首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A natural abundance hydrogen stable isotope technique was used to study seasonal changes in source water utilization and water movement in the xylem of dimorphic root systems and stem bases of several woody shrubs or trees in mediterranean-type ecosystems of south Western Australia. Samples collected from the native treeBanksia prionotes over 18 months indicated that shallow lateral roots and deeply penetrating tap (sinker) roots obtained water of different origins over the course of a winter-wet/summer-dry annual cycle. During the wet season lateral roots acquired water mostly by uptake of recent precipitation (rain water) contained within the upper soil layers, and tap roots derived water from the underlying water table. The shoot obtained a mixture of these two water sources. As the dry season approached dependence on recent rain water decreased while that on ground water increased. In high summer, shallow lateral roots remained well-hydrated and shoots well supplied with ground water taken up by the tap root. This enabled plants to continue transpiration and carbon assimilation and thus complete their seasonal extension growth during the long (4–6 month) dry season. Parallel studies of other native species and two plantation-grown species ofEucalyptus all demonstrated behavior similar to that ofB. prionotes. ForB. prionotes, there was a strong negative correlation between the percentage of water in the stem base of a plant which was derived from the tap root (ground water) and the amount of precipitation which fell at the site. These data suggested that during the dry season plants derive the majority of the water they use from deeper sources while in the wet season most of the water they use is derived from shallower sources supplied by lateral roots in the upper soil layers. The data collected in this study supported the notion that the dimorphic rooting habit can be advantageous for large woody species of floristically-rich, open, woodlands and heathlands where the acquisition of seasonally limited water is at a premium.  相似文献   

2.
Is it possible to manipulate root anchorage in young trees?   总被引:1,自引:1,他引:0  
The optimal root system architecture for increased tree anchorage has not yet been determined and in particular, the role of the tap root remains elusive. In Maritime pine (Pinus pinaster Ait.), tap roots may play an important role in anchoring young trees, but in adult trees, their growth is often impeded by the presence of a hard pan layer in the soil and the tap root becomes a minor component of tree anchorage. To understand better the role of the tap root in young trees, we grew cuttings (no tap root present) and seedlings where the tap root had (?) or had not (+) been pruned, in the field for 7 years. The force (F) necessary to deflect the stem sideways was then measured and divided by stem cross-sectional area (CSA), giving a parameter analogous to stress during bending. Root systems were extracted and root architecture and wood mechanical properties (density and longitudinal modulus of elasticity, E L ) determined. In seedlings (?) tap roots, new roots had regenerated where the tap root had been pruned, whereas in cuttings, one or two lateral roots had grown downwards and acted as tap roots. Cuttings had significantly less lateral roots than the other treatments, but those near the soil surface were 14% and 23% thicker than plants (+) and (?) tap roots, respectively. Cuttings were smaller than seedlings, but were not relatively less resistant to stem deflection, probably because the thicker lateral roots compensated for their lower number. Apart from stem volume which was greater in trees (+) tap roots, no significant differences with regard to size or any root system variable were found in plants (?) or (+) tap roots. In all treatments, lateral roots were structurally reinforced through extra growth along the direction of the prevailing wind, which also improved tap root anchorage. Predictors of log F/CSA differed depending on treatment: in trees (?) tap roots, a combination of the predictors stem taper and %volume allocated to deep roots was highly regressed with log F/CSA (R 2 = 0.83), unlike plants (+) tap roots where the combined predictors of lateral root number and root depth were best regressed with log F/CSA (R 2 = 0.80). In cuttings, no clear relationships between log F/CSA and any parameter could be found. Wood density and E L did not differ between roots, but did diminish with increasing distance from the stem in lateral roots. E L was significantly lower in lateral roots from cuttings. Results showed that nursery techniques influence plant development but that the architectural pattern of Maritime pine root systems is stable, developing a sinker root system even when grown from cuttings. Anchorage is affected but the consequences for the long-term are still not known. Numerical modelling may be the only viable method to investigate the function that each root plays in adult tree anchorage.  相似文献   

3.
The role of assimilates in lateral root development was studied in Pinus pinea seedlings grown in a nutrient solution. Seedlings were treated with 14CO2 for 2 h following removal of the tap root tip at various times prior to the application of 14CO2 or removal of a different number of cotyledons at one time. In seedlings with intact root systems most of the radioactivity accumulated in the lower section of the root containing the tap root apex. When the tap root tip was removed, the pattern of radioactivity accumulation along the root was affected by the presence and the stage of lateral root development. Removing the tap root tip of young seedlings (with no lateral roots) resulted in an almost equal distribution of radioactivity along the root. About 50% of the total radioactivity was found in the section showing the highest lateral root growth. Removing the tap root tip of mature seedlings (with lateral roots in the upper section) resulted in an immediate increase in the radioactivity accumulation in the upper section. When lateral roots appeared in the middle section, the pattern of radioactivity distribution was similar to that found in root decapitated young seedlings. Removal of cotyledons of mature seedlings somewhat increased the transport of radioactivity to the lower root section at the expense of the radioactivity in the lateral roots of the upper section. The present study suggests that competition within the root system between the tap root apex and the lateral roots may play an important role in determining the morphology of the root system.  相似文献   

4.

Background and aims

Plant phenology is a sensitive indicator of plant response to climate change. Observations of phenological events belowground for most ecosystems are difficult to obtain and very little is known about the relationship between tree shoot and root phenology. We examined the influence of environmental factors on fine root production and mortality in relation with shoot phenology in hybrid walnut trees (Juglans sp.) growing in three different climates (oceanic, continental and Mediterranean) along a latitudinal gradient in France.

Methods

Eight rhizotrons were installed at each site for 21 months to monitor tree root dynamics. Root elongation rate (RER), root initiation quantity (RIQ) and root mortality quantity (RMQ) were recorded frequently using a scanner and time-lapse camera. Leaf phenology and stem radial growth were also measured. Fine roots were classified by topological order and 0–1 mm, 1–2 mm and 2–5 mm diameter classes and fine root longevity and risk of mortality were calculated during different periods over the year.

Results

Root growth was not synchronous with leaf phenology in any climate or either year, but was synchronous with stem growth during the late growing season. A distinct bimodal pattern of root growth was observed during the aerial growing season. Mean RER was driven by soil temperature measured in the month preceding root growth in the oceanic climate site only. However, mean RER was significantly correlated with mean soil water potential measured in the month preceding root growth at both Mediterranean (positive relationship) and oceanic (negative relationship) sites. Mean RIQ was significantly higher at both continental and Mediterranean sites compared to the oceanic site. Soil temperature was a driver of mean RIQ during the late growing season at continental and Mediterranean sites only. Mean RMQ increased significantly with decreasing soil water potential during the late aerial growing season at the continental site only. Mean root longevity at the continental site was significantly greater than for roots at the oceanic and Mediterranean sites. Roots in the 0–1 mm and 1–2 mm diameter classes lived for significantly shorter periods compared to those in the 2–5 mm diameter class. First order roots (i.e. the primary or parents roots) lived longer than lateral branch roots at the Mediterranean site only and first order roots in the 0–1 mm diameter class had 44.5% less risk of mortality than that of lateral roots for the same class of diameter.

Conclusions

We conclude that factors driving root RER were not the same between climates. Soil temperature was the best predictor of root initiation at continental and Mediterranean sites only, but drivers of root mortality remained largely undetermined.
  相似文献   

5.
Twelve widely grown cultivars of subterranean clover (Trifolium subterraneum) were screened both under controlled environment conditions for their resistance to five fungi commonly associated with root rot and under field conditions for their resistance to natural root infections. All cultivars showed decreased seedling survival (particularly from Pythium irregulare and Rhizoctonia solani), tap and lateral root rot (particularly from Fusarium avenaceum, P. irregulare, and R. solani) and reduced plant size (particularly from R. solani and P. irregulare). Individual cultivars generally differed in their response to the five pathogens and for any one pathogen there was generally a range of cultivar susceptibilities. Cultivars with the best resistance to individual root pathogens were identified. The results for the five individual pathogens under controlled conditions only showed correlation with field data for some of the parameters compared.  相似文献   

6.
Belowground symptoms of sugar beet caused by the beet cyst nematode (BCN) Heterodera schachtii include the development of compensatory secondary roots and beet deformity, which, thus far, could only be assessed by destructively removing the entire root systems from the soil. Similarly, the symptoms of Rhizoctonia crown and root rot (RCRR) caused by infections of the soil-borne basidiomycete Rhizoctonia solani require the same invasive approach for identification. Here nuclear magnetic resonance imaging (MRI) was used for the non-invasive detection of belowground symptoms caused by BCN and/or RCRR on sugar beet. Excessive lateral root development and beet deformation of plants infected by BCN was obvious 28 days after inoculation (dai) on MRI images when compared with non-infected plants. Three-dimensional images recorded at 56 dai showed BCN cysts attached to the roots in the soil. RCRR was visualized by a lower intensity of the MRI signal at sites where rotting occurred. The disease complex of both organisms together resulted in RCRR development at the site of nematode penetration. Damage analysis of sugar beet plants inoculated with both pathogens indicated a synergistic relationship, which may result from direct and indirect interactions. Nuclear MRI of plants may provide valuable, new insight into the development of pathogens infecting plants below- and aboveground because of its non-destructive nature and the sufficiently high spatial resolution of the method.  相似文献   

7.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

8.
Experimental sites were established at two locations in north-eastern Victoria to define factors limiting the establishment and growth of Trifolium subterranean L. (subterranean clover). Liming the soil, seed inoculation and fungicide application were used in renovating subterranean clover pasture on two acidic soils (Longwood: brown/grey sandy loam DY 3.14 and Seymour: grey brown light clay DY 3.22, Northcote classification) with mean annual rainfall of 650 mm and 600 mm respectively. Soil acidity, low available soil phosphorus and plant disease were identified as factors limiting clover yield on these soils. Significant yield responses to lime (35–140%) were obtained with subterranean clover at both sites, with corresponding decreases in Al in the 0–10 cm soil horizon. Liming the soil, when combined with seed inoculation, increased the number and effectiveness of root nodules at both sites. Soil P available for plant growth was low at both sites (6.1 and 8.4 μg g−1) resulting in sub-optimal P concentrations in the clover herbage (45 mmol kg−1 at Longwood). Levels of root disease were low but Aphanomyces euteiches and Phytophthora clandestina (causal agents of lateral and tap root rot) were detected frequently on roots. Application of fungicide resulted in higher dry matter yields (p=0.05) at both sites. An assessment of the relative contributions of these limiting factors and the benefits to be obtained from better management would provide a clearer picture of the profitability and sustainability of this farming system.  相似文献   

9.
Escudero V  Mendoza R 《Mycorrhiza》2005,15(4):291-299
We studied seasonal variation in population attributes of arbuscular mycorrhizal (AM) fungi over 2 years in four sites of temperate grasslands of the Argentinean Flooding Pampas. The sites represent a wide range of soil conditions, hydrologic gradients, and floristic composition. Lotus glaber, a perennial herbaceous legume naturalised in the Flooding Pampas, was dominant at the four plant community sites. Its roots were highly colonised by AM fungi. Temporal variations in spore density, spore type, AM root colonisation, floristic composition and soil chemical characteristics occurred in each site and were different among sites. The duration of flooding had no effect on spore density but depressed AM root colonisation. Eleven different types of spores were recognized and four were identified. Two species dominated at the four sites: Glomus fasciculatum and Glomus intraradices. Spore density was highest in summer (dry season) and lowest in winter (wet season) with intermediate values in autumn and spring. Colonisation of L. glaber roots was highest in summer or spring and lowest in winter or autumn. The relative density of G. fasciculatum and G. intraradices versus Glomus sp. and Acaulospora sp. had distinctive seasonal peaks. These seasonal peaks occurred at all four sites, suggesting differences among AM fungus species with respect to the seasonality of sporulation. Spore density and AM root colonisation when measured at any one time were poorly related to each other. However, spore density was significantly correlated with root colonisation 3 months before, suggesting that high colonisation in one season precedes high sporulation in the next season.  相似文献   

10.
Panax notoginseng is a traditional Chinese medicinal plant. Root rot of P. notoginseng is one of the most serious diseases affecting P. notoginseng growth and causes wilted leaves, fewer lateral roots and rotten roots. Root rot is a soil-borne disease, and mainly occurs from June to August in Yunnan Province when the temperatures are high and the air is humid. In this study, the endophytic fungal genus Fusarium isolate E-2018.1.22-#3.2 was obtained from a P. notoginseng embryo. Fusarium isolate E-2018.1.22-#3.2 was identified as Fusarium striatum based on morphological characteristics and molecular analysis. The fungus was found to have conidiophores and macroconidia, and its ITS, LSU and TEF-1α genes shared 100%, 99.2% and 99% identities with the homologous genes of Fusarium striatum, respectively. Isolate F. striatum E-2018.1.22-#3.2 can cause root rot symptoms, including black, soft roots, fewer lateral roots and leaf wilt, in 93% of the experimental P. notoginseng plants, and could be re-isolated, fulfilling Koch’s postulates. When the P. notoginseng plants were treated with the fungicide pyraclostrobin, isolate F. striatum E-2018.1.22-#3.2 was unable to cause root rot. We have therefore demonstrated that F. striatum E-2018.1.22-#3.2 is able to cause root rot disease in P. notoginseng. This is the first report of root rot disease caused by F. striatum on P. notoginseng in China.  相似文献   

11.
Differential two-dimensional protein patterns as related to tissue specificity and water conditions were investigated within Brassica napus var oleifera root system. The different parts of the root system (tap root, lateral roots, and drought-induced short roots) were analyzed under various moisture regimes (regular watering at field capacity, progressive drought stress, and rewatering). Tissue specificity was evident from 25 differences in protein patterns (qualitative and quantitative) between well-watered lateral and tap roots. Twice as many polypeptides (52) were drought-affected and the response to the water stress was shown to be similar in both root types. In addition, more than half of the polypeptides detected as organ-specific were affected by drought. Based upon the trend of variation observed under drought and rehydration, three categories of polypeptides could be defined that might be differently involved in drought susceptibility or tolerance. A highly differentiated protein pattern characterized the drought-induced short roots. This pattern appeared as far from the watered as from the water-stressed normal roots. In particular, 13 unique polypeptides were detected which could be relevant to their adaptive morphogenesis and/or their specific drought tolerance induction. Upon rehydration, their polypeptide pattern and their specific morphology returned to a normal well-watered lateral root type.  相似文献   

12.
Lõhmus  Krista  Ivask  Mari 《Plant and Soil》1995,168(1):89-94
Long-term decomposition and nitrogen dynamics of Norway spruce finest (<1 mm in diameter) and fine (<2 mm in diameter) roots were estimated using the root litter-bag techniques. The seasonal decomposition of the finest roots was investigated in a 40-year-old high site quality stand grown on brown lessive soil at different depths as part of productivity studies. The fine root decomposition studies were conducted on 8 permanent plots in the Estonia with the aim to describe the site variation. The initial material was collected from one of stands (high quality site) and incubated at the depth of 10 cm in 1989 (at one site 1990). The bags were collected once or twice a year except for one site, where the seasonal dynamics was investigated. In all initial and decomposing root samples oven-dry weight, ash and energy content and nitrogen concentration was determined. After five years the finest roots had lost 40% of their initial dry weight, half of it during the first year. The initial concentration of nitrogen was 1.29%, the mean concentrations varied during the incubation from 1.47 to 1.78%. After the first year fine roots had lost 21.0 to 32.7% of their initial dry weight, after two years the weight loss was 22.5 to 43.2%. The initial N concentration in fine roots was 0.73% and in the first years it varied from 0.97 to 1.40% at different sites.  相似文献   

13.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

14.
The influences of Gaeumannomyces graminis var. tritici (which causes take-all of wheat), Rhizoctonia solani AG-8 (which causes rhizoctonia root rot of wheat), Pythium irregulare, P. aristosporum, and P. ultimum var. sporangiiferum (which cause pythium root rot of wheat) on the population dynamics of Pseudomonas fluorescens 2-79 and Q72a-80 (bicontrol strains active against take-all and pythium root rot of wheat, respectively) in the wheat rhizosphere were examined. Root infection by either G. graminis var. tritici or R. solani resulted in populations of both bacterial strains that were equal to or significantly larger than their respective populations maintained on roots in the absence of these pathogens. In contrast, the population of strain 2-79 was significantly smaller on roots in the presence of any of the three Pythium species than on noninfected roots and was often below the limits of detection (50 CFU/cm of root) on Pythium-infected roots after 40 days of plant growth. In the presence of either P. aristosporum or P. ultimum var. sporangiiferum, the decline in the population of Q72a-80 was similar to that observed on noninfected roots; however, the population of this strain declined more rapidly on roots infected by P. irregulare than on noninfected roots. Application of metalaxyl (which is selectively inhibitory to Pythium spp.) to soil naturally infestated with Pythium spp. resulted in significantly larger rhizosphere populations of the introduced bacteria over time than on plants grown in the same soil without metalaxyl. It is apparent that root infections by fungal pathogens may either enhance or depress the population of fluorescent pseudomonads introduced for their control, with different strains of pseudomonads reacting differentially to different genera and species of the root pathogens.  相似文献   

15.
Safford  L. O. 《Plant and Soil》1976,44(2):439-444
Summary Modified air layers were established on lateral long roots of 9 yellow birch (Betula alleghniensis Britton) trees, and all replacement roots >. 5 cm long were harvested periodically during the 1971 and 1972 growing seasons. The first replacement roots grew 6 weeks after layer establishment. Root layers were inactive from 29 Oct. 71 to 5 May 72. Active root layers produced an average of 208 mg per tree during the first season and 198 mg per tree during the second season. Concentrations of N, P, K, Ca, Mg, Fe, Mn, Zn, and Al all varied within growing season, and average concentration of some elements—Ca in particular—varied between growing seasons. This technique shows promise for studying the nutrient status of root systems of forest trees.  相似文献   

16.
Minirhizotron technique is capable of providing median root longevity. The use of the median longevity might overestimate root longevity if the distribution of survival times is very skewed or irregular, as is the case at sites where root mortality is very low during the long winter. In this paper we illustrate the case theoretically and compare that with field observation in northern Sweden to show an alternative procedure for such sites. Hypothetical root cohorts were constructed to investigate and show some technical problems with estimating median root longevity at a Swedish northern site where root mortality is very low during long winter time (8 months), and to investigate whether these problems could be overcome by discarding winter time from the survival analysis and include only the growing season in which the roots are at risk of mortality. Authentic root data, gathered in a minirhizotron study at such a site, were analysed on a whole year basis and on season basis. By analysing longevity based only on the season when there is a risk for root death, the median longevity became a more reliable estimate of the true mean longevity. When this method was applied to root data from northern Sweden, the estimated root longevity in different treatments became between 17% lower and 8% higher compared to the longevity estimated on a whole year basis.We conclude that the reliability of the median longevity as an estimate of the true mean longevity can be increased by basing the survival analysis only on the parts of the year when fine roots are at risk of mortality at sites with long winter and low root mortality.  相似文献   

17.
The effect of auxins and a cytokinin on induction of roots in cultured axillary shoots of Pinus brutia Ten, has been tested. Auxin was crucial for root initiation and the rooting response varied according to the type and concentration of auxin applied. Both auxin and cytokinin and the interactions between them affected the quantity and quality of the induced roots. Aerated non-sterile tap water was an effective rooting medium, comparable to agar. After planting out into soil, some of the influences of auxin and cytokinin could still be seen after six months. However, roots developed normally in the soil, displaying dichotomous lateral branches. The results draw attention to the need for care in the choice and application of the medium for the initial induction of roots. Results of greenhouse trials indicated that the most vigorous plants were obtained via the axillary shoots.  相似文献   

18.
根腐病是一类危害严重的土传病害,常常导致作物产量和品质降低。丛枝菌根(AM)真菌是一类重要的土壤微生物,通过与植物根系建立共生体而发挥重要的生理生态功能。研究表明,AM真菌通过调节宿主植物一系列生理生化响应,诱导植物增强根腐病抗性。当前,利用AM真菌开展根腐病等土传病害的生物防治是植物与微生物互作领域的研究热点。本文全面梳理了AM真菌对宿主植物根腐病病原物的抑制效应,系统总结了AM真菌改变宿主植物根系形态结构、改善植物营养水平、与病原物竞争生态位点、激活植物防御体系、调节根系分泌物等方面的研究结果,分析了AM真菌抑制根腐病危害的作用机制,展望了AM真菌抑制根腐病危害的潜在机制和AM真菌高效利用面临的现实问题,旨在为利用AM真菌开展植物根腐病的生物防治提供理论依据。  相似文献   

19.
Summary The cultivar specific interaction ofTrifolium subterranean cv. Woogenellup andRhizobium leguminosarum bv.trifolii strain ANU 794 was examined to establish the basis for nodulation failure on this cultivar. Infections were initiated by strain ANU 794 on cv. Woogenellup. Root hair curling, the initiation of infection threads, and cortical cell divisions were evident on the tap root and appeared normal after microscopic observation. However, in most cases, the infection threads stayed confined to the root hairs. No evidence was found for a hypersensitive response by the plant. The progress of infections on the tap roots was different from that on the lateral roots. This was confirmed by the differential tap and lateral root nodulation patterns of the mutants derived from strain ANU 794, which show enhanced nodulation on cv. Woogenellup. On the lateral roots, cortical cell divisions progressed further than those on the tap root and formed macroscopically visible swellings, which could be divided into two morphological classes. In some cases infection threads developed into these primordia but successful nodules were not established. The inhibition of infection appeared to be manifested at two levels: first, on the tap roots in the root hairs, where many of the infection threads are contained and secondly, in the primordia induced on the lateral roots, where the infection threads sometimes penetrate further than the root hair cell but stop in the primordial cells. It appears that an essential factor or trigger in the communication between plant and bacteria is missing or altered, resulting in an array of primordia-structures, which cease to develop.Abbreviations bv biovar - cv cultivar - Fix+ nitrogen fixing - GUS -glucuronidase - Nod+ nodulating - HR hypersensitive response - Km kanamycin - LOSs lipo-oligosaccharides - Sm streptomycin - Sp spectinomycin - X-Gluc 5-bromo-4-chloro-3-indonyl--glucuronic acid  相似文献   

20.
Many different species of fungi are often isolated from rotted cassava root tubers and pathogenicity studies have often implicated Botryodiplodia theobromae and Fusarium solani as the major causal pathogens. Consequently, more attention has often been focused on Botryodiplodia theobromae and Fusarium solani with little or no attention on the other minor pathogens. Considering the increasing importance of cassava to the Nigerian economy and the fact that minor root rot pathogens of cassava today could become major tomorrow, the aim of this research is to determine the incidence, pathogenicity and symptoms of the minor root rot pathogens in cassava from cassava fields within the derived savanna and the humid forest of Nigeria. Isolation of associated fungi was done on rotted root samples and the pathogenicity of these isolates were established by inoculating them into healthy cassava tuberous roots and subsequently reisolating them from resulting rotted tissue. The less frequently isolated fungi where Macrophomina sp., Trichoderma sp., Aspergillus niger, Aspergillus flavus, Sclerotium rolfsii and Fungus ‘A’ (a yet to be identified fungus). Repeated experiments confirmed a constant relationship between inoculated fungus and the resulting rotted tissue colour. The root rot tissue colours associated with inoculated pathogens in the laboratory were identical with the pathogens colony colour on potato dextrose agar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号