首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The electrical properties of theChara cell membrane have been studied using a perfusion method based on that of Williamson, R.E. 1975.J. Cell Sci. 17655. The vacuole, tonoplast, and inner cytoplasm are removed by a brief rapid perfusion. Electrical properties of the plasmalemma indicate that it remains intact after this perfusion.The membrane potential difference after perfusion and with no ATP was close to the potassium equilibrium potential; the current-voltage characteristic had a slope that was time- and voltage-dependent, indicating that the steady-state potassium conductance increased with depolarization. At –125 mV the membrane conductance of the plasmalemma depended on [K+]0. This dependence was inhibited by perfusing with 2.0mm ATP or by clamping at a more negative membrane potential. The addition of ATP to the perfusion medium of unclamped cells caused a hyperpolarization ofca. 50 mV, presumably by activating the proton pump. In clamped cells, perfusion with ATP caused currents ofca. 20 mA m–2, whose magnitude depended on pH0. ATP induced membrane conductance changes which were variable. 2.0mm ADP inhibited the proton pump. The intersection points of current-voltage characteristics can set limits on the stalling potential; the resulting stoichiometry of the proton pump appears to be 1.5–2.0 H+ per ATP.  相似文献   

2.
We describe the activation of a K+ current and inhibition of a Cl current by a cyanoguanidine activator of ATP-sensitive K+ channels (KATP) in the smooth muscle cell line A10. The efficacy of U83757, an analogue of pinacidil, as an activator of KATP was confirmed in single channel experiments on isolated ventricular myocytes. The effects of U83757 were examined in the clonal smooth muscle cell line A10 using voltage-sensitive dyes and digital fluorescent imaging techniques. Exposure of A10 cells to U83757 (10 nm to 1 m) produced a rapid membrane hyperpolarization as monitored by the membrane potential-sensitive dye bis-oxonol ([diBAC4(3)], 5 m). The U83757induced hyperpolarization was antagonized by glyburide and tetrapropylammonium (TPrA) but not by tetraethlylammonium (TEA) or charybdotoxin (ChTX). The molecular basis of the observed hyperpolarization was studied in whole-cell, voltage-clamp experiments. Exposure of voltage-clamped cells to U83757 (300 nm to 300 m) produced a hyperpolarizing shift in the zero current potential; however, the hyperpolarizing shift in reversal potential was associated with either an increase or decrease in membrane conductance. In solutions where E k=–82 mV and E Cl=0 mV, the reversal potential of the U83757-sensitive current was approximately –70 mV in those experiments where an increase in membrane conductance was observed. In experiments in which a decrease in conductance was observed, the reversal potential of the U83757-sensitive current was approximately 0 mV, suggesting that U83757 might be acting as a Cl channel blocker as well as a K+ channel opener. In experiments in which Cl current activation was specifically brought about by cellular swelling and performed in solutions where Cl was the major permeant ion, U83757 (300 nm to 300 m) produced a dose-dependent current inhibition. Taken together these results (i) demonstrate the presence of a K+-selective current which is sensitive to KATP channel openers in A10 cells and (ii) indicate that the hyperpolarizing effects of K+ channel openers in vascular smooth muscle may be due to both the inhibition of Cl currents as well as the activation of a K+-selective current.This work was supported in part by the following grants: PHS P01 DK44840 and GM36823 (D.J.N.). J.C.M. is an Established Investigator of the American Heart Association.  相似文献   

3.
Summary In cultured bovine aortic endothelial cells, elementary K+ currents were studied in cell-attached and inside-out patches using the standard patch-clamp technique. Two different cationic channels were found, a large channel with a mean unitary conductance of 150±10 pS and a small channel with a mean unitary conductance of 12.5±1.1 pS. The 150-pS channel proved to be voltag- and Ca2+-activatable and seems to be a K+ channel. Its open probability increased on membrane depolarization and, at a given membrane potential, was greatly enhanced by elevating the Ca2+ concentration at the cytoplasmic side of the membrane from 10–7 to 10–4 m. 150-pS channels were not influenced by the patch configuration in that patch excision neither induced rundown nor evoked channel activity in silent cell-attached patches. However, they were only seen in two out of 55 patches. The 12-pS channel was predominant, a nonselective cationic channel with almost the same permeability for K+ and Na+ whose open probability was minimal near –60 mV but increased on membrane hyperpolarization. An increase in internal Ca2+ from 10–7 to 10–4 m left the open probability unchanged. Although the K+ selectivity of the 150-pS channels remains to be elucidated, it is concluded that they may be involved in controlling Ca2+-dependent cellular functions. Under physiological conditions, 12-pS nonselective channels may provide an inward cationic pathway for Na+.  相似文献   

4.
Summary Forskolin (i.e, cAMP)-modulation of ion transport pathways in filter-grown monolayers of the Cl-secreting subclone (19A) of the human colon carcinoma cell line HT29 was studied by combined Ussing chamber and microimpalement experiments.Changes in electrophysiological parameters provoked by serosal addition of 10–5 m forskolin included: (i) a sustained increase in the transepithelial potential difference (3.9±0.4 mV). (ii) a transient decrease in transepithelial resistance with 26±3 · cm2 from a mean value of 138±13 · cm2 before forskolin addition, (iii) a depolarization of the cell membrane potential by 24±1 mV from a resting value of –50±1 mV and (iv) a decrease in the fractional resistance of the apical membrane from 0.80±0.02 to 0.22±0.01. Both, the changes in cell potential and the fractional resistance, persisted for at least 10 min and were dependent on the presence of Cl in the medium. Subsequent addition of bumetanide (10–4 m), an inhibitor of Na/K/2Cl cotransport, reduced the transepithelial potential, induced a repolarization of the cell potential and provoked a small increase of the transepithelial resistance and fractional apical resistance. Serosal Ba2+ (1mm), a known inhibitor of basolateral K+ conductance, strongly reduced the electrical effects of forskolin. No evidence was found for a forskolin (cAMP)-induced modulation of basolateral K+ conductance.The results suggest that forskolin-induced Cl secretion in the HT-29 cl.19A colonic cell line results mainly from a cAMP-provoked increase in the Cl conductance of the apical membrane but does not affect K+ or Cl conductance pathways at the basolateral pole of the cell. The sustained potential changes indicate that the capacity of the basolateral transport mechanism for Cl and the basal Ba2+-sensitive K+ conductance are sufficiently large to maintain the Cl efflux across the apical membrane. Furthermore, evidence is presented for an anomalous inhibitory action of the putative Cl channel blockers NPPB and DPC on basolateral conductance rather than apical Cl conductance.  相似文献   

5.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

6.
Summary We have measured the intracellular potassium activity, [K+]i and the mechanisms of transcellular K+ transport in reabsorptive sweat duct (RSD) using intracellular ion-sensitive microelectrodes (ISMEs). The mean value of [K+]i in RSD is 79.8±4.1mm (n=39). Under conditions of microperfusion, the [K+]i is above equilibrium across both the basolateral membrane, BLM (5.5 times) and the apical membrane, APM (7.8 times). The Na+/K+ pump inhibitor ouabain reduced [K+]i towards passive distribution across the BLM. However, the [K+]i is insensitive to the Na+/K+/2 Cl cotransport inhibitor bumetanide in the bath. Cl substitution in the lumen had no effect on [K+]i. In contrast, Cl substitution in the bath (basolateral side) depolarized BLM from –26.0±2.6 mV to –4.7*±2.4 mV (n=3;* indicates significant difference) and decreased [K+]i from 76.0±15.2mm to 57.7* ±12.7mm (n=3). Removal of K+ in the bath decreased [K+]i from 76.3±15.0mm to 32.3*±7.6mm (n=4) while depolarizing the BLM from –32.5±4.1 mV to –28.3*±3.0 mV (n=4). Raising the [K+] in the bath by 10-fold increased [K+]i from 81.7±9.0mm to 95.0*±13.5mm and depolarized the BLM from –25.7±2.4 mV to –21.3*±2.9 mV (n=4). The K+ conductance inhibitor, Ba2+, in the bath also increased [K+]i from 85.8±6.7mm to 107.0*±11.5mm (n=4) and depolarized BLM from –25.8±2.2 mV to –17.0*±3.1 mV (n=4). Amiloride at 10–6 m increased [K+]i from 77.5±18.8mm to 98.8*±21.6mm (n=4) and hyperpolarized both the BLM (from –35.5±2.6 mV to –47.8*±4.3 mV) and the APM (from –27.5±1.4 mV to –46.0* ±3.5 mV,n=4). However, amiloride at 10–4 m decreased [K+]i from 64.5±0.9mm to 36.0*±9.9mm and hyperpolarized both the BLM (from –24.7±1.4 mV to –43.5*±4.2 mV) and APM (from –18.3±0.9 mV to –43.5*±4.2 mV,n=6). In contrast to the observations at the BLM, substitution of K+ or application of Ba2+ in the lumen had no effect on the [K+]i or the electrical properties of RSD, indicating the absence of a K+ conductance in the APM. Our results indicate that (i) [K+]i is above equilibrium due to the Na+/K+ pump; (ii) only the BLM has a K+ conductance; (iii) [K+]i is subject to modulation by transport status; (iv) K+ is probably not involved in carrier-mediated ion transport across the cell membranes; and (v) the RSD does not secrete K+ into the lumen.  相似文献   

7.
Ion channels in isolated patches of the plasma membrane of pea (Pisum sativum arg) epidermal cells were studied with the patch-clamp technique. One anion and one cation channel were dominantly present in most trials. The anion channel conducts nitrate, halides and malate, with a conductance in symmetrical 100 mm Cl of 300 pS and can be blocked by SITS when applied to the cytoplasmic side of the membrane. The cation channel poorly discriminates between potassium, sodium and lithium, is not blocked by either TEA or Ba2+, and has a conductance of 35 pS in symmetrical 100 mm K+. The open probability of the cation channel increases with increase of the Ca2+ concentration on the cytoplasmic side of the membrane from 0.1 to 1 m. The possible role of these two channels in the physiology of epidermal cells is discussed.This work was supported by NSF grant DCB-890 3744 to E.V.  相似文献   

8.
Summary In the epithelium of rabbit gallbladder, in the nominal absence of bicarbonate, intracellular Cl activity is about 25mm, about 4 times higher than intracellular Cl activity at the electrochemical equilibrium. It is essentially not affected by 10–4 m acetazolamide and 10–4 m 4-acetamido-4-isothiocyanostilbene-2,2-disulfonate (SITS) even during prolonged exposures; it falls to the equilibrium value by removal of Na+ from the lumen without significant changes of the apical membrane potential difference. Both intracellular Cl and Na+ activities are decreased by luminal treatment with 25mm SCN; the initial rates of change are not significantly different. In addition, the initial rates of change of intracellular Cl activity are not significantly different upon Na+ or Cl entry block by the appropriate reduction of the concentration of either ion in the luminal solution. Luminal K+ removal or 10–5 m bumetanide do not affect intracellular Cl and Na+ activities or Cl influx through the apical membrane. It is concluded that in the absence of bicarbonate NaCl entry is entirely due to a Na+–Cl symport on a single carrier which, at least under the conditions tested, does not cotransport K+.  相似文献   

9.
Summary The role of adenosine 3,5-monophosphate (cAMP) dependent protein kinase (PK-A) on the Cl conductance has been studied in the apical membrane vesicles purified from the chorionic villi of human placenta. In order to phosphorylate the cytosolic side of the membranes, vesicles have been hypotonically lysed, loaded with 100nm catalytic subunit of PK-A purified from human placenta and 1mm of the phosphatase resistant adenosine 5-thiotriphosphate (ATP-gamma-S) and resealed. Cl conductance has been measured by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) at 23°C with membrane potential clamped at 0 mV. The actual volume of the resealed vesicles was measured in each experiment by trapping an impermeable radioactive molecule ([14C]-sucrose) and included in each Cl flux calculation. In 19 independent experiments, the mean Cl conductance in placental membranes in the absence of phosphorylation was 3.67±3.18 whereas with the addition of PK-A and ATP-gamma-S it was 1.97±1.75 nmol·sec–1·(mg protein)–1 (mean±sd). PK-A dependent phosphorylation reduced the Cl conductance in 14/19 experiments. The same protocol applied to the apical membranes of bovine trachea, where PK-A is known to activate the Cl channels, confirmed that the PK-A dependent phosphorylation increased the Cl conductance in 11/13 experiments, from 1.01±0.61 to 1.85±0.99 nmol·sec–1·(mg protein)–1(mean±sd). These studies indicate that the PK-A dependent phosphorylation inhibits one or more Cl channel(s) of the apical membranes of human placenta.  相似文献   

10.
With the use of the patch-clamp technique, highly selective nonvoltage-gated sodium channels were found in the membrane of rat peritoneal macrophages. The inward single channel currents were measured in cell-attached and outside-out mode experiments at different holding membrane potentials within the range of-60 to +40 mV. The channels had a unitary conductance of 10.2 ± 0.2 pS with 145 mm Na+ in the external solution at 23–24°C. The results of ion-substitution experiments confirmed that this novel type of cation channel in macrophages is characterized by high selectivity for Na+ over K+ (as for Cs+, NH4 +, Ca2+, Ba2+) ions, whose conduction through these sodium-permeable channels was not measurable. Lithium is the only other ion that is transported by this pathway; the unitary conductance was equal to 3.9 ± 0.2 pS in the Li+-containing external solution. Single channel currents and conductance were found to be linearly dependent on the external sodium concentration. Sodium channels in macrophage membrane patches were not blocked by tetrodotoxin (0.01–1 m). Single sodium currents were reversibly inhibited by the external application of amiloride (0.1–2 mm) and its derivative ethylisopropilamiloride (0.01–0.1 Mm). The mechanism of channel block by amiloride and its analogue seems to be different.We thank Dr. G.N. Mozhayeva and Dr. A.P. Naumov for useful discussions. This work has been supported by a grant from the Russian Basic Research Foundation, 93-04-21722.  相似文献   

11.
Summary The electric properties of the bilayer lecithin membranes have been studied in the presence of the antibiotic nigericin. When the antibiotic concentration is about 10–6 m the conductivity of the BLM is increased up to 10–7 ohm–1 cm–2. The potassium ion concentration gradient gives rise to a transmembrane potential of the order of 40 mV per 10-fold concentration gradient with the side of the higher potassium concentration negative. The transmembrane potential produced by the hydrogen ion concentration gradient is a function of the potassium ion concentration which is equal on both sides of the membrane. For low potassium ion concentrations the hydrogen potential has the expected polarity with the solution having higher concentration of protons negative. For potassium ion concentrations exceeding 0.03m the hydrogen potential has the reverse polarity. This unexpected result cannot be accounted for in terms of the available simple hypotheses about the charge transport mechanism for nigericin in BLM. In order to account for the experimental results obtained, a theoretical approach has been developed based on the assumption that charge is transported across the membrane by nigericin dimers. The theoretical predictions are in satisfactory agreement with the experimental results. The model also yields some predictions which may be verified in future experiments.  相似文献   

12.
Summary The membrane of mechanically prepared vesicles ofChara corallina has been investigated by patch-clamp techniques. This membrane consists of tonoplast as demonstrated by the measurement of ATP-driven currents directed into the vesicles as well as by the ATP-dependent accumulation of neutral red. Addition of 1mm ATP to the bath medium induced a membrane current of about 3.2 mA·m–2 creating a voltage across the tonoplast of about –7 mV (cytoplasmic side negative). On excised tonoplast patches, currents through single K+-selective channels have been investigated under various ionic conditions. The open-channel currents saturate at large voltage displacements from the equilibrium voltage for K+ with limiting currents of about +15 and –30 pA, respectively, as measured in symmetric 250mm KCl solutions. The channel is virtually impermeable to Na+ and Cl. However, addition of Na+ decreases the K+ currents. TheI–V relationships of the open channel as measured at various K+ concentrations with or without Na+ added are described by a 6-state model, the 12 parameters of which are determined to fit the experimental data.  相似文献   

13.
Summary Exposure of thein vitro rabbit corneal epithelium to Ag+ by the addition of AgNO3 (10–7–10–5)m) to the apical surface or by the use of imperfectly chlorided Ag/AgCl half-cells in Ussing-style membrane chambers, greatly increases short-circuit current and transepithelial potential. The early phase (the first 30 min) of the short-circuit current stimulation by Ag+ is linearly dependent on tear-side sodium concentration, is largely a result of a tenfold increase in net Na+ uptake and is incompletely inhibited by ouabain, suggesting that Ag+ increases cation (primarily Na+) conductance of the apical membrane. This mechanism for the Ag+ effect is supported by microelectrode experiments, wherein Ag+ depolarizes specifically the apical barrier potential and increases apical barrier conductance. A later phase in the effect (0.5–3 hr) is characterized by a gradual increase in36Cl and14C-mannitol unidirectional fluxes, by a decline in epithelial resting potential and short-circuit current, by complete ouabain inhibition and by fit to saturation kinetics with respect to Na+ concentration in the bathing media. This pahse of the effect apparently reflects a nonselective opening of the paracellular pathway in the epithelium and is rate-limited by Na+ pump activity at the basolateral membrane. Both phases are associated with swelling of the corneal stroma and may be rapidly reversed using thiol agents (reduced glutathione and dithiothreitol). The results suggest that Ag+ may be useful in the study of cation transport by epithelia and the work provides basic physiological information that is pertinent to the prophylactic use of AgNO3 in clinical ophthalmology.  相似文献   

14.
Summary To investigate the voltage dependence of the Na/K pump, current-voltage relations were determined in prophasearrested oocytes ofXenopus laevis. All solutions contained 5mm Ba2– and 20mm tetraethylammonium (TEA) to block K channels. If. in addition, the Na+/K+ pump is blocked by ouabain, K+-sensitive currents no larger than 50 nA/cm2 remain. Reductions in steady-state current (on the order of 700 nA/cm2) produced by 50 m ouabain or dihydro-ouabain or by K+ removal, therefore, primarily represent current generated by the Na/K pump. In Na-free solution containing 5mm K+, Na+/K+ pump current is relatively voltage independent over the potential range from –160 to +40 mV. If external [K+] is reduced below 0.5mm, negative slopes are observed over this entire voltage range. Similar results are seen in Na+- and Ca2+-free solutions in the presence of 2mm Ni2+, an experimental condition designed to prevent Na+/Ca2+ exchange. The occurrence of a negative slope can be explained by the voltage dependence of the apparent affinity for activation of the Na+/K+ pump by external K+, consistent with the existence of an external ion well for K binding. In 90mm Na+, 5mm K+ solution, Na+/K+ pump current-voltage curves at negative membrane potentials have a positive slope and can be described by a monotonically increasing sigmoidal function. At an extracellular [K+] of 1.3mm, a negative slope was observed at positive potentials. These findings suggest that in addition to a voltage-dependent step associated with Na+ translocation, a second voltage-dependent step that is dependent on external [K+], possibly external K+ binding, participates in the overall reaction mechanism of the Na+/K+ pump.  相似文献   

15.
Summary Water-soluble Folch-Lees proteolipid apoprotein from bovine CNS white matter induces a voltage-dependent conductance in black lipid membranes. Na+ is required for the induced conductance change but the established conductance has very low ionic selectivity. The induced conductance fluctuates with a minimum amplitude of 10–11–10–10 mho. The magnitude of the conductivity change is dependent on protein concentration and on the composition of lipid bilayers. At a fixed voltage the induced conductance of a phosphatidylcholine-cholesterol membrane is proportional to the sixth power of the protein concentration and the first power of Na+ concentration. The interactions between the apoprotein and the lipids are both electrostatic and hydrophobic, but the interaction leading to the conductance increase appears to be mainly hydrophobic. Both the increase in conductance and the current fluctuations remain after extensive washing of the chambers to remove the protein. Furthermore, pronase or glutaraldehyde added to either the cis or trans side of the membrane does not affect the apoprotein-established conductance. However, if the bilayer is formed in the presence of both the apoprotein and pronase or if the apoprotein is treated with pronase prior to its addition to the chamber, no conductance change is observed. The association of the apoprotein with the membrane thus appears to render the protein inaccessible to proteolytic digestion, suggesting that the apoprotein is at least partially imbedded in the membrane interior.  相似文献   

16.
Summary Uptake of -aminoisobutyric acid (AIB) was examined in Ehrlich ascites tumor cells treated with the cation-exchange ionophore nigericin (20 g/ml). Membrane voltages were measured using the voltage-sensitive dye diethyloxadicarbocyanine (DOCC). In normal phosphate-buffered media, nigericin changed the distribution ratios of Na+ and K+ (the ratio of intra- to extracellular concentrations) nearly to unity, but AIB was still accumulated to a distribution ratio of 9.0. When all but 40mm Na+ in the medium was replaced by choline, nigericin resulted in K+ loss and Na+ gain and both cation distribution ratios approached 2.8–3.4, as would be expected if both ions were distributing near electrochemical equilibrium with a membrane voltage in the range of –28 to –33 mV. This conclusion was supported by the observation that the addition of 5×10–7 m valinomycin to the nigericin-treated cell suspension produced no change in DOCC absorbance. In spite of the apparent zero electrochemical potential gradients for Na+ and K+, AIB was accumulated to a distribution ratio of 5.4 in the low-Na+ medium. Addition of 0.1mm oubain or 50 m vanadate did not alter the extent of AIB accumulation as would have been expected if a large component of the membrane voltage were due to electrogenic operation of the (Na++K+)-ATPase. Addition of lactate, pyruvate or glucose increased the AIB distribution ratios to 11.9, 9.4 and 15.3, respectively. The effect of glucose could be explained, at least in part, by an enhanced Na+ electrochemical potential gradient. However, neither lactate nor pyruvate produced any change either in membrane voltage or the intracellular Na+ concentration. Therefore, these results confirm the existence of a metabolic energy source which is coupled to AIB accumulation and operates in addition to the Na+ co-transport mechanism, and which is augmented by metabolic substrates such as lactate and pyruvate.  相似文献   

17.
Summary Ouabain-resistant effluxes from pretreated cells containing K+/Na+=1.5 into K+ and Na+ free media were measured.Furosemide-sensitive cation effluxes from cells with nearly normal membrane potential and pH were lower in NO 3 media than in Cl media; they were reduced when pH was lowered in Cl media. When the membrane potential was positive inside furosemide increased the effluxes of Na+ and K+ (7 experiments). With inside-positive membrane potential thefurosemideinsensitive effluxes were markedly increased, they decreased with decreasing pH at constant internal Cl and also when internal Cl was reduced at constant pH. The correlation between cation flux and the membrane potential was different for cells with high or low internal chloride concentrations. The data with chloride47mm showed a better fit with the single-barrier model than with the infinite number-of-barriers model. With low chloride no significant correlation between flux and membrane potential was found. The data are not compatible with pure independent diffusion of Na+ and K+ in the presence of ouabain and furosemide.  相似文献   

18.
Summary An electrogenic K+–Na+ symport with a high affinity for K+ has been found inChara (Smith & Walker, 1989). Under voltage-clamp conditions, the symport shows up as a change in membrane current upon adding either K+ or Na+ to the bathing medium in the presence of the other. Estimation of kinetic parameters for this transport has been difficult when using intact cells, since K+–Na+ current changes show a rapid falling off with time at K+ concentrations above 50 m. Cytoplasm-enriched cell fragments are used to overcome this difficulty since they do not show the rapid falling off of current change seen with intact cells. Current-voltage curves for the membrane in the absence or presence of either K+ or Na+ are obtained, yielding difference current-voltage curves which isolate the symport currents from other transport processes. The kinetic parameters describing this transport are found to be voltage dependent, withK m for K+ ranging from 30 down to 2 m as membrane potential varies from –140 to –400 mV, andK m for Na+ ranging between 470 and 700 m over a membrane potential range of –140 to –310 mV.Two different models for this transport system have been investigated. One of these involves the simultaneous transport of both the driver and substrate ions across the membrane, while the other allows for the possibility of the two ions being transported consecutively in two distinct reaction steps. The experimental results are shown to be consistent with either of these cotransport models, but they do suggest that binding of K+ occurs before that of Na+, and that movement of charge across the membrane (the voltage-dependent step) occurs when the transport protein has neither K+ nor Na+ bound to it.  相似文献   

19.
Summary The purpose of this study was to characterize the basolateral membrane of the S3 segment of the rabbit proximal tubule using conventional and ion-selective microelectrodes. When compared with results from S1 and S2 segments, S3 cells under control conditions have a more negative basolateral membrane potential (V bl=–69 mV), a higher relative potassium conductance (t K=0.6), lower intracellular Na+ activity (A Na=18.4mm), and higher intracellular K+ activity (A K=67.8mm). No evidence for a conductive sodium-dependent or sodium-independent HCO 3 pathway could be demonstrated. The basolateral Na–K pump is inhibited by 10–4 m ouabain and bath perfusion with a potassium-free (0-K) solution. 0-K perfusion results inA Na=64.8mm,A K=18.5mm, andV bl=–28 mV. Basolateral potassium channels are blocked by barium and by acidification of the bathing medium. The relative K+ conductance, as evaluated by increasing bath K+ to 17mm, is dependent upon the restingV bl in both S2 and S3 cells. In summary, the basolateral membrane of S3 cells contains a pump-leak system with similar properties to S1 and S2 proximal tubule cells. The absence of conductive bicarbonate pathways results in a hyperpolarized cell and larger Na+ and K+ gradients across the cell borders, which will influence the transport properties and intracellular ion activities in this tubule segment.  相似文献   

20.
Summary Exposing the apical membrane of toad urinary bladder to the ionophore nystatin lowers its resistance to less than 100 cm2. The basolateral membrane can then be studied by means of transepithelial measurements. If the mucosal solution contains more than 5mm Na+, and serosal Na+ is substituted by K+, Cs+, or N-methyl-d-glucamine, the basolateral membrane expresses what appears to be a large Na+ conductance, passing strong currents out of the cell. This pathway is insensitive to ouabain or vanadate and does not require serosal or mucosal Ca2+. In Cl-free SO 4 2– Ringer's solution it is the major conductive pathway in the basolateral membrane even though the serosal side has 60mm K+. This pathway can be blocked by serosal amiloride (K i=13.1 m) or serosal Na+ ions (K i 10 to 20mm). It also conducts Li+ and shows a voltage-dependent relaxation with characteristic rates of 10 to 20 rad sec–1 at 0 mV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号