首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The anticoagulant properties of mast cell product, chondroitin sulphate E   总被引:2,自引:0,他引:2  
The anticoagulant potency in vitro of chondroitin sulphate E has been found to be similar to that of the heparinoids. In purified systems chondroitin sulphate E was shown to be principally an activator of heparin cofactor II. Maximum acceleration of heparin cofactor II:thrombin interaction was 185-fold (9.3 X 10(7) M-1 min-1), antithrombin III:thrombin interaction was 11-fold (4.16 X 10(6) M-1 min-1) and antithrombin III:factor Xa was 146-fold (3.86 X 10(6) M-1 min-1). Chondroitin sulphate E was observed to prolong the thrombin clotting time of fibrinogen in the absence of antithrombin III and heparin cofactor II. The effect appeared to be related to interference in thrombin:fibrinogen interaction rather than in fibrin monomer polymerization.  相似文献   

2.
The kinetics of inhibition of human alpha-thrombin and coagulation Factor Xa by antithrombin III were examined under pseudo-first-order reaction conditions as a function of the concentration of heparan sulphate with high affinity for antithrombin III. The maximum observed second-order rate constant was, for the antithrombin III-thrombin reaction, 1.2 x 10(9) M-1.min-1 compared with 2.4 x 10(9) M-1.min-1 in the presence of high-affinity heparin. However, the maximum rate was catalysed by much higher concentrations of heparan sulphate (1.3 microM) than of heparin (0.025 microM). Differences were also observed in the maximal acceleration of the antithrombin III-Factor Xa interaction: 1.2 x 10(9) M-1.min-1 at 0.2 microM-heparin sulphate compared with 2.2 x 10(9) M-1.min-1 at 0.04 microM-heparin. The differences in properties of heparan sulphate and heparin were analysed by using the random bi-reactant model of heparin action [Griffith (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5460-5464]. It was observed that the apparent binding affinity for thrombin was higher for heparan sulphate (180 nM) than for heparin (14 nM). The rate constant for transformation of the antithrombin III-Factor Xa complex into irreversible product differed between heparan sulphate (96 min-1) and heparin (429 min-1). These properties of the high-affinity heparan sulphate may be of importance in consideration of a putative role in the control of intravascular haemostasis.  相似文献   

3.
The influence of heparin on the inhibition of factor Xa has been studied under conditions where factor Xa is bound to collagen-thrombin-stimulated platelets to form the prothrombinase complex. Unfractionated heparin was found to cause a concentration-dependent acceleration of the inhibition of the platelet prothrombinase complex up to a maximum rate constant of 4.1 X 10(7) M-1 X min-1 at heparin concentrations of 0.2 microM and above. This is equivalent to a 4800-fold acceleration over the rate constant for the inhibition in the absence of heparin, and is 6.8-fold lower than the rate constant for the inhibition of uncomplexed factor Xa in the presence of saturating concentrations of heparin which was determined as 2.8 X 10(8) M-1 X min-1. The effects of three Mr fractions of heparin were also studied. These were a gel-filtered heparin of Mr 15000, a gel-filtered heparin of Mr 6000 and a heparin oligosaccharide (primarily 8-10 monosaccharide units) prepared by nitrous acid depolymerization, each with high affinity for antithrombin III. These fractions all accelerated the rate of the antithrombin III inhibition of the platelet prothrombinase complex, with maximum rate constants of 6.8 X 10(7), 1.4 X 10(7) and 9.8 X 10(6) M-1 X min-1, respectively. On comparison with the effect of these heparin fractions on the rate of inhibition of uncomplexed factor Xa a progressively increasing disparity between the rate of inhibition of uncomplexed and complexed factor Xa was observed, rising from 1.7-fold with the oligosaccharide to 6.8-fold with the unfractionated heparin. A possible mechanism for this differential activity between uncomplexed and complexed factor Xa with the various heparin fractions is discussed in terms of an involvement of heparin binding to factor Xa.  相似文献   

4.
Inhibition of prothrombinase complex by plasma proteinase inhibitors   总被引:3,自引:0,他引:3  
V Ellis  M F Scully  V V Kakkar 《Biochemistry》1984,23(24):5882-5887
The rate of inactivation of human coagulation factor Xa by the plasma proteinase inhibitors antithrombin III and alpha 1-antitrypsin has been studied in the presence of the accessory components which constitute the prothrombinase complex. The rate of inactivation of factor Xa by antithrombin III was found to be decreased in the presence of phospholipid vesicles with high affinity for factor Xa. The second-order rate constant for the reaction fell from 6.21 X 10(4) to 3.40 X 10(4) M-1 min-1 in the presence of 20 microM phospholipid. Purified factor Va had no effect on the rate of inactivation of factor Xa in the absence of phospholipid. In the presence of phospholipid, factor Va increased the protective effect displayed by phospholipid, further reducing the rate constant to 2.20 X 10(4) M-1 min-1. The rate of inactivation of factor Xa by alpha 1-antitrypsin was unaffected under these conditions. Platelet-bound prothrombinase complex was formed by incubation of factor Xa with washed human platelets activated by a mixture of collagen and thrombin. The prothrombinase activity was inhibited by antithrombin III was a second-order rate constant of 0.85 X 10(4) M-1 min-1. This rate was obtained in both the presence and absence of exogenous factor Va. Platelet factor 3 vesicles, isolated from platelet aggregation supernatants, also formed prothrombinase complex in the presence of factor Va, and this was inhibited by antithrombin III at the same rate as the platelet-bound complex. There was no protection of the platelet-bound prothrombinase complex from inhibition by alpha 1-antitrypsin.  相似文献   

5.
We have determined the rate constants of inactivation of factor Xa and thrombin by antithrombin III/heparin during the process of prothrombin activation. The second-order rate constant of inhibition of factor Xa alone by antithrombin III as determined by using the synthetic peptide substrate S-2337 was found to be 1.1 X 10(6) M-1 min-1. Factor Xa in prothrombin activation mixtures that contained prothrombin, and either saturating amounts of factor Va or phospholipid (20 mol % dioleoylphosphatidylserine/80 mol % dioleoylphosphatidylcholine, 10 microM), was inhibited by antithrombin III with a second-order rate constant that was essentially the same: 1.2 X 10(6) M-1 min-1. When both factor Va and phospholipid were present during prothrombin activation, factor Xa inhibition by antithrombin III was reduced about 10-fold, with a second-order rate constant of 1.3 X 10(5) M-1 min-1. Factor Xa in the prothrombin activation mixture that contained both factor Va and phospholipid was even more protected from inhibition by the antithrombin III-heparin complex. The first-order rate constants of these reactions at 200 nM antithrombin III and normalized to heparin at 1 microgram/mL were 0.33 and 9.5 min-1 in the presence and absence of factor Va and phospholipid, respectively. When the prothrombin concentration was varied widely around the Km for prothrombin, this had no effect on the first-order rate constants of inhibition. It is our conclusion that factor Xa when acting in prothrombinase on prothrombin is profoundly protected from inhibition by antithrombin III in the absence as well as in the presence of heparin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The kinetics of inhibition of human and bovine alpha-thrombin and human factor Xa by antithrombin III were examined under pseudo-first-order conditions as a function of the concentration of pentosan polysulphate [a fully sulphated (beta 1-4)-linked D-xylopyranose with a single laterally positioned 4-O-methyl-alpha-D-glucuronic acid]. Double-reciprocal plots of the observed first-order rate constant against concentration of pentosan polysulphate gave straight lines, intercepts on the axes giving values for maximum increase in second-order rate constant (by calculation) and apparent dissociation constant. These values were: for human alpha-thrombin 1.52 X 10(7) M-1 . min-1 and 3.6 microM respectively, for bovine alpha-thrombin 6.56 X 10(6) M-1 . min-1 and 0.16 microM and for factor Xa 6.86 X 106 M-1 . min-1 and 20 microM. In the presence of pentosan polysulphate the dissociation constant for the initial complex of antithrombin III and thrombin was shown to be reduced from approx. 2 X 10(-3) M to 61 X 10(-6) M without apparent change in the limiting rate constant of 750 min-1. An oligosaccharide (primarily 8-10 saccharide units) prepared from heparin and with high affinity for antithrombin III but low potency in the thrombin-antithrombin III interaction did not diminish the rate of interaction catalysed by pentosan polysulphate. The catalysis was shown to be due to a weak electrostatic interaction, since it was completely reversed by concentrations of NaCl greater than 0.3 M. It is concluded that the mechanism is independent of the heparin high-affinity binding site on antithrombin III and is probably due to binding of the high-charge-density polysaccharide to the proteinase. It is calculated that the acceleration in rate achieved, although lower than that of heparin, approaches that required to be of physiological significance and may be of importance in the anticoagulation role of antithrombin III at sites of high charge density which may occur in vivo.  相似文献   

7.
The effect of heparin fractions of various Mr, with high affinity for antithrombin III, on the kinetics of the reaction between factor Xa and antithrombin III have been studied using purified human proteins. Each of the heparin fractions, which varied between pentasaccharide and Mr 32,000, accelerated the inhibition of factor Xa although an increasing rate of inhibition was observed with increasing Mr. The chemically synthesized pentasaccharide preparation (Mr 1714) gave a maximum inhibition rate constant of 1.2 X 10(7) M-1 X min-1, compared with 6.3 X 10(4) M-1 X min-1 in the absence of heparin, and this rose progressively to 4.2 X 10(8) M-1 X min-1 with the two fractions of highest Mr (22,500 and 32,000). The 35-fold difference in inhibition rates observed with the high-affinity fractions was virtually abolished by the presence of 0.3 M-NaCl. The disparity in these rates of inhibition was shown to be due to a change in the Km for factor Xa when a two-substrate model of heparin catalysis was used. The Km for factor Xa rose from 28 nM for the fraction of Mr 32,000 to 770 nM for the pentasaccharide, whilst 0.3 M-NaCl also caused an increase in Km with the high-Mr fraction. These data suggest that the increased rates of inhibition observed with heparins of higher Mr may be due to an involvement of heparin binding to factor Xa as well as to antithrombin III.  相似文献   

8.
B A Owen  W G Owen 《Biochemistry》1990,29(40):9412-9417
Factor Xa modified by reductive methylation (greater than 92%) loses the capacity to bind heparin as determined both by gel chromatography and by sedimentation equilibrium ultracentrifugation. The kinetic properties of methylated factor Xa differ, with respect to KM and Vmax for a synthetic tripeptide substrate and for antithrombin III inhibition rate constants, from those of the unmodified enzyme. The 10,000-fold rate enhancement elicited by the addition of heparin to the antithrombin III inhibition reaction, however, is the same. The observed second-order rate constants (k"obs) for antithrombin III inhibition of factor Xa and methylated factor Xa are 3000 and 340 M-1 s-1, respectively, whereas k"obs values for the inhibition of factor Xa or methylated factor Xa with antithrombin III-heparin are 4 X 10(7) and 3 X 10(6) M-1 s-1, respectively. These findings provide direct evidence that the interaction of factor Xa with heparin is not involved in the heparin-enhanced inhibition of this enzyme.  相似文献   

9.
The inactivation of human coagulation factor Xa by the plasma proteinase inhibitors alpha 1-antitrypsin, antithrombin III and alpha 2-macroglobulin in purified systems was found to be accelerated by the divalent cations Ca2+, Mn2+ and Mg2+. The rate constant for the inhibition of factor Xa by antithrombin III rose from 2.62 X 10(4) M-1 X min-1 in the absence of divalent cations to a maximum of 6.40 X 10(4) M-1 X min-1 at 5 mM Ca2+, 8.10 X 10(4) M-1 X min-1 at 5 mM Mn2+, with a slight decrease in rate at higher cation concentrations. Mg2+ caused a gradual rise in rate constant to 5.65 X 10(4) M-1 X min-1 at 20 mM. The rate constant for the inhibition of factor Xa by alpha 1-antitrypsin in the absence of divalent cations was 5.80 X 10(3) M-1 X min-1. Ca2+ increased the rate to 1.50 X 10(4) M-1 X min-1 at 5 mM and Mn2+ to 2.40 X 10(4) M-1 X min-1 at 6 mM. The rate constant for these cations again decreased at higher concentrations. Mg2+ caused a gradual rise in rate constant to 1.08 X 10(4) M-1 X min-1 at 10 mM. The rate constant for the factor Xa-alpha 2-macroglobulin reaction was raised from 6.70 X 10(3) M-1 X min-1 in the absence of divalent cations to a maximum of 4.15 X 10(4) M-1 X min-1 at 4 mM Ca2+, with a decrease to 3.05 X 10(4) M-1 at 10 mM. These increases in reaction rate were correlated to the binding of divalent cations to factor Xa by studying changes in the intrinsic fluorescence and dimerization of factor Xa. The changes in fluorescence suggested a conformational change in factor Xa which may be responsible for the increased rate of reaction, whilst the decrease in rate constant at higher concentrations of Ca2+ and Mn2+ may be due to factor Xa dimerization.  相似文献   

10.
The mechanism of the heparin-promoted reaction of thrombin with antithrombin III was investigated by using covalent complexes of antithrombin III with either high-affinity heparin (Mr = 15,000) or heparin fragments having an average of 16 and 12 monosaccharide units (Mr = 4,300 and 3,200). The complexes inhibit thrombin in the manner of active site-directed, irreversible inhibitors: (Formula: see text) That is, the inhibition rate of the enzyme is saturable with respect to concentration of complexes. The values determined for Ki = (k-1 + k2)/k1 are 7 nM, 100 nM, and 6 microM when the Mr of the heparin moieties are 15,000, 4,300, 3,200, respectively, whereas k2 (2 S-1) is independent of the heparin chain length. The bimolecular rate constant k2/Ki for intact heparin is 3 X 10(8) M-1 S-1 and the corresponding second order rate constant k1 is 6.7 X 10(8) M-1 S-1, a value greater than that expected for a diffusion-controlled bimolecular reaction. The bimolecular rate constants for the complexes with heparin of Mr = 4,300 and 3,200 are, respectively, 2 X 10(7) M-1 S-1 and 3 X 10(5) M-1 S-1. Active site-blocked thrombin is an antagonist of covalent antithrombin III-heparin complexes: the effect is monophasic and half-maximum at 4 nM of antagonist against the complex with intact heparin, whereas the effect is weaker against complexes with heparin fragments and not monophasic. We conclude that virtually all of the activity of high affinity, high molecular weight heparin depends on binding both thrombin and antithrombin III to heparin, and that the exceptionally high activity of heparin results in part from the capacity of thrombin bound nonspecifically to heparin to diffuse in the dimension of the heparin chain towards bound antithrombin III. Increasing the chain length of heparin results in an increased reaction rate because of a higher probability of interaction between thrombin and heparin in solution.  相似文献   

11.
A heparan sulfate glycosaminoglycan chain, biotinylated at its reducing-end, was bound to a streptavidin-coated biochip. Surface plasmon resonance spectroscopy showed a low affinity interaction with antithrombin III (ATIII) when it was flowed over a surface containing heparan sulfate. ATIII bound tightly with high affinity when the same surface was enzymatically modified to using 3-O-sulfotransferase isoform 1 (3-OST-1) in the presence of 3'-phosphoadenosine 5'-phosphosulfate (PAPS). The 3-OST-1 enzyme is involved in heparan sulfate biosynthesis and introduces a critical 3-O-sulfo group into this glycosaminoglycan affording the appropriate pentasaccharide sequence capable of high affinity binding to ATIII. This experiment demonstrates the specific structural modification of a glycosaminoglycan bound to a biochip using a biosynthetic enzyme, suggesting a new approach to rapid screening glycosaminoglycan-protein interactions.  相似文献   

12.
We investigated the kinetics of the inhibitory action of antithrombin III and antithrombin III plus heparin during the activation of factor X by factor IXa. Generation and inactivation curves were fitted to a three-parameter two-exponentional model to determine the pseudo first-order rate constants of inhibition of factor IXa and factor Xa by antithrombin III/heparin. In the absence of heparin, the second-order rate constant of inhibition of factor Xa generated by factor IXa was 2.5-fold lower than the rate constant of inhibition of exogenous factor Xa. It appeared that phospholipid-bound factor X protected factor Xa from inactivation by antithrombin III. It is, as yet, unclear whether an active site or a nonactive site interaction between factor Xa and factor X at the phospholipid surface is involved. The inactivation of factor IXa by antithrombin III was found to be very slow and was not affected by phospholipid, calcium, and/or factor X. With unfractionated heparin above 40 ng/ml and antithrombin III at 200 nM, the apparent second-order rate constant of inhibition of exogenous and generated factor Xa were the same. Thus, in this case phospholipid-bound factor X did not protect factor Xa from inhibition. In the presence of synthetic pentasaccharide heparin, however, phospholipid-bound factor X reduced the rate constant about 5-fold. Pentasaccharide had no effect on the factor IXa/antithrombin III reaction. Unfractionated heparin (1 micrograms/ml) stimulated the antithrombin III-dependent inhibition of factor IXa during factor X activation 400-fold. In the absence of reaction components this stimulated was 65-fold. We established that calcium stimulated the heparin-dependent inhibition of factor IXa.  相似文献   

13.
The kinetics of inhibition of four hemostatic system enzymes by antithrombin were examined as a function of heparin concentration. Plots of the initial velocity of factor Xa-antithrombin or plasmin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb and subsequent plateau regions. In each case, the kinetic profile is closely correlated with the concentration of the heparin . antithrombin complex formed within the reaction mixture. A decrease in the velocity of inhibition is not observed at high levels of added mucopolysaccharide despite the generation of significant quantities of heparin-enzyme interaction products. The second-order rate constants for the neutralization of factor Xa or plasmin by the mucopolysaccharide . inhibitor complex are 2.4 x 10(8) M-1 min-1 and 4.0 x 10(6) M-1 min-1, respectively. These parameters must be contrasted with the similarly designated constants obtained in the absence of heparin which are 1.88 x 10(5) M-1 min-1 and 4.0 x 10(4) M-1 min-1, respectively. Plots of the initial velocity of the factor IXa-antithrombin or the thrombin-antithrombin interaction versus the level of added mucopolysaccharide exhibit an ascending limb, pseudoplateau, descending limb, and final plateau regions. In each case, the ascending limb and pseudoplateau are closely correlated with the concentration of heparin c antithrombin complex formed within the reaction mixture. Furthermore, the descending limb and final plateau of these two processes coincide with the generation of increasing amounts of the respective mucopolysaccharide-enzyme interaction products. The second-order rate constants for the neutralization of factor IXa or thrombin by the heparin . antithrombin complex are 3.0 x 10(8) M-1 min-1 and 1.7 x 10(9) M-1 min-1, respectively. The second-order rate constants for the inhibition of mucopolysaccharide-factor IXa or mucopolysaccharide-thrombin interaction products by the heparin . antithrombin complex are 2.0 x 10(7) M-1 min-1 and 3.0 x 10(8) M-1 min-1, respectively. These kinetic parameters must be contrasted with similarly designated constants obtained in the absence of mucopolysaccharide which are 2.94 x 10(4) M-1 min-1 and 4.25 x 10(5) M-1 min-1, respectively. Thus, our data demonstrate that binding of heparin to antithrombin is required for the mucopolysaccharide-dependent enhancement in the rates of neutralization of thrombin, factor IXa, factor Xa, or plasmin by the protease inhibitor. Furthermore, a careful comparison of the various constants suggests that the direct interaction between heparin and antithrombin may be largely responsible for the kinetic effect of this mucopolysaccharide.  相似文献   

14.
Structural and functional properties of alpha-protease nexin I (alpha-PNI) expressed in Chinese hamster ovary cells were studied. All three cysteines were in the reduced form, showing that the potential disulfide bridge between residues Cys117 and Cys131 was not formed. Heparin association rate enhancements were from ka = 8.3 x 10(5) to 0.7-1.6 x 10(9) M-1 s-1 for the interaction of PNI with thrombin, from ka = 5.1 x 10(3) to 3.5 x 10(5) M-1 s-1 for interaction with Factor Xa, and from ka = 2.2 x 10(6) to 1.0 x 10(7) M-1 s-1 for interaction with trypsin; there was no rate enhancement of the plasmin interaction (ka = 1.0 x 10(5) M-1 s-1). The minimal heparin pentasaccharide had no effect on these interactions. Cleavage of the reactive center loop of PNI by three different proteases gave the typical stressed to relaxed change in thermal stability, but unlike with antithrombin III, there was no loss of heparin affinity. A similar difference from antithrombin was that PNI-thrombin complexes retained normal heparin affinity. These results are compatible with a role for protease nexin I as a cell-associated thrombin inhibitor that remains bound to the cell surface even after complexing with the protease, as compared with the role of antithrombin III as a circulating inhibitor of thrombin that becomes activated on binding to the microvasculature and is released on complex formation.  相似文献   

15.
We have found that rat plasma corrected the non-activated PT of human normal or factor-X deficient plasma, and the factor Xa-like activity being constantly detected in every 1 ml of blood collected via the cannulated carotid artery of rats. The present study was undertaken to characterize the factor Xa-like activity in rat plasma by preparing rat factor X and a monoclonal antibody against it. Factor X was purified from a BaCl2 eluate of rat plasma by chromatographies on columns of DEAE-Sepharose CL-6B and Sulfate Cellulofine or on a column of Affi-Gel 10 conjugated with a monoclonal antibody against rat factor X. Factor Xa-like activity in rat plasma was eliminated by the treatment of rat plasma with a monoclonal antibody which recognized the heavy chain portions of rat factors X and Xa. A kinetical study demonstrated that rat factor Xa was strongly inhibited by rat antithrombin III, with a Ki of 2.2 x 10(-11) M, in the presence of heparin. However, in the absence of heparin, the second order rate constant for the inhibition of rat factor Xa by rat antithrombin III was 2.6 x 10(4) M-1.min-1, which was one forty-third that for the inhibition of human factor Xa by human antithrombin III. Furthermore, rat factor Xa was resistant to the inhibition by rat alpha-1-antitrypsin and alpha-2-macroglobulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Glycosaminoglycans including dermatan sulphate, hyaluronan, heparan sulphate and heparin were chemically modified by O-sulphonation. By altering the reaction conditions, products having a different degree of O-sulphonation could be obtained. Glycosaminoglycan derivatives were prepared having no free hydroxyl groups, with sulphoester group/disaccharide unit ratios of 4.0 for dermatan sulphate and hyaluronan, and sulphoester and sulphamide group/disaccharide unit ratios of 4.22 and 4.88 for heparan sulphate and heparin, respectively. 1H NMR spectroscopy showed that the fully O-sulphonated hyaluronan derivative had a glucuronate residue with an altered conformation. Since glycosaminiglycans and their derivatives are often used as anticoagulant/antithrombotic agents, their anti-amidolytic activities were determined. The anti-factor IIa activity of fully O-sulphonated dermatan sulphate, hyaluronan and heparan sulphate ranged from 40 to 80 units/mg, while no anti-factor Xa activity of the fully O-sulphonated glycosaminoglycans was detected. These values are lower than those reported for low-molecular-weight heparins and are consistent with the requirement of an antithrombin III pentasaccharide binding site for anti-factor Xa activity. Interestingly, the anti-factor Xa of heparin is lost by chemical O-sulphonation.  相似文献   

17.
The basis of the specificity of human coagulation factor Xa has been probed with a reagent that reacts with nucleophiles, N-succinimidylpropionate. At pH 8.0 and 0.25 mM N-succinimidylpropionate, 0.4 microM factor Xa lost approx. 90% of its activity toward prothrombin in 4 min. The decay was first-order, k = 0.64 min-1, which increased to 0.98 min-1 in 1 mM Ca2+, and the dependence of k upon pH was consistent with primary amines being the target. The rate of modification was unaffected by the presence of a tetrapeptide substrate during modification; likewise, activity toward a tripeptide p-nitroanilide was unaltered during exposure of factor Xa to N-succinimidylpropionate with or without Ca2+. In addition, inhibition by antithrombin III was retained with a somewhat enhanced rate after modification; however, the acceleration of this by heparin was significantly less. Kinetic determination of the number of residues modified gave a reaction order of 2.0, while reaction with N-succinimidyl[3H]propionate yielded labeled factor Xa containing 1.0 mol N-succinimidylpropionate/mol factor Xa and 50% normal clotting activity, or 2.0 mol N-succinimidylpropionate/mol and 1% activity, respectively. Thus, one nucleophilic group is required for the reaction of factor Xa with prothrombin but not for the hydrolysis of peptides or recognition of antithrombin III. The decay of clotting activity of the factor X zymogen in N-succinimidylpropionate was much slower though still Ca2+-dependent. Conversely, the reaction of a related compound--N-succinimidyl(4-hydroxyphenyl)propionate or Bolton-Hunter reagent--with factor Xa broadly resembled that of N-succinimidylpropionate but the decay curves indicated more complex kinetics. Therefore, the target groups vary in their accessibility to modification according to the structural characteristics of both the protein and the reagent.  相似文献   

18.
Naimy H  Leymarie N  Bowman MJ  Zaia J 《Biochemistry》2008,47(10):3155-3161
Heparan sulfate (HS) is a sulfated glycosaminoglycan attached to a core protein on the cell surface. Protein binding to cell surface HS is a key regulatory event for many cellular processes such as blood coagulation, cell proliferation, and migration. The concept whereby protein binding to HS is not random but requires a limited number of sulfation patterns is becoming clear. Here we describe a hydrophobic trapping assay for screening a library of heparin hexasaccharides for binders to antithrombin III (ATIII). The hexasaccharide compositions are defined with their building block content in the following format: (DeltaHexA:HexA:GlcN:SO 3:Ac). Of five initial compositions present in the library, (1:2:3:6:1), (1:2:3:7:1), (1:2:3:7:0), (1:2:3:8:0), and (1:2:3:9:0), only two are shown to bind ATIII, namely, (1:2:3:8:0) and (1:2:3:9:0). The use of amide hydrophilic interaction (HILIC) liquid chromatography-mass spectrometry permitted reproducible quantitative analysis of the composition of the initial library as well as that of the binding fraction. The specificity of the hexasaccharides binding ATIII was confirmed by assaying their ability to enhance ATIII-mediated inhibition of Factor Xa in vitro.  相似文献   

19.
Heparin activates the serpin, antithrombin, to inhibit its target blood-clotting proteases by generating new protease interaction exosites. To resolve the effects of these exosites on the initial Michaelis docking step and the subsequent acylation and conformational change steps of antithrombin-protease reactions, we compared the reactions of catalytically inactive S195A and active proteases with site-specific fluorophore-labeled antithrombins that allow monitoring of these reaction steps. Heparin bound to N,N'-dimethyl-N-(acetyl)-N'-(7-nitrobenz-3-oxa-1,3-diazol-4-yl)ethylenediamine (NBD)-fluorophore-labeled antithrombins and accelerated the reactions of the labeled inhibitor with thrombin and factor Xa similar to wild type. Equilibrium binding of NBD-labeled antithrombins to S195A proteases showed that exosites generated by conformationally activating antithrombin with a heparin pentasaccharide enhanced the affinity of the serpin for S195A factor Xa minimally 100-fold. Moreover, additional bridging exosites provided by a hexadecasaccharide heparin activator enhanced antithrombin affinity for both S195A factor Xa and thrombin at least 1000-fold. Rapid kinetic studies showed that these exosite-mediated enhancements in Michaelis complex affinity resulted from increases in k(on) and decreases in k(off) and caused antithrombin-protease reactions to become diffusion-controlled. Competitive binding and kinetic studies with exosite mutant antithrombins showed that Tyr-253 was a critical mediator of exosite interactions with S195A factor Xa; that Glu-255, Glu-237, and Arg-399 made more modest contributions to these interactions; and that exosite interactions reduced k(off) for the Michaelis complex interaction. Together these results show that exosites generated by heparin activation of antithrombin function both to promote the formation of an initial antithrombin-protease Michaelis complex and to favor the subsequent acylation of this complex.  相似文献   

20.
A pentosan polysulphate [a fully sulphated (1-4)-beta-D-xylopyranose with a single laterally positioned 4-O-methyl-alpha-D-glucuronic acid] has been shown to inhibit the anticoagulant activity of high-affinity heparin as observed in plasma and when using purified enzyme and inhibitor. The activity was shown to be concentration-dependent with an apparent Ki of approx. 2 microM. The antiheparin property was not shown by a number of other anionic carbohydrates when tested. The rate of thrombin inhibition at 0.33 microM-heparin was reduced from 7.1 X 10(8) M-1 X min-1 in the absence of pentosan polysulphate to 2.3 X 10(8) M-1 X min-1 at 2 microM-pentosan polysulphate and to 0.3 X 10(8)M-1 X min-1 at 20 microM. Using the random bireactant model of heparin action [Griffiths (1982) J. Biol. Chem. 257, 13899-13902] it was observed that the pentosan polysulphate had no effect on the Km for antithrombin III (150 nM) but increased the Km for thrombin from 25 nM to 450 nM. A reduction in the inhibition rate by 17.3-fold predicted by substitution of these values into the general two-substrate reaction-rate equation was confirmed experimentally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号