首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
The incorporation of3H-thymidine into DNA in the brains of the 17-day and 20-day old rat fetuses was significantly reduced by maternal zinc restriction during pregnancy. The activity of the enzyme thymidine kinase (EC 2.7.1.21) was similarly reduced in the zine-deprived fetal brains on days 14 and 20 of gestation, but not on day 17. Fetal brain alkaline phosphatase (EC 3.1.3.1) was significantly depressed by maternal zinc deprivation on days 17 and 20 of pregnancy. The data suggest an association between thymidine kinase and the reduced incorporation of3H-thymidine into DNA in the brains of 20-day old fetuses but not in animals on day 17. Alkaline phosphatase was however depressed at this stage. The suggestion is made that because of the complexity of brain development, future biochemical studies in this area should concern specific structures in the brain at particular critical stages during neurogenesis.  相似文献   

2.
R Klepac 《Endokrinologie》1981,77(2):192-196
Pregnant female rats with ACTH secreting tumor (MtTF4) have prolonged pregnancy and cannot deliver. The fetuses of tumor bearing females have in prolonged pregnancy on days 24 and 25 of pregnancy greater body weight and smaller adrenal weight as compared to intact fetuses of the 22nd day of pregnancy. The fetal adrenal glands converted to vitro 4-14C progesterone to radioactive 11-deoxycorticosterone (DOC), corticosterone (B), 18-hydroxy-11-deoxycorticosterone (18-OH-DOC), 18-hydroxy-corticosterone (18-OH-B) and aldosterone. Fetal adrenal glands in prolonged pregnancy synthetized in vitro less amount of radioactive DOC, B and 18-OH-DOC. A negative relationship exists between the maternal corticosterone which passes the placenta to fetuses and corticosteroidogenesis of fetal adrenal glands. These results indicate the possibility that fetal rat adrenal glands with their corticosteroids participate in pregnancy and influence normal delivery.  相似文献   

3.
The effect of adrenocorticotropic hormone (ACTH) administration on plasma cortisol concentrations was determined in pregnant gilts and their fetuses. In a first experiment, 100 IU ACTH (Synacthen Depot) was administered intramuscularly to the gilts every second day from Days 49 to 75 of gestation. ACTH injections were carried out at 08:00 h and, thereafter, 10 blood samples were taken within the following 8h via jugular catheters. Blood samples were analysed for plasma cortisol concentrations, and results were compared with values from animals which were treated with physiological saline and untreated animals (blood sampling only). The values for plasma cortisol concentrations increased until 3h after ACTH applications to a mean maximum level of 276.5+/-17.2 nmol/l in the whole 4-week stimulation period. Plasma cortisol levels did not return to pre-treatment values within the 8 h post-injection. No differences in cortisol levels were found between the physiological saline and untreated control, and no habituation of the adrenocortical response to ACTH was found during the 4-week stimulation period. In a second experiment, 100 IU ACTH were administered to pregnant gilts at gestation Day 65. After 3 h, fetuses were recovered under general anaesthesia and blood samples were taken from the umbilical vein, artery, and, after decapitation, from periphery. Application of ACTH to the sows significantly increased their plasma cortisol concentrations (P<0.001), and also increased plasma cortisol concentrations in peripheral blood samples from the fetuses (P=0.09) and in the umbilical vein (P<0.001) and artery (P<0.01), respectively. Plasma ACTH concentrations did not differ in fetuses from ACTH-treated or control sows. The results show that in gilts the adrenocortical response to an exogenous application of Synacthen Depot is consistent over time during mid-gestation. Furthermore, cortisol but not ACTH levels were increased in fetuses from ACTH-treated sows, indicating that maternal cortisol can cross the placenta during mid-gestation. The stimulation of maternal cortisol release through exogenous ACTH with subsequent elevation of fetal cortisol levels is, therefore, a useful approach for studying effects of elevated maternal glucocorticoids in prenatal stress studies in pigs.  相似文献   

4.
On Day 8 of pregnancy, the number of implantation sites in pregnant rats was adjusted to 1, 2, 4, 6, or greater than 10. Blood was collected on Days 11, 12, 15, 18, and 20 for the determination of serum testosterone, progesterone, and androstenedione. Serum testosterone levels exhibited a direct linear relationship with implantation number, increasing from 1 through greater than 10 implants. This linear relationship was particularly evident at Days 12, 15, and 18 of pregnancy. Serum progesterone levels increased from one to four conceptuses and plateaued above this number. There was no apparent relationship between the number of conceptuses and serum androstenedione levels, which may reflect the multiple origins of this steroid in the pregnant rat. In a separate group of rats in which the number of conceptuses was adjusted to three on Day 8 of pregnancy, blood was collected on Days 11, 12, 15, 18, and 20. Fetal sex was determined between the last bleeding and the day of parturition. Serum testosterone was determined and results were examined with regard to the number of male/female fetuses in the litter of three. There was no relationship between maternal serum testosterone levels and the number of male fetuses, indicating that the fetal testis does not make a significant contribution to circulating maternal testosterone levels.  相似文献   

5.
Maternal diabetes impairs fetal development and growth. We studied the effects of maternal diets enriched in unsaturated fatty acids capable of activating peroxisome proliferator-activated receptors (PPARs) on the concentrations of 15deoxyΔ12,14PGJ2 (15dPGJ2), lipid mass, and the de novo lipid synthesis in 13.5-day fetuses from control and diabetic rats. Diabetes was induced by neonatal streptozotocin administration (90 mg/kg). Rats were treated with a standard diet supplemented or not with 6% olive oil or 6% safflower oil from days 0.5 to 13.5 of gestation. Fetuses from diabetic rats fed with the standard diet showed reduced 15dPGJ2 concentrations, whereas maternal treatments with olive and safflower oils increased 15dPGJ2 concentrations. Fetuses from diabetic rats showed increased concentrations of phospholipids and increased synthesis of triglycerides, phospholipids, cholesterol and free fatty acids. Diabetic rat treatments with olive and safflower oils reduced phospholipids, cholesterol, and free fatty acid concentrations and the de novo lipid synthesis in the fetuses. These effects were different from those observed in fetuses from control rats, and seem not to involve PPARγ activation. In conclusion, olive oil- and safflower oil-supplemented diets provide beneficial effects in maternal diabetes, as they prevent fetal impairments in 15dPGJ2 concentrations, lipid synthesis and lipid accumulation.  相似文献   

6.
Pregnant rats were treated with 30 mg metopirone (M) each day for 2 days and autopsied on the third day in various gestational periods (Days 18-20, 19-21, and 20-22). Control rats were treated with saline alone (S). The adrenals of intact fetuses in M-treated dams were significantly heavier than those of intact fetuses in S-treated dams in every experimental period. In both M- and S-treated dams, the adrenals of encephalectomized (E) fetuses were lighter than those of intact littermates. However, in the experimental period of Days 18-20 and 19-21, the adrenals of E fetuses in M-treated dams were slightly but significantly heavier than those of similar E fetuses in S-treated dams. In contrast, in the experimental period Days 20-22, there was no significant difference in the weight of adrenals of E fetuses of M- and S-treated dams. These changes in fetal adrenal weight were reflected histologically in parallel changes in the size of adrenocortical cells. The observations suggest that the fetal adrenal hypertrophy following maternal treatment with metopirone can occur to some extent independent of the fetal brain, but that close to the end of gestation the hypertrophy occurs completely under the control of the fetal brain.  相似文献   

7.

Background

Quantification of cell-free fetal DNA by methylation-based DNA discrimination has been used in non-invasive prenatal testing of fetal chromosomal aneuploidy. The maspin (Serpin peptidase inhibitor, clade B (ovalbumin), member 5; SERPINB5) gene, located on chromosome 18q21.33, is hypomethylated in the placenta and completely methylated in maternal blood cells. The objective of this study was to evaluate the accuracy of non-invasive detection of fetal trisomy 18 using the unmethylated-maspin (U-maspin) gene as a cell-free fetal DNA marker and the methylated-maspin (M-maspin) gene as a cell-free total DNA marker in the first trimester of pregnancy.

Methodology/Principal Findings

A nested case-control study was conducted using maternal plasma collected from 66 pregnant women, 11 carrying fetuses with trisomy 18 and 55 carrying normal fetuses. Median U-maspin concentrations were significantly elevated in women with trisomy 18 fetuses compared with controls (27.2 vs. 6.7 copies/mL; P<0.001). Median M-maspin concentrations were also significantly higher in women with trisomy 18 fetuses than in controls (96.9 vs. 19.5 copies/mL, P<0.001). The specificities of U-maspin and M-maspin concentrations for non-invasive fetal trisomy 18 detection were 96.4% and 74.5%, respectively, with a sensitivity of 90.9%.

Conclusions

Our results suggest that U-maspin and M-maspin concentrations may be useful as potential biomarkers for non-invasive detection of fetal trisomy 18 in the first trimester of pregnancy, irrespective of the sex and genetic variations of the fetus.  相似文献   

8.
In this study we investigated the response of the rat fetal hypothalamo-pituitary-adrenal (HPA) axis to an acute maternal stress in late gestation. On day 20 of gestation, pregnant rats were exposed to forced immobilization stress for up to 60 min. In mothers, a significant increase in plasma ACTH and corticosterone(B) was observed at 20 and 60 min. The ACTH content in the maternal pituitary decreased significantly at 60 min. Fetal blood pH was decreased by the maternal stress, showing a hypoxic condition of the fetus. Fetal plasma ACTH increased transiently at 20 min. Fetal plasma B increased at 20 and 60 min. ACTH in the fetal pituitary and the placenta did not show marked changes due to the maternal stress. Pregnant rats on day 18-21 of gestation were subjected to a 20 min maternal stress. In the basal condition without stress, fetal plasma ACTH and B showed parallel ontogenic patterns, having a peak value on day 19 of gestation. Fetal plasma ACTH as well as plasma B were increased significantly by the maternal stress at all points evaluated. These results indicate that fetal hypoxia is important in stress transmission to the fetal HPA axis in this type of maternal stress, and the fetal HPA axis responds to the stress as early as day 18 of gestation.  相似文献   

9.
We determined whether ACTH1-24, infused into fetal lambs at a rate that is known to cause premature labor, elicits changes in the responsiveness of the fetal adrenal glands, and alters the pattern of corticosteroid output. Plasma cortisol (F), corticosterone (B) and progesterone (P4) were measured during 72 h of infusion of saline or ACTH (10 micrograms/h) beginning on Day 127 of pregnancy. Adrenals were then dispersed into isolated cells, and the output of F, B and P4 after exogenous ACTH determined in vitro. Plasma concentrations of F and B were higher in ACTH-treated fetuses. The increment in F (5-to 7-fold) was greater than that in B (2-fold) such that the F:B ratio in plasma of ACTH-treated fetuses on Days 2 and 3 of infusion was 2.5 times higher than in controls. After 72 h of infusion, the adrenal weights in ACTH-treated fetuses (741 +/- 38 mg, +/- SEM; n = 4) were greater than in the control animals (349 +/- 11 mg). There was a significant effect of ACTH pretreatment in vivo on F output by isolated adrenal cells in vitro. Mean increments in F output after addition of ACTH1-24 (5000 pg/ml) in vitro rose from 368 +/- 235 pg/50,000 cells in controls, to 64,639 +/- 19,875 pg/50,000 cells after ACTH in vivo. There was no significant effect of ACTH in vivo on B output in vitro; the ratio of F:B output, either in the absence or presence of ACTH in vitro, was significantly higher in cells from ACTH-pretreated fetuses. There was a significant effect of in vivo ACTH on in vitro P4 output. After ACTH treatment in vivo there was an increase in the vitro output ratio of F:P4, but no change in the output ratio of B:P4. We conclude that ACTH treatment of the fetal lamb in vivo results in activation of fetal adrenal function, increased fetal adrenal responsiveness to ACTH, and directed corticosteroid biosynthesis towards cortisol. Our results are consistent with an increase in fetal adrenal 17 alpha-hydroxylase activity after ACTH treatment.  相似文献   

10.
Stress due to regrouping of breeding females is difficult to avoid completely in loose-housing systems. The effects of stress during the maternal recognition of pregnancy on fetal development and survival at Day 30 of pregnancy was, therefore, studied in 17 sows allocated into one control (C-) group, one group deprived of food during Days 13 and 14 (FD-), and one group (A-), which was treated with ACTH (0.01 mg/kg body weight of Synacthen Depot) every sixth hour during the same period. Total number of fetuses, fetal survival rate, volume of allantoic fluid, and the weight and length of total fetal unit, placentas, allantochorion and fetuses were determined. The concentrations of progesterone (P4), PGFM, PGF2, PGE, estrone-sulfate, and estradiol-17beta in the allantoic fluid were analyzed. No significant differences between groups were found for any parameter measured except for P4. Food deprivation increased P4 concentration in the allantoic fluid, and there was a positive correlation between the P4 concentration and the weight of the placenta. It is, therefore, suggested that P4 influences the placenta size among food-deprived sows.  相似文献   

11.
Compared to younger rats, old rats exhibit prolonged elevations of plasma ACTH and corticosterone (CORT) in response to stress. In addition, CORT crosses the placenta. To investigate whether fetuses of older rats may be exposed to higher concentrations of CORT during development than fetuses of young rats, we compared the effects of stress on hypothalamic-pituitary-adrenal (HPA) axis function in young and aging pregnant rats and their 19-day-old fetuses. The plasma of the mothers and fetuses was assayed for ACTH and CORT by radioimmunoassay. Both young and aging pregnant rats showed a significant increase in plasma ACTH and CORT immediately after exposure to stress. However, aging rats had more prolonged elevations of ACTH and CORT than young rats. This suggests that, like old male rats, aging pregnant rats have an alteration in feedback inhibition of the HPA axis. Prolonged elevation of CORT was also seen in fetuses of aging mothers. These results have important implications concerning the effects of stress during pregnancy at different maternal ages, and for the potential deleterious consequences of prolonged prenatal elevation in stress hormones on the offspring of aging females.  相似文献   

12.
《Bioscience Hypotheses》2008,1(2):100-102
Fetal microchimerism refers to the presence of fetal cells in maternal blood and tissues during pregnancy. This microchimerism may result from trafficking of fetal and maternal blood across the placenta during pregnancy. Physiological changes in the maternal blood cellular milieu are also recognized during pregnancy and in the early postpartum period. Earlier studies showed that maternal blood contains CD34+ hematopoietic stem cells (HSCs) that bear paternal genetic markers or male phenotype, suggesting that these cells circulated to the mother from male fetuses during pregnancy. Other studies showed that these maternal HSCs have significantly lower expansion potential than their fetal counterparts. We have recently shown increased percentages of CD34+ HSCs in peripheral blood of pregnant and parous women. Herein, we hypothesize that pregnancy stimulates the production of endogenous CD34+ HSCs of maternal origin, a phenomenon which potentially could favor postpartum regenerative capacity.  相似文献   

13.
To investigate the effect of maternal alcohol consumption on the development of the fetal thyroid gland, Sprague-Dawley rats were given 20% ethanol for 4 weeks prior to mating and 30% ethanol throughout gestation. Pair-fed controls received an isocaloric amount of corn starch and chow, with water ad libitum, and ad libitum controls received rat chow and water. On Days 17, 18, 19, and 20 of gestation, the fetuses were weighed and the fetal thyroids were removed for histometric observation. On Days 19 and 20, the fetal thyroids of alcohol-exposed fetuses weighed significantly less than those of the two control groups, but more than the control thyroids 1 day earlier. Maternal alcohol consumption caused a significant decrease in both the follicular cell height and the follicle diameter of the fetal thyroid on all days examined. In the alcohol group on Days 19 and 20 of gestation, the cell height was less than, and the follicle diameter was approximately equal to those in the two controls 2 days earlier. These results indicate that, as a consequence of maternal alcohol consumption, growth of the fetal thyroid gland is retarded, and there are indications of fetal hypothyroidism, as seen from the histometric data. This latter is suggestive of a retarded thyrotropic activity of the fetal pituitary gland.  相似文献   

14.
Previous work in this laboratory showed that during intoxication of rats with diisopropyl fluorophosphate at day 20 of pregnancy the recovery of ChE activity was faster in fetal than in maternal brain. In the present study the differences between recovery rates in dam and fetus brain were evaluated in terms of molecular forms and spontaneous reactivation. Using ultracentrifugation on sucrose gradient two molecular forms of ChE, namely 10S (tetrameric globular G4 form) and 4S (monomeric G1 form) were detected both in maternal and fetal brain of untreated rats. The ratios 10S/4S were about 5.0 and 0.75 for dams and 20-day fetuses, respectively. DFP administration (1.1 mg/kg sc) inducing at 90 min an about 80% inhibition of ChE in maternal brain caused a shift in its 10S/4S ratio to 1.63, and to 0.53 in fetal brain (in which overall inhibition was about 70%). This means that 10S forms were preferentially inhibited by DFP both in maternal and fetal brain. After 24 and 48 hr there was a negligible recovery of overall ChE in maternal brain with no shift in the ratio. On the other hand, complete recovery of ChE in fetal brain within 48 hr was accompanied by almost total normalization of the 10S/4S ratio. Rapid recovery of fetal ChE appeared not to depend on hydrolysis of DFP-inhibited ChE. In fact, maternal and fetal DFP-inhibited enzyme preparations following the addition of oximes (pralidoxime or obidoxime) in vitro showed similar rates of reactivation. The overall data indicate considerable differences in recovery rate of molecular forms between dams and fetuses, but not in reactivation by dephosphorylation.  相似文献   

15.
Quantitative cytochemistry was used to determine the effect of subjecting pregnant rats to environmental stress on the activity of delta 5-3 beta hydroxysteroid dehydrogenase (3 beta-HSD) in Leydig cells of their fetuses. Enzyme activity was measured by microspectrophotometry in individual Leydig cells in cryostat sections of fetal testes on Days 16-21 postconception. Fetuses of stressed mothers lacked the peak of enzyme activity on Days 18 and 19 of gestation that is characteristic of Leydig cells of normal fetuses at this time. In addition, both before and after these 2 days, 3 beta-HSD activity in Leydig cells of stressed fetuses was significantly higher than normal. The altered developmental pattern of 3 beta-HSD activity in the stressed fetuses largely corresponds to the changes in plasma testosterone found previously in male fetuses of mothers exposed to the same regimen of stress. Thus, in the fetal Leydig cell, the activity of 3 beta-HSD, a key steroidogenic enzyme, can be modified by environmental stress, and provides an index of steroidogenic activity of the fetal testes and of the titers of circulating testosterone.  相似文献   

16.
Both animal and human studies demonstrate that the docosahexaenoic acid (DHA) content of plasma and/or tissue lipids is increased during pregnancy. We hypothesised that increasing the α-linolenic acid (ALA) or longer chain (n-3) PUFA content of the maternal diet during pregnancy influences fetal fatty acid composition and the fetal immune system. Pregnant rats were fed a low-fat (LF) soybean oil diet, or high-fat (HF) soybean, linseed, salmon or sunflower oil diets from conception to 20 d gestation. The ALA-rich Linseed-HF diet resulted in an equivalent eicosapentaenoic acid (EPA) status in fetal immune tissues and an equivalent DHA status in the fetal brain to that achieved with the Salmon-HF diet. An (n-3) rich maternal diet during pregnancy associated with the highest expression of CD3 (Salmon-HF) and CD8 (Linseed-HF and Salmon-HF) on fetal thymic CD3+CD8+ cells. The Linseed-HF diet resulted in the highest proportion of CD161+ cells within the fetal thymus, which correlated with the production of IL-4. These data indicate that dietary ALA supplementation may confer some of the benefits of LC (n-3) PUFA during pregnancy. This should be examined in suitably designed human studies.  相似文献   

17.

Background

Noninvasive prenatal diagnosis of fetal aneuploidy by maternal plasma analysis is challenging owing to the low fractional and absolute concentrations of fetal DNA in maternal plasma. Previously, we demonstrated for the first time that fetal DNA in maternal plasma could be specifically targeted by epigenetic (DNA methylation) signatures in the placenta. By comparing one such methylated fetal epigenetic marker located on chromosome 21 with another fetal genetic marker located on a reference chromosome in maternal plasma, we could infer the relative dosage of fetal chromosome 21 and noninvasively detect fetal trisomy 21. Here we apply this epigenetic-genetic (EGG) chromosome dosage approach to detect Edwards syndrome (trisomy 18) in the fetus noninvasively.

Principal Findings

We have systematically identified methylated fetal epigenetic markers on chromosome 18 by methylated DNA immunoprecipitation (MeDIP) and tiling array analysis with confirmation using quantitative DNA methylation assays. Methylated DNA sequences from an intergenic region between the VAPA and APCDD1 genes (the VAPA-APCDD1 DNA) were detected in pre-delivery, but not post-delivery, maternal plasma samples. The concentrations correlated positively with those of an established fetal genetic marker, ZFY, in pre-delivery maternal plasma. The ratios of methylated VAPA-APCDD1(chr18) to ZFY(chrY) were higher in maternal plasma samples of 9 male trisomy 18 fetuses than those of 27 male euploid fetuses (Mann-Whitney test, P = 0.029). We defined the cutoff value for detecting trisomy 18 fetuses as mean+1.96 SD of the EGG ratios of the euploid cases. Eight of 9 trisomy 18 and 1 of 27 euploid cases showed EGG ratios higher than the cutoff value, giving a sensitivity of 88.9% and a specificity of 96.3%.

Conclusions

Our data have shown that the methylated VAPA-APCDD1 DNA in maternal plasma is predominantly derived from the fetus. We have demonstrated that this novel fetal epigenetic marker in maternal plasma is useful for the noninvasive detection of fetal trisomy 18.  相似文献   

18.
BACKGROUND: To determine if the fetus was affected by maternal antibodies to BMP‐2, the antibody response and developmental effects in fetuses from does immunized against recombinant human BMP‐2 were evaluated. METHODS: Female New Zealand White rabbits received four intramuscular injections (on premating days 1, 8, 22, and 43 [3 days before mating]) of saline and adjuvant (TiterMax® Gold [control]) or recombinant human BMP‐2 (2 mg/dose) and adjuvant (treated). On GD 29, fetuses were examined, and maternal and fetal anti‐BMP‐2 titer levels and neutralizing activity were assessed. RESULTS: Anti‐BMP‐2 antibodies were detected in 17 of 18 treated does (127 of 151 fetuses), and low levels were detected in 2 of 16 control does (no fetal exposure observed). In general, levels of fetal anti‐BMP‐2 antibodies were similar to those in the does, and pregnancy did not boost the immune response to BMP‐2. There were no effects of immunization or anti‐BMP‐2 antibody titer levels on embryo–fetal viability, fetal weight, or fetal external, visceral, or skeletal development. Only a small number of fetuses (n = 4) displayed detectable neutralizing anti‐BMP‐2 antibodies, but there were no treatment‐related effects in those fetuses. CONCLUSIONS: The lack of embryo–fetal effects may be due to dosage effects of neutralizing anti‐BMP‐2 antibodies, timing of exposure (stage and duration) to neutralizing anti‐BMP‐2 antibodies, and/or redundancy of effects of the various BMPs. Birth Defects Res (Part B) 92:543–552, 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

19.

Background

Complex but common maternal diseases such as diabetes and obesity contribute to adverse fetal outcomes. Understanding of the mechanisms involved is hampered by difficulty in isolating individual elements of complex maternal states in vivo. We approached this problem in the context of maternal diabetes and sought an approach to expose the developing fetus in vivo to isolated hyperglycemia in the pregnant rat.

Methodology and Principal Findings

We hypothesized that glucose infused into the arterial supply of one uterine horn would more highly expose fetuses in the ipsilateral versus contralateral uterine horn. To test this, the glucose tracer [18F]fluorodeoxyglucose (FDG) was infused via the left uterine artery. Regional glucose uptake into maternal tissues and fetuses was quantified using positron emission tomography (PET). Upon infusion, FDG accumulation began in the left-sided placentae, subsequently spreading to the fetuses. Over two hours after completion of the infusion, FDG accumulation was significantly greater in left compared to right uterine horn fetuses, favoring the left by 1.9±0.1 and 2.8±0.3 fold under fasted and hyperinsulinemic conditions (p<10−11 n = 32-35 and p<10−12 n = 27–45) respectively. By contrast, centrally administered [3H]-2-deoxyglucose accumulated equally between the fetuses of the two uterine horns. Induction of significant hyperglycemia (103 mg/dL) localized to the left uterine artery was sustained for at least 48 hours while maternal euglycemia was maintained.

Conclusions and Significance

This approach exposes selected fetuses to localized hyperglycemia in vivo, minimizing exposure of the mother and thus secondary effects. Additionally, a set of less exposed internal control fetuses are maintained for comparison, allowing direct study of the in vivo fetal effects of isolated hyperglycemia. Broadly, this approach can be extended to study a variety of maternal-sided perturbations suspected to directly affect fetal health.  相似文献   

20.
《Reproductive biology》2020,20(1):97-105
Green synthesized nanoparticles are more advantageous over conventionally prepared ones due to less toxicity, production cost, and environmental hazards. With the widespread of the utilization of nanoparticles, little is known about the maternal-fetal transplacental transfer of green nanoparticles. We have biosynthesized silver nanoparticles using metabolites of Streptomyces malachitus and sunlight then coated them with chitosan. These nanoparticles have been characterized and intraperitoneally administered at doses of 100 mg/kg on the 6th, 8th, and 10th gestational days. On the 18th day of pregnancy, both coated and non-coted NPs were detected in different maternal tissues, placenta, and in fetuses, as determined by estimation of silver content and observation by electron microscopy. Chitosan coating decreased the silver content in different tissues, maybe due to the larger size of coated nanoparticles that retards the transfer. The toxic effects on maternal and fetal tissues were proportional to their silver content, as determined by the liver and kidney functional analysis of pregnant rats and the ultrastructural and histopathological examination of the maternal liver, placenta and fetal liver. The present data suggest that green silver nanoparticles biosynthesized by Streptomyces malachitus cross the placenta and have toxic effects on maternal tissues, placenta, and fetus. Chitosan coating of these nanoparticles decreases the transfer, and consequently, the toxicity. However, it does not prevent this toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号