首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voltage-dependent anion channel (VDAC) is a major outer mitochondrial membrane protein. It is well documented that VDAC plays an important role in apoptosis, a kind of programmed cell death, in mammalian systems. However, little is known about the role of the plant counterpart during the process of plant-specific cell death such as pathogen-induced hypersensitive response. To address this issue, we isolated three VDAC full-length cDNAs (NtVDAC1–3) from Nicotiana tabacum. The deduced products, NtVDACs, share 78–85% identity and retain the conserved eukaryotic mitochondrial porin signature distal to their C-terminal regions. Mitochondrial localization of three NtVDACs in plant cells was confirmed via a green fluorescent protein fusion method. Then, we addressed the main issue concerning pathogenesis relation. The N. benthamiana orthologues of NtVDACs were upregulated by challenge with the non-host pathogen Pseudomonas cichorii, but not after challenge with the virulent pathogen P. syringae pv. tabaci. Both the pharmaceutical inhibition of VDAC and silencing of NbVDACs genes compromised the non-host resistance against P. cichorii, suggesting the involvement of VDACs in defense against non-host pathogen. Involvement of NbVDACs in Bax-mediated cell death was also verified using a similar approach. The nucleotide sequence reported in this paper has been submitted to DDBJ under the following accession numbers: NtVDAC1 (AB286176), NtVDAC2 (AB286177), and NtVDAC3 (AB286178). An erratum to this article can be found at  相似文献   

2.
Non-host disease resistance involves the production of hypersensitive response (HR), a programmed cell death (PCD) that occurs at the site of pathogen infection. Plant mitochondrial reactive oxygen species (ROS) production and red-ox changes play a major role in regulating such cell death. Proline catabolism reactions, especially pyrroline-5-carboxylate (P5C) accumulation, are known to produce ROS and contribute to cell death. Here we studied important genes related to proline synthesis and catabolism in the defence against host and non-host strains of Pseudomonas syringae in Nicotiana benthamiana and Arabidopsis. Our results show that ornithine delta-aminotransferase (δOAT) and proline dehydrogenases (ProDH1 and ProDH2) are involved in the defence against non-host pathogens. Silencing of these genes in N. benthamiana delayed occurrence of HR and favoured non-host pathogen growth. Arabidopsis mutants for these genes compromised non-host resistance and showed a decrease in non-host pathogen-induced ROS. Some of the genes involved in proline metabolism were also induced by a pathogen-carrying avirulence gene, indicating that proline metabolism is influenced during effector-triggered immunity (ETI). Our results demonstrate that δOAT and ProDH enzyme-mediated steps produce ROS in mitochondria and regulate non-host HR, thus contributing to non-host resistance in plants.  相似文献   

3.
Summary The Alternaria stem canker resistance locus (Asc-locus), involved in resistance to the fungal pathogen Alternaria alternata f. sp. lycopersici and in insensitivity to host-specific toxins (AAL-toxins) produced by the pathogen, was genetically mapped on the tomato genome. Susceptibility and resistance were assayed by testing a segregating F2 population for sensitivity to AAL-toxins in leaf bioassays. Linkage was observed to phenotypic markers solanifolium and sunny, both on chromosome 3. For the Asc-locus, a distance of 18 centiMorgan to solanifolium was calculated, corresponding to position 93 on chromosome 3. This map position of the resistance locus turned out to be the same in three different resistant tomato accessions, one Dutch and two American, that are at least 40 years apart. AAL-toxin sensitivity in susceptible and resistant tomato genotypes was compared with AAL-toxin sensitivity in a non-host Nicotiana tabacum during different levels of plant cell development. In susceptible and resistant tomato genotypes, inhibitory effects were demonstrated at all levels, except for leaves of resistant genotypes. However, during pollen and root development, inhibitory effects on susceptible genotypes were larger than on resistant genotypes. In the non-host Nicotiana tabacum, hardly any effects of AAL-toxins were demonstrated. Apparently, a cellular target site is present in tomato, but not in Nicotiana tabacum. It was concluded that three levels of AAL-toxin sensitivity exist: (1) a susceptible host sensitivity, (2) a resistant host sensitivity, (3) a non-host sensitivity, and that the resistance mechanism operating in tomato is different from that operating in Nicotiana tabacum.  相似文献   

4.
A given plant species is able to resist most of the potentially pathogenic microorganisms with which it comes in contact. This phenomenon, known as non-host resistance, can be overcome only by a very small number of true pathogens which can use that plant as a host. In some cases, plants have developed mechanisms for overcoming infection by specific races or strains of a true pathogen. This race-specific resistance can be easily manipulated into agronomically important cultivars by plant breeders. We have previously described nine cDNA clones which represent pea genes active during non-host resistance against the fungus Fusarium solani f. sp. phaseoli. In the present work, we have used these cDNAs as probes to compare non-host resistance with race-specific responses of peas against three races of Pseudomonas syringae pv. pisi. Five of the genes most active during non-host resistance were also active in direct correlation with the phenotypic expression of resistance in race-specific reactions of five differential pea cultivars against three races of Pseudomonas syringae pv. pisi.  相似文献   

5.
Generally, under normal conditions plants are resistant to many of the incompatible pathogens (viral, fungal and bacterial), and this is named “non-host resistance phenomenon”. To understand this phenomenon, different types of food crops (faba bean, squash, barley and wheat) were inoculated with compatible and incompatible pathogens. Strong resistance symptoms were observed in the non-host/incompatible pathogen combinations as compared with host/compatible pathogen combinations, which showed severe infection (susceptibility). Reactive oxygen species (ROS) mostly hydrogen peroxide and superoxide were significantly increased early 24 and 48 h after inoculation (hai) in the non-host plants comparing to the host. Antioxidant enzymes activity (catalase, polyphenol oxidase and peroxidase) were not increased at the same early time 24, 48 hai in the non-host resistant and host resistant plants, however, it increased later at 72 and 168 hai. Electrolyte leakage decreased significantly in non-host resistant and host resistant/pathogen combinations. Catalase and peroxidase genes were significantly expressed in non-host resistant and in host resistant plants as compared to the host susceptible one, which did not show expression using RT-PCR technique. Furthermore, Yr5, Yr18 and Yr26 resistant genes were identified positively using PCR in all treatments either host susceptible or non-host resistant plants in which prove that no clear role of these resistant genes in resistance. Early accumulation of ROS could have a dual roles, first role is preventing the growth or killing the pathogens early in the non-host, second, stimulating the gene appearance of related genes in addition the activition of antioxidant enzymes later on which thereby, neutralize the harmful effect of ROS and consequently suppressing disease symptoms. The new finding from this study supporting the plant breeders with new source of resistance to develop new resistant cultivars and/or stop the breakdown of resistance in resistant cultivars.  相似文献   

6.
7.
Tagging genes for blast resistance in rice via linkage to RFLP markers   总被引:24,自引:0,他引:24  
Summary Both Pi-2(t) and Pi-4(t) genes of rice confer complete resistance to the blast fungal pathogen Pyricularia oryzae Cav. As economically important plant genes, they have been recently characterized phenotypically, yet nothing is known about their classical linkage associations and gene products. We report here the isolation of DNA markers closely linked to these blast resistance genes in rice. The DNA markers were identified by testing 142 mapped rice genomic clones as hybridization probes against Southern blots, consisting of DNA from pairs of nearly isogenic lines (NILs) with or without the target genes. Chromosomal segments introgressed from donor genomes were distinguished by restriction fragment length polymorphisms (RFLPs) between the NILs. Linkage associations of the clones with Pi-2(t) and Pi4(t) were verified using F3 segregating populations of known blast reaction. Cosegregation of the resistant genotype and donor-derived allele indicated the presence of linkage between the DNA marker and a blast resistance gene. RFLP analysis showed that Pi-2(t) is closely linked to a single-copy DNA clone RG64 on chromosome 6, with a distance of 2.8+1.4(SE) cMorgans. Another blast resistance gene, Pi-4(t), is 15.3+4.2(SE) cMorgans away from a DNA clone RG869 on chromosome 12. These chromosomal regions can now be examined with additional markers to define the precise locations of Pi-2(t) and Pi-4(t). Tightly linked DNA markers may facilitate early selection for blast resistance genes in breeding programs. These markers may also be useful to map new genes for resistance to blast isolates. They may ultimately lead to the cloning of those genes via chromosome walking. The gene tagging approach demonstrated in this paper may apply to other genes of interest for both monogenic and polygenic traits.  相似文献   

8.
Specific gene sequences can be detected by DNA hybridization to individual Drosophila squashed on cellulose or nylon filters. This “squash-blot” method permits the rapid survey of DNA polymorphism in large Drosophila population samples. It could also be useful for studying chromosome aberrations, departure from diploidy, and detection of pathogenic agents in vector insects.  相似文献   

9.
10.
番茄Pto基因是一类可以编码丝氨酸/苏氨酸激酶(STK)序列的广谱抗性候选基因,其序列克隆与鉴定为深入了解番茄的抗病机制奠定了基础.在该研究中,一对依据Pto基因的保守序列设计的简并引物被用来扩增巴西橡胶中Pto基因抗病同源序列,扩增得到了一个约550 bp的基因片段,其随后被克隆并测序.序列分析发现,其中的7个抗病同源序列与Pto基因高度同源(BLASTX E value <3e-53),所以其被认为是Pto基因抗病同源序列(Pto-RGCs).通过巴西橡胶的Pto-RGCs多序列比对表明,这些序列包含了多个STKs保守的次级结构域.此外,系统发育分析也表明,巴西橡胶的Pto-RGCs属于Pto基因同源的R基因.该研究结果中Pto-RGCs可为巴西橡胶抗病的发展提供一个有效的基因资源.  相似文献   

11.
12.
Non-host resistance (NHR), which protects all members of a plant species from non-adapted or non-host plant pathogens, is the most common form of plant immunity. NHR provides the most durable and robust form of broad-spectrum immunity against non-adaptive pathogens pathogenic to other crop species. In a mutant screen for loss of Arabidopsis (Arabidopsis thaliana) NHR against the soybean (Glycine max (L.) Merr.) pathogen Phytophthora sojae, the Phytophthora sojae-susceptible 30 (pss30) mutant was identified. The pss30 mutant is also susceptible to the soybean pathogen Fusarium virguliforme. PSS30 encodes a folate transporter, AtFOLT1, which was previously localized to chloroplasts and implicated in the transport of folate from the cytosol to plastids. We show that two Arabidopsis folate biosynthesis mutants with reduced folate levels exhibit a loss of non-host immunity against P. sojae. As compared to the wild-type Col-0 ecotype, the steady-state folate levels are reduced in the pss1, atfolt1 and two folate biosynthesis mutants, suggesting that folate is required for non-host immunity. Overexpression of AtFOLT1 enhances immunity of transgenic soybean lines against two serious soybean pathogens, the fungal pathogen F. virguliforme and the soybean cyst nematode (SCN) Heterodera glycines. Transgenic lines showing enhanced SCN resistance also showed increased levels of folate accumulation. This study thus suggests that folate contributes to non-host plant immunity and that overexpression of a non-host resistance gene could be a suitable strategy for generating broad-spectrum disease resistance in crop plants.  相似文献   

13.
Increased tolerance to pathogens is an important goal in conventional and biotechnology-assisted grapevine breeding programs worldwide. Fungal and viral pathogens cause direct losses in berry production, but also affect the quality of the final products. Precision breeding strategies allow the introduction of resistance characters in elite cultivars, although the factors determining the plant’s overall performance are not fully characterized. Grapevine plants expressing defense proteins, from fungal or plant origins, or of the coat protein gene of grapevine leafroll-associated virus 3 (GLRaV-3) were generated by Agrobacterium-mediated transformation of somatic embryos and shoot apical meristems. The responses of the transformed lines to pathogen challenges were investigated by biochemical, phytopathological and molecular methods. The expression of a Metarhizium anisopliae chitinase gene delayed pathogenesis and disease progression against the necrotrophic pathogen Botrytis cinerea. Modified lines expressing a Solanum nigrum osmotin-like protein also exhibited slower disease progression, but to a smaller extent. Grapevine lines carrying two hairpin-inducing constructs had lower GLRaV-3 titers when challenged by grafting, although disease symptoms and viral multiplication were detected. The levels of global genome methylation were determined for the genetically engineered lines, and correlation analyses demonstrated the association between higher levels of methylated DNA and larger portions of virus-derived sequences. Resistance expression was also negatively correlated with the contents of introduced viral sequences and genome methylation, indicating that the effectiveness of resistance strategies employing sequences of viral origin is subject to epigenetic regulation in grapevine.  相似文献   

14.
Sequence data from the mitochondrial 12S rRNA gene were combined with endogenous retrovirus sequences to study the position of the genus Miopithecus in the primate tree. The mitochondrial sequences indicated that Miopithecus is a true genus distinct from Cercopithecus, although talapoin monkeys are commonly referred to as dwarf guenons. The existence of two species of dwarf guenons, suggested by differences in coat color, pigmentation, and geographic location, was supported by substantial mitochondrial 12S rRNA gene divergence. In line with the informal proposal of J. Kingdon (1997, “The Kingdon Field Guide to African Mammals,” Academic Press, London), we use the names Miopithecus talapoin for the southern, darker species and Miopithecus ougouensis for the northern, lighter-colored monkeys. Different 12S rRNA gene haplotypes found in M. ougouensis individuals suggest the possible existence of additional subspecies. Simian endogenous retrovirus (SERV) strain 23.1 proviruses were introduced in the primate germ-line after the Cercopithecinae split from the Colobinae, estimated at around 9–14 million years ago. SERV sequences were used for timing of divergence events in Cercopithecinae and confirmed the close relationship between the genera Cercopithecus and Miopithecus, which was only weakly supported by the more variable mtDNA sequences in a distance analysis, demonstrating the utility of these pseudogenes in phylogenetic grouping.  相似文献   

15.
16.
Systemic acquired resistance (SAR) is usually described as a phenomenon whereby localized inoculation with a necrotizing pathogen renders a plant more resistant to subsequent pathogen infection. Here we show that Pseudomonas syringae strains for which Arabidopsis thaliana represents a non-host plant systemically elevate resistance although the underlying interactions neither trigger a hypersensitive response nor cause necrotic disease symptoms. A similar enhancement of systemic resistance was observed when elicitor-active preparations of two typical bacterial pathogen-associated molecular patterns (PAMPs), flagellin and lipopolysaccharides (LPS), were applied in a localized manner. Several lines of evidence indicate that the observed systemic resistance responses are identical to SAR. Localized applications of non-adapted bacteria, flagellin or LPS elevate levels of the SAR regulatory metabolite salicylic acid (SA) and pathogenesis-related (PR) gene expression not only in treated but also in distant leaves. All treatments also systemically increase expression of the SAR marker gene FLAVIN-DEPENDENT MONOOXYGENASE 1. Further, a whole set of SAR-deficient Arabidopsis lines, including mutants in SA biosynthesis and signalling, are impaired in establishing the systemic resistance response triggered by non-host bacteria or PAMPs. We also show that the magnitude of defence reactions such as SA accumulation, PR gene expression or camalexin accumulation induced at sites of virulent or avirulent P. syringae inoculation but not the extent of tissue necrosis during these interactions determines the extent of SAR in distant leaves. Our data indicate that PAMPs significantly contribute to SAR initiation in Arabidopsis and that tissue necroses at inoculation sites are dispensable for SAR activation.  相似文献   

17.
DNA methylation is an epigenetic phenomenon associated with gene silencing in transgenic plants, retrotransposons and virus infection. Expression analysis of specific genes in Arabidopsis methylation mutants showed an association between DNA methylation and gene expression. To determine whether DNA methylation is associated with resistance to black Sigatoka (BS) andMycosphaerella fijiensis (MF), we used anin vitro assay of mesophyll cell suspensions of reference cultivars with known resistance to BS. Methylation of CCmGG sequences was evaluated by methylation-sensitive amplification polymorphism (MSAP) markers of reference cultivars and somaclonal variants to identify molecular markers associated with resistance to MF toxins and BS. Four MSAP markers were associated with resistance (MAR) to MF toxins. The MSAP markers show a high degree of sequence similarity with resistance gene analog and with retrotransposon sequences. The MSAP markers are useful as molecular indicators of tolerance to MF toxins and resistance to BS.  相似文献   

18.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   

19.
A robust method for the in vivo cloning of large gene clusters was developed based on homologous recombination (HR), requiring only the transformation of PCR products into Escherichia coli cells harboring a receiver plasmid. Positive clones were selected by an acquired antibiotic resistance, which was activated by the recruitment of a short ribosome-binding site plus start codon sequence from the PCR products to the upstream position of a silent antibiotic resistance gene in receiver plasmids. This selection was highly stringent and thus the cloning efficiency of the GFPuv gene (size: 0.7 kb) was comparable to that of the conventional restriction-ligation method, reaching up to 4.3 × 104 positive clones per μg of DNA. When we attempted parallel cloning of GFPuv fusion genes (size: 2.0 kb) and carotenoid biosynthesis pathway clusters (sizes: 4 kb, 6 kb, and 10 kb), the cloning efficiency was similarly high regardless of the DNA size, demonstrating that this would be useful for the cloning of large DNA sequences carrying multiple open reading frames. However, restriction analyses of the obtained plasmids showed that the selected cells may contain significant amounts of receiver plasmids without the inserts. To minimize the amount of empty plasmid in the positive selections, the sacB gene encoding a levansucrase was introduced as a counter selection marker in receiver plasmid as it converts sucrose to a toxic levan in the E. coli cells. Consequently, this method yielded completely homogeneous plasmids containing the inserts via the direct transformation of PCR products into E. coli cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号