首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract— Acid 4-methylumbelliferyl β- d -galactosidase activity from autopsied I-cell disease brain and spleen tissues was 28% and 35% respectively of normal activity. Acid β- d -gatactosidase (β- d -galactoside galactohydrolase, EC 3.2.1.23) from two I-cell disease brains demonstrated a 5-fold increase over normal for the proportion of enzyme activity which did not adsorb to Concanavalin A-Sepharose 4B, while acid β- d -galactosidase from two I-cell disease spleens demonstrated a 21–35-fold increase in the proportion of unadsorbed enzyme activity. Normal and I-cell disease acid β- d -galactosidase present in crude brain and spleen supernatant fluids and in preparations partially purified on Concanavalin A-Sepharose 4B had similar apparent K m values with respect to 4-methylumbelliferyl β- d -galactopyranoside and GM1-ganglioside. Isoelectric focusing profiles of normal and I-cell disease acid β- d -galactosidase from crude brain and spleen-supernatant fluids and partially purified preparations were similar. Neuraminidase treatment and subsequent isoelectric focusing of the partially purified normal and I-cell disease enzyme preparations from brain and spleen revealed increases in the proportion of I-cell β- d -galactosidases found at neutral pH values, suggesting that the electrophoretic variations observed for the I-cell enzymes may not be attributed solely to changes in sialic acid composition.  相似文献   

2.
Precipitating monospecific antibodies against purified bovine retinal rod outer segment phosphodiesterase (EC 3.1.4.17) were obtained from rabbit blood serum. These antibodies do not form precipitating complexes with phosphodiesterase isolated from rat or ox brain tissues or from the heart, lung, liver, kidney, testes and uterus of the rat. The antibodies inhibit the activity of retinal rod outer segment phosphodiesterase or that of rat brain, liver, heart and uterus enzyme (despite the lack of precipitation) but have no effect on the phosphodiesterase activity of preparations obtained from rat lungs, kidney or testes. The same effect on the phosphodiesterase activity of all these tissues is exerted by monovalent fragments of the antibodies. Using partially purified preparations of phosphodiesterase from retinal rod outer segments and brain of the ox and from human myometrium, the mechanisms of inhibition of the enzyme catalytic activity by the antibodies was studied. In the presence of the antibodies, the Km and V values appeared to be different, depending on the preparation. It was assumed that a certain site in the phosphodiesterase molecule is characterized by great structural rigidity. Taking into account the shifts in the Km values induced by the antibodies, the differences in the localization of the antigenic determinant in relation to the enzyme active center are discussed.  相似文献   

3.
Histidine decarboxylase, the synthetic enzyme for histamine, was partially purified from regions of rat or rabbit brain rich in the enzyme. The enzyme was purified using ion exchange and hydrophobic column chromatography and chromatofocusing. Approximately 70-fold and 110-fold enrichments were attained from rat and rabbit brain, respectively. Rat and rabbit brain histidine decarboxylase had isoelectric points of pH 5.4 and 5.6, Km values of 80 M and 120 M histidine and Vmax values of 210 and 625 pmol histamine formed/hr-mg protein, respectively. The partially purified histidine decarboxylase from both sources was dependent on pyridoxal phosphate for maximal activity and was inhibited by -fluoromethylhistidine, nickel chloride and cobaltous chloride but was not inhibited by impromidine, -methyldopa, DTNB, zinc chloride or mercuric chloride. The enzyme had a broad pH optimum between pH 7.2 and 8.0. These studies provide further information on the characteristics of mammalian histidine decarboxylase from brain.  相似文献   

4.
Cyclic nucleotide phosphodiesterase (3',5'-cyclic nucleotide nucleotidohydrolase, EC 3.1.4.17) activity isolated from Phaseolus vulgaris L. cv. Limberg seedlings was partially purified and characterized by fractional (NH4)2SO4 precipitation, DEAE-cellulose chromatography, chromatography on 3',5'-cAMP-agarose, gel permeation chromatography and chromatofocusing. A crude enzyme preparation, a 30–65% (NH4)2SO4 pellet, showed an acidic pH optimum. The enzyme activity was stimulated by imidazole and divalent cations such as Ca2+, Mg2+ and Mn2+, whereas NaF, PPi and Fe3+ were inhibitory. Isobutylmethylxanthine had no significant effect on the plant enzyme. An MI of 42 000 was estimated by gel permeation high performance liquid chromatography. By chromatography on 3',5'-cAMP-agarose a phosphodiesterase was resolved that produced 5'-AMP as sole reaction product.  相似文献   

5.
Abstract— Kinetic experiments with 4-aminobutyrate-2-ketoglutarate transaminase (GABA-T), partially purified from human brain tissue, supported a Bi Bi Ping-Pong type of enzyme mechanism in which the enzyme oscillates between forms bound to pyridoxal phosphate and pyridoxamine phosphate. Extrapolated K m values were 0.31 m m for γ-aminobutyrate, 0.16 m m for α-ketoglutarate, and 3.8 μ m for pyridoxal phosphate. Very similar kinetic parameters were observed with rat brain enzyme. Apparent molecular weight of human GABA-T by gel filtration was 70,000 ± 3000. Electrofucusing experiments indicated a single ionic form with isoelectric pH = 5.7. Enzyme activity was inhibited by Tris, halides, cadmium and cupric ions, and known GABA-T inhibitors.
GABA-transaminating enzymes isolated from human kidney and liver were found to be similar to the brain enzyme with respect to substrate affinities, cofactor requirements, isoelectric pH values, molecular weights, and response to inhibitors.  相似文献   

6.
Badal C. Saha   《Process Biochemistry》2004,39(12):1871-1876
A newly isolated strain of the fungus, Mucor circinelloides (NRRL 26519), when grown on lactose, cellobiose, or Sigmacell 50 produces complete cellulase (endoglucanase, cellobiohydrolase, and β-glucosidase) system. The extracellular endoglucanase (EG) was purified to homogeneity from the culture supernatant by ethanol precipitation (75%, v/v), CM Bio-Gel A column chromatography, and Bio-Gel A-0.5 m gel filtration. The purified EG (specific activity 43.33 U/mg protein) was a monomeric protein with a molecular weight of 27 000. The optimum temperature and pH for the action of the enzyme were at 55 °C and 4.0–6.0, respectively. The purified enzyme was fully stable at pH 4.0–7.0 and temperature up to 60 °C. It hydrolysed carboxymethyl cellulose and insoluble cellulose substrates (Avicel, Solka-floc, and Sigmacell 50) to soluble cellodextrins. No glucose, cellobiose, and short chain cellooligosaccarides were formed from these substrates. The purified EG could not degrade oat spelt xylan and larch wood xylan. It bound to Avicell, Solka-floc, and Sigmacell 50 at pH 5.0 and the bound enzyme was released by changing the pH to 8.0. The enzyme activity was enhanced by 27±5 and 44±14% by the addition of 5 mM MgCl2 and 0.5 mM CoCl2, respectively, to the reaction mixture. Comparative properties of this enzyme with other fungal EGs are presented.  相似文献   

7.
Solid-state culture of the white-rot fungus Phanerochaete chrysosporium BKMF-1767 (ATCC 24725) has been carried out, using an inert support, polystyrene foam. Suitable medium and culture conditions have been chosen to favor the secretion of manganese peroxidase (MnP). The enzyme was isolated and purified from immobilized P. chrysosporium and partially characterized. Partial protein precipitation in crude enzyme was affected using ammonium sulphate, polyethylene glycol, methanol, and ethanol methods. Fractionation of MnP was performed by DEAE-Sepharose ion exchange chromatography followed by Ultragel AcA 54 gel filtration chromatography. This purification attained 23.08% activity yield with a purification factor of 5.8. According to data on gel filtration chromatography and sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), the molecular weight of the enzyme was 45 000±1000 Da. The optimum pH and temperature of purified MnP were 4.5 and 30 °C, respectively. This enzyme was stable in the pH range 4.5–6.0, at 25 °C and also up to 35 °C at pH 4.5 for 1 h incubation period. MnP activity was inhibited by 2 mM NaN3, ascorbic acid, β-mercaptoethanol and dithreitol. The Km values of MnP for hydrogen peroxide and 2.6-dimetoxyphenol were 71.4 and 28.57 μM at pH 4.5, respectively. The effects of possible inhibitors and activators of enzyme activity were investigated.  相似文献   

8.
A Zn2+-glycerophosphocholine cholinephosphodiesterase was purified with a specific activity of 4.6 μmole/min·mg protein from bovine brain membranes by procedures involving PI-PLC solubilization, concanavalin A affinity chromatography, CM-sephadex chromatography and Sephadex G-150 chromatography. Based on molecular weight determination gel chromatography and SDS polyacrylamide gel electrophoresis, the phosphodiesterase activity appears to be a dimeric protein (110 kDa) composed of two subunits with a molecular weight of approximately 54 kDa. The Km value for p-nitrophenylphosphocholine and the optimum pH were found to be 16 μM and pH 10.5, respectively. The phosphodiesterase was inhibited by Cu2+, but not the other divalent metal ions. The activity of the apoenzyme was remarkably activated by Co2+ or Zn2+, but not Mn2+ or Mg2+. In addition, the inactivation of the enzyme in glycine buffer was prevented by Mn2+ or Zn2+, but not Co2+ or Mg2. In a separate experiment, comparing properties of the purified and membrane-bound phosphodiesterases, the forms of two enzymes were quite similar except in stability. Both enzymes were more stable at pH 7.4 than pH 5 or 10. However, the membrane-bound enzyme was more stable than the soluble enzyme at all three pHs. These data suggest that the activity of the phosphodiesterase may be stabilized in-vivo.  相似文献   

9.
Carnation ( Dianthus caryophyllus L. cv. White Sim) petals contained two distinct invertases (EC 3.2.1.26) based on chromatographic behavior on DEAE-cellulose. Both are soluble in 20 m M sodium phosphate buffer (pH 6.5) and exhibit acid pH optimum of 5.5. Extraction of a cell wall preparation from petals with 1 M NaCl released little additional activity. Furthermore, only traces of activity remained associated with the NaCl-extracted cell wall preparation. One of the soluble invertases, representing over 75% of the total activity, was partially purified by (NH4)2SO4 fractionation and sequential chromatography over diethylaminoethyl-cellulose, concanavalin-A sepharose and polyacrylamide P-200. The enzyme was purified 38-fold with a recovery of 12%. It had an apparent native molecular weight of 215 kDa. The partially purified invertase is a β-fructofuranosidase (EC 3.2.1.26) based on its specificity for sucrose. The Km for sucrose was 3.3 m M . Accumulation of reducing sugars and increased invertase activity during expansive petal growth indicates that sucrose is the major source of carbon for petal growth.  相似文献   

10.
Abstract— Cyclic 3',5'-AMP (cAMP) and cyclic 3',5'–GMP (cGMP) phosphodiesterase activities were found in human cerebrospinal fluid (CSF) using low substrate concentration (0.4μM). More rapid hydrolysis of cGMP than that of cAMP was observed in human CSF. However, cGMP hydrolytic activity of CSF was very much lower (0.3 pmol/min/ml CSF) than that of human cerebral cortex (33.7 nmol/min/g wet cortex). The pH optimum was found to be 8.0 (cGMP phosphodiesterase) and 7.5 (cAMP phosphodiesterase). The maximum stimulation of both cAMP and cGMP phosphodiesterase was achieved at 4 mM-MgCl2. Cyclic AMP had relatively little effect on the hydrolysis of cGMP in CSF and the cortex, while cGMP inhibited hydrolysis of cAMP in both tissues. Snake venom was found to stimulate cAMP and cGMP phosphodiesterase activity of CSF, by 60% and 110% respectively. This stimulation by snake venom was also observed in the cortex phosphodiesterase, but was not observed in human plasma or thyroid phosphodiesterase. When CSF was applied to Sepharose 6B column, cGMP phosphodiesterase was separated into three different molecular forms. A plot of activity against substrate concentration using peak I (largest molecular size) revealed a high affinity ( K m= 2.6μM) and a low affinity ( K m= 100μM) for cAMP suggesting the existence of at least two molecular forms of the enzyme. On the other hand, using a cGMP as substrate the only one K m value (1.90 μm) was obtained. These K m values of CSF enzymes described above were close to those obtained from human cerebral cortex preparations. The enzyme under peak I corresponded to the cortex enzyme when judged from its molecular size and stimulation by snake venom. It seems likely from our results that at least a part of CSF phosphodiesterase originates from the central nervous system.  相似文献   

11.
A cyclic nucleotide phosphodiesterase from a particulate fraction of rat brain was partially purified after solubilization with a non-ionic detergent. Influence of divalent ions, of phosphodiesterase inhibitors and of the activator protein from different sources were tested. Determination of Km-values shows two enzymes with different values, one at 7.3 μM and the other at 15 mM. Two distinct activity peaks were determined after resolution by isoelectric focusing. It was concluded that this particulate enzyme is regulated in a way opposite to that of the soluble enzyme and is independent from calcium and the activator protein.  相似文献   

12.
FORMAMIDASE IN RAT BRAIN   总被引:1,自引:1,他引:0  
Kynurenine formamidase (aryl-formylamine amidohydrolase, EC 3.5.1.9) was found to be present in rat brain and was partially purified and characterized. The partially purified enzyme catalysed the hydrolysis of 5-hydroxyformyl-dl -kynurenine to 5-hydroxy-dl -kynurenine and that of formyl-l -kynurenine to l -kynurenine at similar rates. The apparent Km values of the enzyme for 5-hydroxyformyl-dl -kynurenine and formyl-l -kynurenine were 4.0 ± 10?4 and 1.8 ± 10?4m , respectively. The enzyme was active over a wide pH range (5.5–8.5). The activity was inhibited by low concentrations of Ag+ and Hg2+. The physiological significance of the enzyme is discussed.  相似文献   

13.
The cyclic nucleotide phosphodiesterase secreted by Physarum polycephalum plasmodium into extracellular medium has been partially purified by DEAE cellulose chromatography, ultrafiltration, and HPLC. The results obtained by gel filtration, HPLC, electrophoresis, and isoelectric focusing suggest that, the native enzyme in solution is a monomer with a molecular mass of about 90 kDa and pI in the range 3.6 - 4.0. The Km values were estimated to be about 0.9 mM and 7.7 mM, respectively, and Vm for both substrates were similar (up to several thousand micromoles of cAMP hydrolyzed/hour per mg of enzyme). The partially purified enzyme was shown to be extremely stable. It did not lose the activity after heat treatment at 100 degrees C during 30 min. The enzyme was active in the presence of 1% SDS, but it was fully inactivated under the same conditions in the presence of beta-mercaptoethanol. The properties of the phosphodiesterase from Physarum polycephalum are discussed.  相似文献   

14.
Abstract: Kinetic studies suggested the presence of several forms of NAD-dependent aldehyde dehydrogenase (ALDH) in rat brain. A subcellular distribution study showed that low- and high- K m activities with acetaldehyde as well as the substrate-specific enzyme succinate semialdehyde dehydrogenase were located mainly in the mitochondrial compartment. The low- K m activity was also present in the cytosol (<20%). The low- K m activity in the homogenate was only 10–15% of the total activity with acetaldehyde as the substrate. Two K m values were obtained with both acetaldehyde (0.2 and 2000 μ m ) and 3,4-dihydroxyphenylacetaldehyde (DOPAL) (0.3 and 31 μ m ), and one K m value with succinate semialdehyde (5 μ m ). The main part of the aldehyde dehydrogenase activities with acetaldehyde, DOPAL, and succinate semialdehyde, but only little activity of the marker enzyme for the outer membrane (monoamine oxidase, MAO), was released from a purified mitochondrial fraction subjected to sonication. Only small amounts of the ALDH activities were released from mitochondria subjected to swelling in a hypotonic buffer, whereas the main part of the marker enzyme for the intermembrane space (adenylate kinase) was released. These results indicate that the ALDH activities with acetaldehyde, DOPAL and succinate semialdehyde are located in the matrix compartment. The low- K m activity with acetaldehyde and DOPAL, but not the high- K m activities and succinate semialdehyde dehydrogenase, was markedly stimulated by Mg2+ and Ca2+ in phosphate buffer. The low- and high- K m activities with acetaldehyde showed different pH optima in pyrophosphate buffer.  相似文献   

15.
BRAIN PEPTIDASES: CONVERSION AND INACTIVATION OF KININ HORMONES   总被引:5,自引:3,他引:2  
Abstract— Two enzymes that selectively hydrolyse kinins at pH 7.5 were obtained in partially purified form from the supernatant fraction of homogenates of previously frozen rabbit brain by gel filtration on Sephadex G-100. The enzymes were detected and their activity estimated by bioassay with the isolated guinea pig ileum The products of the enzymic reactions were identified by high voltage electrophoresis at pH 3.5 and by the determination with the amino acid analyser of the amino acids released from the kinins.
One enzyme, kinin-converting enzyme, catalyses the hydrolysis of kinin-10 (Lysbradykinin) and kinin-11 (Met-Lys-bradykinin) into kinin-9 (bradykinin). It also hydrolyses the aminoacyl-8-naphthylamides of methionine, lysine, arginine and leucine. The conversion of kinin-10 to kinin-9 was inhibited by puromycin (Ki 3.5 × 10−5 M) These properties are similar to those of brain arylamidases described in the literature.
Kininase, the second enzyme, inactives kinins 9, 10 and 11 by peptide-bond hydrolysis. Similar rates of release of arginine and phenylalanine were observed for the three kinins, suggesting that kininase acts at the carboxy-terminus of these peptides.
Our results suggest that brain contains proteases which apparently selectively metabolize polypeptide hormones that exert definite pharmacological effects on the central and peripheral nervous systems.  相似文献   

16.
An extracellular polygalacturonase (PGase) from Mucor rouxii NRRL 1894 was purified to homogeneity by two chromatographic steps using CM-Sepharose and Superdex 75. The purified enzyme was a monomer with a molecular weight of 43100 Da and a pI of 6. The PGase was optimally active at 35 °C and at pH 4.5. It was stable up to 30 °C and stability of PGase decrease rapidly above 60 °C. The extent of hydrolysis of different pectins was decreased with increasing of degrees of esterification. Except Mn2+, all the examined metal cations showed inhibitory effects on the enzyme activity. The apparent Km and Vmax values for hydrolyze of polygalacturonic acid (PGA) were 1.88 mg/ml and 0.045 μmol/ml/min, respectively. The enzyme released a series of oligogalacturonates from polygalacturonic acid indicating that it had an endo-action. Its N-terminal sequence showed homologies with the endopolygalacturonase from the psychrophilic fungus Mucor flavus.  相似文献   

17.
Diacetyl reductase from Kluyveromyces marxianus NRRL Y-1196 was purified 27.5-fold with a yield of 13% by ammonium sulphate fractionation, DEAE-anion exchange chromatography, hydroxyapatite chromatography and chromatofocusing. The purified enzyme was most active at pH 7.0 and exhibited optimal activity at 40°C. The K m and V max values for diacetyl were 2.5 mmol 1-1 and 0.026 mmol 1-1 min-1, respectively. The enzyme did not react with monoaldehydes or monoketones, but reduced acetoin, diacetyl and methylglyoxal with NADH as a cofactor. The enzyme had an isoelectric point (pl) of pH 5.8, and its molecular weight was 50 kDa.  相似文献   

18.
A substrain of Bacillus cereus 569/H produced under controlled fermentation conditions in a pilot plant fermentor phospholipase-C. A partially purified preparation showed good storage stability as a lyophylized powder and in frozen solutions. The preparation contained very small amounts of phosphomonoesterase and proteolytic activities and essentially no ribonuclease activity. The level of hemolytic activity of the preparation was much lower than that of a commercial preparation of phospholipase-C from Clostridium. Treatment of sarcoplasmic reticulum membrane with phospholipase-C from B. cereus and from Clostridium showed that the B. cereus enzyme caused hydrolysis of 96% of the membrane phospholipids whereas the enzyme from Clostridium could hydrolyze only 80% of the phospholipids.  相似文献   

19.
Phosphodiesterase activity is estimated in extracts and partially purified preparations from functionally different parts of bovine tongue. The enzyme activity varied from 4.0 to 10.4 nmole/mg of protein/min. Properties of phosphodiesterase from circumvallate papillae are studied, the pH optimum being 8.0--8.5, Km for cAMP--1.5.10(-4) M and for cGMP--6.5.10(-5) M. The enzyme activity did not change after the treatment with trypsin, protamine sulphate (0.01--1.0%), heparin (0.01--1.0) and taste agents: L-leucine (from 1.10(-2) M to 1.10(-5) M), quinine (from 4.10(-3) M to 4.10(-8) M) and D-glucose (from 1.10(-1) M to 1.10(-4) M). The protein inhibitor of the enzyme, isolated from retina external rod-cell segments considerably suppressed phosphodiesterase activity, and the protein activator from brain tissue stimulated it insignificantly. Thermostable protein modulators, which inhibit or activate (depending on experimental conditions) phosphodiesterase activity, are isolated from circumvallate papillae.  相似文献   

20.
The organic solvent-tolerant strain K protease was purified to homogeneity by ammonium sulphate precipitation and anion exchange chromatography with 124-fold increase in specific activity. The molecular mass of the purified enzyme as revealed by SDS-PAGE electrophoresis is 51,000 Da. The strain K protease was an alkaline metalloprotease with an optimum pH and temperature of 10 and 70 °C, respectively. The enzyme showed stability and activation in the presence of organic solvents with log Pa/w values equal or more than 4.0. After 14 days of incubation, the purified protease was activated 1.11, 1.82, 1.50, 1.75 and 1.80 times in 1-decanol, isooctane, decane, dodecane and hexadecane, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号