首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
H Takemura  H Ohshika 《Life sciences》1999,64(17):1493-1500
Capacitative Ca2+ entry exists in rat glioma C6 cells; however, how the information of depletion of Ca2+ in intracellular stores transmits to the plasma membrane is unknown. In the present study, we examined whether Ca2+ influx factor (CIF) causes capacitative Ca2+ entry in C6 cells. CIF was extracted from non-treated (Non-CIF), bombesin-treated (BBS-CIF) and thapsigargin-treated (TG-CIF) C6 cells by a reverse-phase silica cartridge. The addition of BBS-CIF and TG-CIF gradually increased cytoplasmic Ca2+ concentration ([Ca2+]i) but Non-CIF did not increase [Ca2+]i. Neither BBS-CIF nor TG-CIF elevated [Ca2+]i in the absence of extracellular Ca2+. Gd3+ inhibited the increase in [Ca2+]i induced by BBS-CIF and TG-CIF. Genistein abolished an elevation of [Ca2+]i induced by BBS-CIF and TG-CIF. BBS-CIF and TG-CIF did not increase inositol 1,4,5-trisphosphate accumulation. The results suggest that capacitative Ca2+ entry is caused by CIF in rat glioma C6 cells.  相似文献   

3.
The review considers mechanisms of Ca2+-dependent regulation of cell growth, differentiation, and apoptosis in cells of the higher eukaryotes by modulation of the signal Ras-MAPK pathway.  相似文献   

4.
In airway epithelial cells, apical adenosine regulates transepithelial anion secretion by activation of apical cystic fibrosis transmembrane conductance regulator (CFTR) via adenosine receptors and cAMP/PKA signaling. However, the potent stimulation of anion secretion by adenosine is not correlated with its modest intracellular cAMP elevation, and these uncorrelated efficacies have led to the speculation that additional signaling pathways may be involved. Here, we showed that mucosal adenosine-induced anion secretion, measured by short-circuit current (Isc), was inhibited by the PLC-specific inhibitor U-73122 in the human airway submucosal cell line Calu-3. In addition, the Isc was suppressed by BAPTA-AM (a Ca2+ chelator) and 2-aminoethoxydiphenyl borate (2-APB; an inositol 1,4,5-trisphosphate receptor blocker), but not by PKC inhibitors, suggesting the involvement of PKC-independent PLC/Ca2+ signaling. Ussing chamber and patch-clamp studies indicated that the adenosine-induced PLC/Ca2+ signaling stimulated basolateral Ca2+-activated potassium (KCa) channels predominantly via A2B adenosine receptors and contributed substantially to the anion secretion. Thus, our data suggest that apical adenosine activates contralateral K+ channels via PLC/Ca2+ and thereby increases the driving force for transepithelial anion secretion, synergizing with its modulation of ipsilateral CFTR via cAMP/PKA. Furthermore, the dual activation of CFTR and KCa channels by apical adenosine resulted in a mixed secretion of chloride and bicarbonate, which may alter the anion composition in the secretion induced by secretagogues that elicit extracellular ATP/adenosine release. Our findings provide novel mechanistic insights into the regulation of anion section by adenosine, a key player in the airway surface liquid homeostasis and mucociliary clearance.  相似文献   

5.
6.
K+-stimulated 45Ca2+ influx was measured in rat brain presynaptic nerve terminals that were predepolarized in a K+-rich solution for 15 s prior to addition of 45Ca2+. This 'slow' Ca2+ influx was compared to influx stimulated by Na+ removal, presumably mediated by Na+-Ca2+ exchange. The K+-stimulated Ca2+ influx in predepolarized synaptosomes, and the Na+-removal-dependent Ca2+ influx were both saturating functions of the external Ca2+ concentration; and both were half-saturated at 0.3 mM Ca2+. Both were reduced about 50% by 20 microM Hg2+, 20 microM Cu2+ or 0.45 mM Mn2+. Neither the K+-stimulated nor the Na+-removal-dependent Ca2+ influx was inhibited by 1 microM Cd2+, La3+ or Pb2+, treatments that almost completely inhibited K+-stimulated Ca2+ influx in synaptosomes that were not predepolarized. The relative permeabilities of K+-stimulated Ca2+, Sr2+ or Ba2+ influx in predepolarized synaptosomes (10:3:1) and the corresponding selectivity ratio for Na+-removal-dependent divalent cation uptake (10:2:1) were similar. These results strongly suggest that the K+-stimulated 'slow' Ca2+ influx in predepolarized synaptosomes and the Na+-removal-dependent Ca2+ influx are mediated by a common mechanism, the Na+-Ca2+ exchanger.  相似文献   

7.
The “w” splice forms of PMCA2 localize to distinct membrane compartments such as the apical membrane of the lactating mammary epithelium, the stereocilia of inner ear hair cells or the post-synaptic density of hippocampal neurons. Previous studies indicated that PMCA2w/b was not fully targeted to the apical domain of MDCK cells but distributed more evenly to the lateral and apical membrane compartments. Overexpression of the apical scaffold protein NHERF2, however, greatly increased the amount of the pump in the apical membrane of these epithelial cells. We generated a stable MDCK cell line expressing non-tagged, full-length PMCA2w/b to further study the localization and function of this protein. Here we demonstrate that PMCA2w/b is highly active and shows enhanced apical localization in terminally polarized MDCK cells grown on semi-permeable filters. Reversible surface biotinylation combined with confocal microscopy of fully polarized cells show that the pump is stabilized in the apical membrane via the apical membrane cytoskeleton with the help of endogenous NHERF2 and ezrin. Disruption of the actin cytoskeleton removed the pump from the apical actin patches without provoking its internalization. Our data suggest that full polarization is a prerequisite for proper positioning of the PMCA2w variants in the apical membrane domain of polarized cells.  相似文献   

8.
Substance P (SP) plays an important role in pain transmission through the stimulation of the neurokinin (NK) receptors expressed in neurons of the spinal cord, and the subsequent increase in the intracellular Ca(2+) concentration ([Ca(2+)](i)) as a result of this stimulation. Recent studies suggest that spinal astrocytes also contribute to SP-related pain transmission through the activation of NK receptors. However, the mechanisms involved in the SP-stimulated [Ca(2+)](i) increase by spinal astrocytes are unclear. We therefore examined whether (and how) the activation of NK receptors evoked increase in [Ca(2+)](i) in rat cultured spinal astrocytes using a Ca(2+) imaging assay. Both SP and GR73632 (a selective agonist of the NK1 receptor) induced both transient and sustained increases in [Ca(2+)](i) in a dose-dependent manner. The SP-induced increase in [Ca(2+)](i) was significantly attenuated by CP-96345 (an NK1 receptor antagonist). The GR73632-induced increase in [Ca(2+)](i) was completely inhibited by pretreatment with U73122 (a phospholipase C inhibitor) or xestospongin C (an inositol 1,4,5-triphosphate (IP(3)) receptor inhibitor). In the absence of extracellular Ca(2+), GR73632 induced only a transient increase in [Ca(2+)](i). In addition, H89, an inhibitor of protein kinase A (PKA), decreased the GR73632-mediated Ca(2+) release from intracellular Ca(2+) stores, while bisindolylmaleimide I, an inhibitor of protein kinase C (PKC), enhanced the GR73632-induced influx of extracellular Ca(2+). RT-PCR assays revealed that canonical transient receptor potential (TRPC) 1, 2, 3, 4 and 6 mRNA were expressed in spinal astrocytes. Moreover, BTP2 (a general TRPC channel inhibitor) or Pyr3 (a TRPC3 inhibitor) markedly blocked the GR73632-induced sustained increase in [Ca(2+)](i). These findings suggest that the stimulation of the NK-1 receptor in spinal astrocytes induces Ca(2+) release from IP(3-)sensitive intracellular Ca(2+) stores, which is positively modulated by PKA, and subsequent Ca(2+) influx through TRPC3, which is negatively regulated by PKC.  相似文献   

9.
10.
In Swiss 3T3 fibroblasts a peptide mitogen bombesin, which acts through the phospholipase C-protein kinase C signaling pathway, stimulates DNA synthesis in a manner strictly dependent on the medium calcium concentration: [3H]thymidine incorporation into DNA in the presence of a saturating concentration of bombesin (10(-8) M) is 4-fold greater at 3.0 mM extracellular calcium as compared with a value obtained at 0.03 mM calcium. In the present study we attempted to identify the site and the mechanism of action of Ca2+ influx along the bombesin-induced mitogenic signaling pathway, by comparing bombesin effects at 0.03 and 3.0 mM of medium calcium. Bombesin induces the same extent of increases in [3H]inositol phosphates after 1 min, and comparable sustained increases in the cellular content of 1,2-diacylglycerol for up to 4 h, at either 0.03 or 3.0 mM calcium. Bombesin induces the same extent of phosphorylation of MARCKS protein, the major cellular substrate for protein kinase C, irrespective of the medium calcium concentration for at least 4 h. Moreover, diverse cellular responses elicited by bombesin, including c-fos expression, activation of microtubule-associated protein 2 kinase and S6 kinase, glucose uptake, and protein synthesis but not the release of arachidonic acid and its metabolites, are induced similarly at either 0.03 or 3.0 mM calcium. Down-regulation of cellular protein kinase C nearly completely abolishes bombesin effects on c-fos expression, S6 kinase activation, glucose uptake, and DNA synthesis. These results suggest that the target of Ca2+ influx in bombesin-induced mitogenic signaling pathway is not located along the phospholipase C-protein kinase C signal transduction system including cellular events in early G1 phase that exist downstream to protein kinase C action.  相似文献   

11.
Ca(2+) influx via store-operated channels (SOCs) following stimulation of the plasma membrane receptors is the key event controlling numerous processes in nonexcitable cells. The human transient receptor potential vanilloid type 6 channel, originally termed Ca(2+) transporter type 1 (CaT1) protein, is one of the promising candidates for the role of endogenous SOC, although investigations of its functions have generated considerable controversy. In order to assess the role of CaT1 in generating endogenous store-operated Ca(2+) current (I(SOC)) in the lymph node carcinoma of the prostate (LNCaP) human prostate cancer epithelial cell line, we manipulated its endogenous levels by means of antisense hybrid depletion or pharmacological up-regulation (antiandrogen treatment) combined with functional evaluation of I(SOC). Antisense hybrid depletion of CaT1 decreased I(SOC) in LNCaP cells by approximately 50%, whereas enhancement of CaT1 levels by 60% in response to Casodex treatment potentiated I(SOC) by 30%. The functional characteristics of I(SOC) in LNCaP cells were similar in many respects to those reported for heterologously expressed CaT1, although 2-aminoethoxydiphenyl borate sensitivity and lack of constitutive current highlighted notable departures. Our results suggest that CaT1 is definitely involved in I(SOC), but it may constitute only a part of the endogenous SOC, which in general may be a heteromultimeric channel composed of homologous CaT1 and other transient receptor potential subunits.  相似文献   

12.
TRPC1, a component of store-operated Ca2+ entry (SOCE) channels, is assembled in a complex with caveolin-1 (Cav1) and key Ca2+ signaling proteins. This study examines the role of Cav1 in the function of TRPC1. TRPC1 and Cav1 were colocalized in the plasma membrane region of human submandibular gland and Madin-Darby canine kidney cells. Full-length Cav1 bound to both the N and C termini of TRPC1. Amino acids 271-349, which includes a Cav1 binding motif (amino acids 322-349), was identified as the Cav1 binding domain in the TRPC1 N terminus. Deletion of amino acids 271-349 or 322-349 prevented plasma membrane localization of TRPC1. Importantly, TRPC1Delta271-349 induced a dominant suppression of SOCE and was associated with wild-type TRPC1. Although the role of the C-terminal Cav1 binding domain is not known, its deletion did not affect localization of TRPC1 (Singh, B. B., Liu, X., and Ambudkar, I. S. (2000) J. Biol. Chem. 275, 36483-36486). Further, expression of a truncated Cav1 (Cav1Delta51-169), but not full-length Cav1, similarly disrupted plasma membrane localization of endogenously and exogenously expressed TRPC1 in human submandibular gland and Madin-Darby canine kidney cells. Cav1Delta51-169 also suppressed thapsigarginand carbachol-stimulated Ca2+ influx and increased the detergent solubility of TRPC1, although plasma membrane lipid raft domains were not disrupted. These data demonstrate that plasma membrane localization of TRPC1 depends on an interaction between its N terminus and Cav1. Thus, our data suggest that Cav1 has an important role in the assembly of SOCE channel(s).  相似文献   

13.
C Lipardi  L Nitsch  C Zurzolo 《Biochimie》1999,81(4):347-353
The process leading to thyroid hormone synthesis is vectorial and depends upon the polarized organization of the thyrocytes into the follicular unit. Thyrocyte membrane proteins are delivered to two distinct domains of the plasma membrane using apical (AP) and basolateral (BL) sorting signals. A recent hypothesis for AP sorting proposes that apically destined proteins cluster with glycosphingolipids (GSLs) and cholesterol, into microdomains (or rafts) of the Golgi membrane from which AP vesicles originate. In MDCK cells the human neurotrophin receptor, p75hNTR, is delivered to the AP surface through a sorting signal, rich in O-glycosylated sugars, identified in its ectodomain. We have investigated whether this signal is functional in the thyroid-derived FRT cell line and whether p75hNTR clusters into lipid rafts to be sorted to the AP membrane. We found that p75hNTR is apically delivered via a direct pathway and does not associate with rafts during its transport to the surface of FRT cells. Therefore, although the same signal could be recognized by different cell types thyroid cells may possess a tissue-specific sorting machinery.  相似文献   

14.
15.
16.
17.
L-type Ca2+ current (I(Ca)) is reduced in myocytes from cardiac-specific Na+-Ca2+ exchanger (NCX) knockout (KO) mice. This is an important adaptation to prevent Ca2+ overload in the absence of NCX. However, Ca2+ channel expression is unchanged, suggesting that regulatory processes reduce I(Ca). We tested the hypothesis that an elevation in local Ca2+ reduces I(Ca) in KO myocytes. In patch-clamped myocytes from NCX KO mice, peak I(Ca) was reduced by 50%, and inactivation kinetics were accelerated as compared to wild-type (WT) myocytes. To assess the effects of cytosolic Ca2+ concentration on I(Ca), we used Ba2+ instead of Ca2+ as the charge carrier and simultaneously depleted sarcoplasmic reticular Ca2+ with thapsigargin and ryanodine. Under these conditions, we observed no significant difference in Ba2+ current between WT and KO myocytes. Also, dialysis with the fast Ca2+ chelator BAPTA eliminated differences in both I(Ca) amplitude and decay kinetics between KO and WT myocytes. We conclude that, in NCX KO myocytes, Ca2+-dependent inactivation of I(Ca) reduces I(Ca) amplitude and accelerates current decay kinetics. We hypothesize that the elevated subsarcolemmal Ca2+ that results from the absence of NCX activity inactivates some L-type Ca2+ channels. Modulation of subsarcolemmal Ca2+ by the Na+-Ca2+ exchanger may be an important regulator of excitation-contraction coupling.  相似文献   

18.
19.
Missense mutations in the WNK4 gene have been postulated to cause pseudohypoaldosteronism type II (PHAII), an autosomal-dominant disorder characterized by hyperkalemia and hypertension. Previous reports using Xenopus oocytes showed that wild-type WNK4 expression inhibited surface expression of the thiazide-sensitive NaCl cotransporter (NCC), while a disease-causing mutant lost the inhibitory effect on NCC surface expression. To determine if these changes observed in oocytes really occur in polarized epithelial cells, we generated stable MDCK II cell lines expressing NCC alone or NCC plus wild-type WNK4 or a disease-causing (D564A) WNK4. In contrast to the apical localization of NCC without co-expression of WNK4, immunofluorescence microscopy and biotin surface labeling revealed that this apical localization was equally decreased by both the wild-type and the mutant WNK4 expression. Apical localizations of two PHAII-unrelated apical transporters, sodium-independent amino acid transporter, BAT1 and bile salt export pump, Bsep, were also found to be decreased by both wild-type and mutant WNK4 expression. These results indicate that the regulation of NCC was not related to the disease-causing mutation and not restricted to the PHAII-related specific transporters. The regulation of intracellular localization of NCC by WNK4 might not be involved in the pathogenesis of PHAII.  相似文献   

20.
The exact role of TRPC1 in store-operated calcium influx channel (SOCC) function is not known. We have examined the effect of overexpression of full-length TRPC1, depletion of endogenous TRPC1, and expression of TRPC1 in which the proposed pore region (S5-S6, amino acids (aa) 557-620) was deleted or modified by site-directed mutagenesis on thapsigargin- and carbachol-stimulated SOCC activity in HSG cells. TRPC1 overexpression induced channel activity that was indistinguishable from the endogenous SOCC activity. Transfection with antisense hTRPC1 decreased SOCC activity although characteristics of SOCC-mediated current, I(SOC), were not altered. Expression of TRPC1 Delta 567-793, but not TRPC1 Delta 664-793, induced a similar decrease in SOCC activity. Furthermore, TRPC1 Delta 567-793 was co-immunoprecipitated with endogenous TRPC1. Simultaneous substitutions of seven acidic aa in the S5-S6 region (Asp --> Asn and Glu --> Gln) decreased SOCC-mediated Ca(2+), but not Na(+), current and induced a left shift in E(rev). Similar effects were induced by E576K or D581K, but not D581N or E615K, substitution. Furthermore, expressed TRPC1 proteins interacted with each other. Together, these data demonstrate that TRPC1 is required for generation of functional SOCC in HSG cells. We suggest that TRPC1 monomers co-assemble to form SOCC and that specific acidic aa residues in the proposed pore region of TRPC1 contribute to Ca(2+) influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号