical and molecular studies. In most cases, a broadly distributed taxon is actually a group of sibling species that can be distinguished (upon closer examination) by ecological or morphological characters. Fishes of the family Albulidae constitute a notable exception. Bonefish (Albula spp.) morphology and ecology are highly conserved around the globe, and their extended pelagic larval stage could allow population connections on a vast geographic scale. Based on this perceived homogeneity, bonefishes were classified as a single pantropical species, A. vulpes. However, allozyme studies of Hawaiian populations indicated that two sympatric species (A. glossodonta and A. neoguinaica) are included in the synonymy of A. vulpes. To ascertain the number and distribution of evolutionary partitions in Albula, we surveyed 564 bp of mitochondrial DNA (mtDNA) cytochrome b from 174 individuals collected at 26 locations. Sequence comparisons reveal eight deep lineages (d = 5.56-30.6%) and significant population structure within three of the four lineages that could be tested (phiST = 0.047-0.678). These findings confirm the genetic distinctiveness of the three species noted above and invoke the possibility of five additional species. Clock estimates for mtDNA indicate that these putative species arose 4-20 million years ago. Distinct evolutionary lineages coexist in several sample locations, yet show little morphological or ecological differentiation in sympatry. Thus, bonefish species seem to defy the evolutionary conventions of morphological differentiation over time and ecological displacement in sympatry. Despite multiple cases of sympatry, sister-taxa relationships inferred from mtDNA indicate that divergence in allopatry has been the predominant speciation mechanism in Albula. Stabilizing selection in the homogeneous habitat occupied by bonefishes (tropical sand flats) could promote the retention of highly conserved morphology and ecology.  相似文献   

17.
Both neutral and adaptive evolutionary processes can cause population divergence, but their relative contributions remain unclear. We investigated the roles of these processes in population divergence in house sparrows (Passer domesticus) from Romania and Bulgaria, regions characterized by high landscape heterogeneity compared to Western Europe. We asked whether morphological divergence, complemented with genetic data in this human commensal species, was best explained by environmental variation, geographic distance, or landscape resistance—the effort it takes for an individual to disperse from one location to the other—caused by either natural or anthropogenic barriers. Using generalized dissimilarity modeling, a matrix regression technique that fits biotic beta diversity to both environmental predictors and geographic distance, we found that a small set of climate and vegetation variables explained up to ~30% of the observed divergence, whereas geographic and resistance distances played much lesser roles. Our results are consistent with signals of selection on morphological traits and of isolation by adaptation in genetic markers, suggesting that selection by natural environmental conditions shapes population divergence in house sparrows. Our study thus contributes to a growing body of evidence that adaptive evolution may be a major driver of diversification.  相似文献   

18.
Understanding observed patterns of connectivity requires an understanding of the evolutionary processes that determine genetic structure among populations, with the most common models being associated with isolation by distance, allopatry or vicariance. Pinnipeds are annual breeders with the capacity for extensive range overlap during seasonal migrations, establishing the potential for the evolution of isolation by distance. Here, we assess the pattern of differentiation among six breeding colonies of the southern elephant seal, Mirounga leonina, based on mtDNA and 15 neutral microsatellite DNA markers, and consider measures of their demography and connectivity. We show that all breeding colonies are genetically divergent and that connectivity in this highly mobile pinniped is not strongly associated with geographic distance, but more likely linked to Holocene climate change and demographic processes. Estimates of divergence times between populations were all after the last glacial maximum, and there was evidence for directional migration in a clockwise pattern (with the prevailing current) around the Antarctic. We discuss the mechanisms by which climate change may have contributed to the contemporary genetic structure of southern elephant seal populations and the broader implications.  相似文献   

19.
Compared to endemics, widespread species are of particular interest to retrace recent evolutionary history. These species have a large population size which provides a clearer genetic signature of past events. Moreover, their wide geographic range increases the potential occurrence of evolutionary events (expansion, divergence, etc.). Here, we used several coalescent-based methods to disentangle the evolutionary history of a widespread amphidromous goby (Sicyopterus lagocephalus), in the light of sea-level variations during the Pleistocene. Using 75 samples recovered from three biogeographic regions (Western Indian Ocean, Melanesia and Polynesia), we analysed a portion of the cytochromeb gene and confirmed three major haplogroups, each specific to a region. Furthermore, we found that: (1) the Melanesian haplogroup was the oldest while the two peripheral regions hosted daughter haplogroups; (2) two centrifugal colonisation events occurred from Melanesia to the periphery, each synchronised with periods of strong paleo-ENSO episodes; (3) the demographic contraction-expansion events were linked to Pleistocene sea-level changes; (4) Melanesia and Polynesia acted as efficient refuges during the Last Glacial Maximum. These results highlight the importance of studying widespread species to better understand the role of climate changes and paleo-oceanography on the evolution of biodiversity.  相似文献   

20.
The macroevolutionary consequences of recent climate change remain controversial, and there is little paleobotanical or morphological evidence that Pleistocene (1.8-0.12 Ma) glacial cycles acted as drivers of speciation, especially among lineages with long generation times, such as trees. We combined genetic and ecogeographic data from 2 closely related North American tree species, Populus balsamifera and P. trichocarpa (Salicacaeae), to determine if their divergence coincided with and was possibly caused by Pleistocene climatic events. We analyzed 32 nuclear loci from individuals of P. balsamifera and P. trichocarpa to produce coalescent-based estimates of the divergence time between the 2 species. We coupled the coalescent analyses with paleodistribution models to assess the influence of climate change on species' range. Furthermore, measures of niche overlap were used to investigate patterns of ecological differentiation between species. We estimated the divergence date of P. balsamifera and P. trichocarpa at approximately 75 Ka, which corresponds closely with the onset of Marine Isotope Stage 4 (~76 Ka) and a rapid increase in global ice volume. Significance tests of niche overlap, in conjunction with genetic estimates of migration, suggested that speciation occurred in allopatry, possibly resulting from the environmental effects of Pleistocene glacial cycles. Our results indicate that the divergence of keystone tree species, which have shaped community diversity in northern North American ecosystems, was recent and may have been a consequence of Pleistocene-era glaciation and climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号