共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen isotopic compositions of n-alkanes from terrestrial plants correlate with their ecological life forms 总被引:1,自引:0,他引:1
Stable hydrogen isotopic compositions (δD) of compound-specific biomarkers, such as n-alkanes from plant leaf waxes, can be used as a proxy for paleoclimatic change. However, the relationship between hydrogen isotopes of plant leaf wax and plant ecological life forms is not well understood. Here, we report the δD of n-alkanes from 34 modern terrestrial plants, including twenty-one C3 plants and thirteen C4 plants from northwestern China, determined using gas chromatography/thermal conversion/isotope ratio mass spectrometry. Our data show that the stable hydrogen isotopes are poorly correlated with the plant photosynthetic pathway (C3 vs. C4) and that they do not give clear regional precipitation signals. Together with a comparative analysis of published δD values from plant leaf waxes in other regions, we believe that the stable hydrogen isotope of plant leaf waxes is more closely related to ecological life forms of these terrestrial plants (i.e. tree, shrub, and grass). In general, the grasses have more negative δD values than the co-occurring trees and shrubs. Our findings suggest that the δD values of sedimentary leaf waxes from higher plants may record changes of a plant ecosystem under the influence of environmental alteration and imply that reconstruction of the paleoclimate using δD values from plant n-alkanes should be based upon specific plant taxa, and comparison should be made among plants with similar ecological life forms. 相似文献
2.
A study of the isotopic composition of organic matter was conducted in a freshwater marsh over seasonal and diel time scales to determine the sources of dissolved organic matter (DOM) and the processes leading to its formation. Bulk C and N isotopic compositions of the bacterial fraction (0.2–0.7 m) and particulate organic matter (POM; 0.7–10 m) were compared on a seasonal basis with the change in 13C of DOM. The bulk isotopic data support the idea that DOM was, in part, derived from the breakdown of larger organic matter fractions. The bacterial fraction and POM were compositionally similar throughout the year, based on a comparison of the 13C of individual amino acids in each fraction. Annual variation in the 13C of amino acids in DOM was greater relative to the variation in larger fractions indicating that microbial reworking was an important factor determining the proteinaceous component of DOM. The 13C enrichment of serine and leucine in each organic matter fraction suggested microbial reworking was an important factor determining organic matter composition during the most productive times of year. Changes in the bulk 13C of DOM were more significant over daily, relative to seasonal, time scales where values ranged by 6 and followed changes in chlorophyll a concentrations. Although bulk 13C values for POM ranged only from –29 to –28 during the same diel period, the 13C of alanine in POM ranged from –30 to –22. Alanine is directly synthesized from pyruvate and is therefore a good metabolic indicator. The 13C of individual amino acids in DOM revealed the diel change in the importance of autotrophic versus heterotrophic activity in influencing DOM composition. Diel changes in the 13C of phenylalanine, synthesized by common pathways in phytoplankton and bacteria, were similar in both DOM and POM. The diel change in 13C of isoleucine and valine, synthesized through different pathways in phytoplankton and bacteria, were distinctly different in DOM versus POM. This disparity indicated a decoupling of the POM and DOM pools, which suggests a greater source of bacterial-derived organic matter at night. The results of this study demonstrate the use of the isotopic composition of individual amino acids in determining the importance of microbial reworking and autotrophic versus heterotrophic contributions to DOM over both diel and seasonal time scales. 相似文献
3.
The role of reactive oxygen species, especially H2O2, in plant response to stresses has been the focus of much attention. Hydrogen peroxide has been postulated to play multiple functions in plant defence against pathogens. (1) H2O2 may possess direct microbicidal activity at the sites of pathogen invasion. (2) It is used for cell-wall reinforcing processes: lignification and oxidative cross-linking of hydroxyproline-rich proteins and other cell-wall polymers. (3) It was found to be necessary for phytoalexin synthesis. (4) H2O2 may trigger programmed plant cell death during the hypersensitive response that restricts the spread of infection. (5) H2O2 has been suggested to act as a signal in the induction of systemic acquired resistance and (6) it induces defence genes. Recently H2O2 has been proposed to be involved in the signal transduction pathways leading to acclimation and protection from abiotic stresses. The present review discusses new insights into the function of H2O2 in plant responses to biotic and abiotic stresses. 相似文献
4.
5.
6.
Jennifer Lawson Knoepfle Peter T. Doran Fabien Kenig W. Berry Lyons V. F. Galchenko 《Hydrobiologia》2009,632(1):139-156
In perennially ice-covered lakes of Taylor Valley, Antarctica, “legacy”, a carryover of past ecosystem events, has primarily
been discussed in terms of nutrient and salinity concentrations and its effect on the current ecology of the lakes. In this
study, we determine how residual pools of ancient carbon affect the modern carbon abundance and character in the water columns
of Lakes Fryxell, Hoare, and Bonney. We measure the stable carbon isotopic compositions and concentrations of particulate
organic carbon (POC) and dissolved inorganic carbon (DIC) in the water column of these lakes over four seasons (1999–2002).
These data are presented and compared with all the previously published Taylor Valley lacustrine carbon stable isotopic data.
Our results show that the carbon concentrations and isotopic compositions of the upper water columns of those lakes are controlled
by modern processes, while the lower water columns are controlled to varying degrees by inherited carbon pools. The water
column of the west lobe of Lake Bonney is dominated by exceptionally high concentrations of DIC (55,000–75,000 μmol l−1) reflecting the long period of ice-cover on this lake. The east lobe of Lake Bonney has highly enriched δ13CDIC values resulting from paleo-brine evaporation effects in its bottom waters, while its high DIC concentrations provide geochemical
evidence that its middle depth waters are derived from West Lake Bonney during a hydrologically connected past. Although ancient
carbon is present in both Lake Hoare and Lake Fryxell, the δ13CDIC values in bottom waters suggest dominance by modern primary productivity-related processes. Anaerobic methanogenesis and
methanotrophy are also taking place in the lower water column of Lake Fryxell with enough methane, oxidized anaerobically,
to contribute to the DIC pool. We also show how stream proximity and high flood years are only a minor influence on the carbon
isotopic values of both POC and DIC. The Taylor Valley lake system is remarkably stable in both inter-lake and intra-lake
carbon dynamics.
Handling editor: K. Martens 相似文献
7.
Temporal and spatial variability of the oxygen isotopic composition of massive corals from the South China Sea: Influence of the Asian monsoon 总被引:2,自引:0,他引:2
Ruixia Su Donghuai Sun Jan Bloemendal Zhaoyu Zhu 《Palaeogeography, Palaeoclimatology, Palaeoecology》2006,240(3-4):630-648
Coral colonies of Porites lutea and P. lobata were collected from areas to the east and south offshore of Hainan Island, South China Sea. Oxygen isotope ratios, 18O/16O, were analyzed along the major axis of growth at a resolution of 25–28 samples within an annual band from three colonies, giving data series lengths of 15, 20 and 30 years. Coral δ18O correlates well with sea surface temperature (SST) throughout most years, particularly when the Asian winter monsoon prevails over the region. Due to the same seasonal phases of SST and sea surface salinity (SSS), it is estimated that most of the seasonal features of coral δ18O are controlled by changes in SST with a significant contribution of SSS. This indicates the importance of temperature, as determined by the Asian winter monsoon, as a control on seasonal coral δ18O variations in the South China Sea. Given the fact that annual SSS maxima show minor inter-annual changes, the inter-annual change of annual coral δ18O maximum mainly reflects the SST induced by the winter monsoon. While the coral δ18O is mainly controlled by SST, deviations of the δ18O from SST correlate statistically with sea surface salinity, particularly for summer extreme events when SST reaches its annual maximum with minor inter-annual change. Therefore, we suggest that the inter-annual variation of the annual coral δ18O minima is mainly controlled by seawater composition. Seawater composition analysis indicates that its δ18O and salinity are simultaneously affected by freshwater inputs primarily from precipitation, which is mainly supplied by the Asian summer monsoon. Thus seasonal alternations of the winter and summer monsoon mainly control the coral δ18O, thereby allowing reconstruction of these monsoonal variables. The three coral records consistently reveal clear inter-decadal trends in δ18O — a gradual increase from 1968 to 1987, and a subsequent decrease from 1987 to 2003. These inter-decadal trends are roughly consistent with salinity changes — but not with temperature and precipitation, suggesting that seawater composition controlled by freshwater inputs from distant source areas, rather than from local precipitation, is responsible for the trends in seawater composition and coral δ18O over the last 30 years. Comparison of the three coral records indicates that spatial variations in coral δ18O coincide with variations in seawater salinity and local precipitation, but not with temperature. This confirms the dominant role of seawater composition, mainly controlled by monsoonal precipitation, on the spatial variability of coral δ18O in the South China Sea. 相似文献
8.
Yang Wang Elizabeth Kromhout Chunfu Zhang Yingfeng Xu William Parker Tao Deng Zhuding Qiu 《Palaeogeography, Palaeoclimatology, Palaeoecology》2008,260(3-4):359-374
Stable isotope analyses of fossil teeth and other authigenic minerals have been used to reconstruct the paleoenvironment and paleoelevation of the Tibetan Plateau. The accuracy of such reconstructions is limited by the lack of a comprehensive modern comparative database from the region. We analyzed the carbon and oxygen isotopic compositions (δ13C and δ18O values) of tooth enamel from modern herbivores, the δ13C values of grasses and the δ18O values of water samples collected from various elevations within the Tibetan Plateau to examine their relationships with modern environment/elevation. The δ13C values of enamel samples from horses, yaks and goats display a narrow range of variation, with a mean of − 10.7 ± 1.4‰ (n = 301), indicating that these modern herbivores were feeding predominantly on C3 plants, consistent with the current dominance of C3 vegetation in the region. Some of the samples have δ13C values between − 7.3 and − 10‰. Although these higher δ13C values could suggest consumption of some C4 plants by the animals, the lack of significant seasonal δ13C variations within individual teeth indicates that these higher enamel δ13C values are due to consumption of C3 plants experiencing water stress and/or some CAM plants rather than C4 plants. Our data show that the conservative “cut-off” δ13C value for a pure C3 diet within the Tibetan Plateau should be − 8‰ for modern herbivores and − 7‰ (or even − 6.5‰) for fossils if the region was as arid in the past as today. In contrast to the small intra-tooth δ13C variations within individual teeth, serial enamel samples display large intra-tooth δ18O variations, reflecting seasonal variations in the δ18O of meteoric water. The mean δ18O values of tooth enamel from yaks and horses show a strong correlation with water δ18O values, confirming that the δ18O of tooth enamel from obligate drinker generally tracks the δ18O of meteoric water. Unfortunately, elevation alone cannot explain most of the variance in the δ18O of precipitation and tooth enamel, suggesting that quantitative reconstruction of the paleoelevation of the Tibetan Plateau using re-constructed δ18O values of paleo-meteoric water from fossil enamel or other oxygen-bearing minerals is not warranted. For a given environment, horses have the lowest enamel–δ18O values while goats display the highest enamel–δ18O values among the species studied. The large inter-species δ18O variations are likely due to differences in physiology and diet/drinking behavior of the animals. This underscores the importance of species-specific studies when interpreting δ18O data of fossil mammalian teeth in a stratigraphic sequence as a record of paleoclimate changes. 相似文献
9.
10.
11.
The PsbS protein is a critical component in the regulation of non-photochemical quenching (NPQ) in higher plant photosynthesis. Electron microscopy and image analysis of grana membrane fragments from wild type and mutant Arabidopsis plants showed that the semi-crystalline domains of photosystem II supercomplexes were identical in the presence and absence of PsbS. However, the frequency of the domains containing crystalline arrays was increased in the absence of PsbS. Conversely, there was a complete absence of such arrays in the membranes of plants containing elevated amounts of this protein. It is proposed that PsbS controls the macro-organisation of the grana membrane, providing an explanation of its role in NPQ. 相似文献
12.
Diagenetic shifts in the isotopic composition of collagen in prehistoric bones still remain a big problem in the reconstruction
of ancient diets by stable carbon and nitrogen isotope analysis. Recently,DeNiro (1985) suggested the measurement of bone collagen C/N ratios as a means of estimating substantial alterations of stable isotope
ratios. Bones with collagen C/N ratios lying within a range between 2.9 and 3.6 should have isotopic properties quite close
to thein vivo conditions. It can be demonstrated that the C/N ratios are varying considerably with the duration of acid hydrolyzation of
the bone samples. Even small changes of the hydrolyzation time cause shifts in the C/N ratios large enought to produce values
far outside the range worked out byDeNiro. Besides, our experiments led us to recommend a hydrolyzation at reducing conditions. 相似文献
13.
Quantification of hydrogen peroxide in plant extracts by the chemiluminescence reaction with luminol
The chemiluminescence of luminol (3-aminophthalhydrazide) with H2O2 has been used to quantify endogenous amounts of H2O2 in plant tissues. The reaction is linear over at least three orders of magnitude between 10?5 and 10?2M H2O2. Interference by coloured compounds in the crude extract is calibrated by a purification step with Dowex AG 1-X8. The extract is calibrated with an internal H2O2 standard, and the specificity verified by H2O2 purging with catalase. The minimum delectability for H2O2 of this assay is at least 1 ng, corresponding to 0.1–1 g fresh material. Data are presented for the levels of H2O2 in potatoes after treatment with oxygen and ethylene, in tomatoes before and after ripening and in untreated germinating castor beans as well as in beans treated with aminotriazol to inhibit catalase activity. Though data using the titanium test are generally confirmed, the method presented here has the advantage of higher sensitivity and specificity. 相似文献
14.
Respiration, which is the second most important carbon flux in ecosystems following gross primary productivity, is typically represented in biogeochemical models by simple temperature dependence equations. These equations were established in the 19th century and have been modified very little since then. Recent applications of these equations to data on soil respiration have produced highly variable apparent temperature sensitivities. This paper searches for reasons for this variability, ranging from biochemical reactions to ecosystem‐scale substrate supply. For a simple membrane‐bound enzymatic system that follows Michaelis–Menten kinetics, the temperature sensitivities of maximum enzyme activity (Vmax) and the half‐saturation constant that reflects the affinity of the enzyme for the substrate (Km) can cancel each other to produce no net temperature dependence of the enzyme. Alternatively, when diffusion of substrates covaries with temperature, then the combined temperature sensitivity can be higher than that of each individual process. We also present examples to show that soluble carbon substrate supply is likely to be important at scales ranging from transport across membranes, diffusion through soil water films, allocation to aboveground and belowground plant tissues, phenological patterns of carbon allocation and growth, and intersite differences in productivity. Robust models of soil respiration will require that the direct effects of substrate supply, temperature, and desiccation stress be separated from the indirect effects of temperature and soil water content on substrate diffusion and availability. We speculate that apparent Q10 values of respiration that are significantly above about 2.5 probably indicate that some unidentified process of substrate supply is confounded with observed temperature variation. 相似文献
15.
Antoniewicz MR Stephanopoulos G Kelleher JK 《Metabolomics : Official journal of the Metabolomic Society》2006,2(1):41-52
This study explores the ability of regression models, with no knowledge of the underlying physiology, to estimate physiological parameters relevant for metabolism and endocrinology. Four regression models were compared: multiple linear regression (MLR), principal component regression (PCR), partial least-squares regression (PLS) and regression using artificial neural networks (ANN). The pathway of mammalian gluconeogenesis was analyzed using [U−13C]glucose as tracer. A set of data was simulated by randomly selecting physiologically appropriate metabolic fluxes for the 9 steps of this pathway as independent variables. The isotope labeling patterns of key intermediates in the pathway were then calculated for each set of fluxes, yielding 29 dependent variables. Two thousand sets were created, allowing independent training and test data. Regression models were asked to predict the nine fluxes, given only the 29 isotopomers. For large training sets (>50) the artificial neural network model was superior, capturing 95% of the variability in the gluconeogenic flux, whereas the three linear models captured only 75%. This reflects the ability of neural networks to capture the inherent non-linearities of the metabolic system. The effect of error in the variables and the addition of random variables to the data set was considered. Model sensitivities were used to find the isotopomers that most influenced the predicted flux values. These studies provide the first test of multivariate regression models for the analysis of isotopomer flux data. They provide insight for metabolomics and the future of isotopic tracers in metabolic research where the underlying physiology is complex or unknown.We acknowledge the support of NIH Grant DK58533 and the DuPont-MIT Alliance. 相似文献
16.
Post E Pedersen C Wilmers CC Forchhammer MC 《Proceedings. Biological sciences / The Royal Society》2008,275(1646):2005-2013
Temporal advancement of resource availability by warming in seasonal environments can reduce reproductive success of vertebrates if their own reproductive phenology does not also advance with warming. Indirect evidence from large-scale analyses suggests, however, that migratory vertebrates might compensate for this by tracking phenological variation across landscapes. Results from our two-year warming experiment combined with seven years of observations of plant phenology and offspring production by caribou (Rangifer tarandus) in Greenland, however, contradict evidence from large-scale analyses. At spatial scales relevant to the foraging horizon of individual herbivores, spatial variability in plant phenology was reduced--not increased--by both experimental and observed warming. Concurrently, offspring production by female caribou declined with reductions in spatial variability in plant phenology. By highlighting the spatial dimension of trophic mismatch, these results reveal heretofore unexpected adverse consequences of climatic warming for herbivore population ecology. 相似文献
17.
Mitochondrial cytochromes c and c
1 have long been considered indistinguishable from a potentiometric point of view. By combining rapid scan spectrometry to run redox titrations with numerical analysis using a generalized Nernst equation, it was possible to resolve cytochrome c and c
1 midpoint potentials in yeast and mushroom mitochondria. In the reported work, this approach has been applied to purified mitochondria from higher plant tissue (Solanum tubersosum L.). The rapid scan spectrometric technique provided clear evidence of reversible base line changes monitored by redox potential changes. The basic mechanism responsible for this modification in the mitochondria optical properties remains to be defined. However, we suggest that this phenomenon could play a regulatory role in the overall electron transfer process. It is necessary to make an initial correction of the recorded spectra prior to numerical analysis. When this is done, two midpoint potential values are resolved by running analyses in the 550–555 nm range: 283±3 m V and 213±11 m V. They are identical to the ones found for cytochromes c and c
1 in yeast and mushroom mitochondria. The individual difference bands were resolved by running analyses at each wavelength of the corrected spectra, the resolved midpoint potentials being kept fixed. This approach, the only one to date which has succeeded in resolving mitochondrial cytochrome c and c
1 midpoint potentials, is discussed with respect to other methods. Limitations are pointed out.Abbreviation Mops
morpholinopropane sulfonate 相似文献
18.
Influence of plant developmental stage on microbial community structure and activity in the rhizosphere of three field crops 总被引:3,自引:0,他引:3
Seasonal shifts in rhizosphere microbial populations were investigated to follow the influence of plant developmental stage. A field study of indigenous microbial rhizosphere communities was undertaken on pea (Pisum satvium var. quincy), wheat (Triticum aestivum var. pena wawa) and sugar beet (Beta vulgaris var. amythyst). Rhizosphere community diversity and substrate utilization patterns were followed throughout a growing season, by culturing, rRNA gene density gradient gel electrophoresis and BIOLOG. Culturable bacterial and fungal rhizosphere community densities were stable in pea and wheat rhizospheres, with dynamic shifts observed in the sugar beet rhizosphere. Successional shifts in bacterial and fungal diversity as plants mature demonstrated that different plants select and define their own functional rhizosphere communities. Assessment of metabolic activity and resource utilization by bacterial community-level physiological profiling demonstrated greater similarities between different plant species rhizosphere communities at the same than at different developmental stages. Marked temporal shifts in diversity and relative activity were observed in rhizosphere bacterial communities with developmental stage for all plant species studied. Shifts in the diversity of fungal and bacterial communities were more pronounced in maturing pea and sugar beet plants. This detailed study demonstrates that plant species select for specialized microbial communities that change in response to plant growth and plant inputs. 相似文献
19.
Subunits of purified RuBP carboxylase extracted from 44 grass species (39 genera) have been analysed and compared in terms of MWs, amino acid compositi 相似文献
20.
The microrelief of plant surfaces, mainly caused by epicuticular wax crystalloids, serves different purposes and often causes
effective water repellency. Furthermore, the adhesion of contaminating particles is reduced. Based on experimental data carried
out on microscopically smooth (Fagus sylvatica L., Gnetum gnemon L., Heliconia densiflora Verlot, Magnolia grandiflora L.) and rough water-repellent plants (Brassica oleracea L., Colocasia esculenta (L.) Schott., Mutisia decurrens Cav., Nelumbo nucifera Gaertn.), it is shown here for the first time that the interdependence between surface roughness, reduced particle adhesion
and water repellency is the keystone in the self-cleaning mechanism of many biological surfaces. The plants were artificially
contaminated with various particles and subsequently subjected to artificial rinsing by sprinkler or fog generator. In the
case of water-repellent leaves, the particles were removed completely by water droplets that rolled off the surfaces independent
of their chemical nature or size. The leaves of N. nucifera afford an impressive demonstration of this effect, which is, therefore, called the “Lotus-Effect” and which may be of great
biological and technological importance.
Received: 19 August 1996 / Accepted: 12 November 1996 相似文献