首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Progress over the past 10 years has made it possible to construct a simple model of neurotransmitter release. Currently, some models use artificially formed vesicles to represent synaptic vesicles and a planar lipid bilayer as a presynaptic membrane. Fusion of vesicles with the bilayer is via channel proteins in the vesicle membrane and an osmotic gradient. In this paper, a framework is presented for the successful construction of a more complete model of synaptic transmission. This model includes real synaptic vesicles that fuse with a planar bilayer. The bilayer contains acetylcholine receptor (AChR) channels which function as autoreceptors in the membrane. Vesicle fusion is initiated following a Ca2+ flux through voltage-gated Ca2+ channels. Key steps in the plan are validated by mathematical modeling. Specifically, the probability that a reconstituted AChR channel opens following the release of ACh from a fusing vesicle, is calculated as a function of time, quantal content, and number of reconstituted AChRs. Experimentally obtainable parameters for construction of a working synapse are given. The inevitable construction of a full working model will mean that the minimal structures necessary for synaptic transmission are identified. This will open the door in determining regulatory and modulatory factors of transmitter release.  相似文献   

2.
Phospholipid vesicles fuse with a planar membrane when they are osmotically swollen. Channels in the vesicle membrane are required for swelling to occur when the vesicle-containing compartment is made hyperosmotic by adding a solute (termed an osmoticant). We have studied fusion using two different channels, porin, a highly permeable channel, and nystatin, a much less permeable channel. We report that an osmoticant's ability to support fusion (defined as the magnitude of osmotic gradient necessary to obtain sustained fusion) depends on both its permeability through lipid bilayer as well as its permeability through the channel by which it enters the vesicle interior. With porin as the channel, formamide requires an osmotic gradient about ten times that required with urea, which is approximately 1/40th as permeant as formamide through bare lipid membrane. When nystatin is the channel, however, fusion rates sustained by osmotic gradients of formamide are within a factor of two of those obtained with urea. Vesicles containing a porin-impermeant solute can be induced to swell and fuse with a planar membrane when the impermeant bathing the vesicles is replaced by an isosmotic quantity of a porin-permeant solute. With this method of swelling, formamide is as effective as urea in obtaining fusion. In addition, we report that binding of vesicles to the planar membrane does not make the contact region more permeable to the osmoticant than is bare lipid bilayer. In the companion paper, we quantitatively account for the observation that the ability of a solute to promote fusion depends on its permeability properties and the method of swelling. We show that the intravesicular pressure developed drives fusion.  相似文献   

3.
Video fluorescence microscopy was used to study adsorption and fusion of unilamellar phospholipid vesicles to solvent-free planar bilayer membranes. Large unilamellar vesicles (2-10 microns diam) were loaded with 200 mM of the membrane-impermeant fluorescent dye calcein. Vesicles were ejected from a pipette brought to within 10 microns of the planar membrane, thereby minimizing background fluorescence and diffusion times through the unstirred layer. Vesicle binding to the planar membrane reached a maximum at 20 mM calcium. The vesicles fused when they were osmotically swollen by dissipating a KCl gradient across the vesicular membrane with the channel-forming antibiotic nystatin or, alternatively, by making the cis compartment hyperosmotic. Osmotically induced ruptures appeared as bright flashes of light that lasted several video fields (each 1/60 s). Flashes of light, and therefore swelling, occurred only when channels were present in the vesicular membrane. The flashes were observed when nystatin was added to the cis compartment but not when added to the trans. This demonstrates that the vesicular and planar membranes remain individual bilayers in the region of contact, rather than melding into a single bilayer. Measurements of flash duration in the presence of cobalt (a quencher of calcein fluorescence) were used to determine the side of the planar membrane to which dye was released. In the presence of 20 mM calcium, 50% of the vesicle ruptures were found to result in fusion with the planar membrane. In 100 mM calcium, nearly 70% of the vesicle ruptures resulted in fusion. The methods of this study can be used to increase significantly the efficiency of reconstitution of channels into planar membranes by fusion techniques.  相似文献   

4.
Two major types of planar lipid bilayers, painted and folded, were compared with respect to vesicle fusion using one chamber for the preparation of both bilayers. Liposomes containing ion channels composed of nystatin and ergosterol were used as the vesicle sample. Fusion of the liposome to either bilayer elicited a spike-like current change, which corresponds to a fusion event. The lag time between the first fusion event and the addition of the vesicles is an index of the ease with which the vesicles fuse with the bilayers. The lag time in the painted bilayer at a KCl concentration (cis) of 450 mM was 1.58+/-1.18 min, similar to that in the folded bilayer (1.65+/-0.64 min). The lag time decreased with increase of the osmotic difference across the painted bilayer, whereas this change was small in the folded bilayer. The fusion of the liposomes to the painted bilayer was markedly reduced by stopping the stirring in the cis compartment, whereas the fusion to the folded bilayer was not affected significantly. These results imply that no practical difference exists in the ability of vesicles to fuse with the painted and folded bilayers. For the study of single channel behavior, the painted bilayer could have an advantage because simply stopping the stirring prevents excess fusion.  相似文献   

5.
Fusion of synaptic vesicle membranes with planar bilayer membranes.   总被引:2,自引:1,他引:1       下载免费PDF全文
The interaction of synaptic vesicles with horizontal bilayer lipid membranes (BLMs) was investigated as a model system for neurotransmitter release. High concentrations (200 mM) of the fluorescent dye, calcein, were trapped within synaptic vesicles by freezing and thawing. In the presence of divalent ions (usually 15 mM CaCl2), these frozen and thawed synaptic vesicles (FTSVs) adhere to squalene-based phosphatidylserine-phosphatidylethanolamine BLMs whereupon they spontaneously release their contents which is visible by fluorescence microscopy as bright flashes. The highest rate of release was obtained in KCl solutions. Release was virtually eliminated in isotonic glucose, but could be elicited by perfusion with KCl or by addition of urea. The fusion and lysis of adhering FTSVs appears to be the consequence of stress resulting from entry of permeable external solute (KCl, urea) and accompanying water. An analysis of flash diameters in experiments where Co+2, which quenches calcein fluorescence, was present on one or both sides of the BLM, indicates that more than half of the flashes represent fusion events, i.e., release of vesicle contents on the trans side of the BLM. A population of small, barely visible FTSVs bind to BLMs at calcium ion concentrations of 100 microM. Although fusion of these small FTSVs to BLMs could not be demonstrated, fusion with giant lipid vesicles was obvious and dramatic, albeit infrequent. Addition of FTSVs or synaptic vesicles to BLMs in the presence of 100 microM-15 mM Ca2+ produced large increases in BLM conductance. The results presented demonstrate that synaptic vesicles are capable of fusing with model lipid membranes in the presence of Ca+2 ion which, at the lower limit, may begin to approach physiological concentrations.  相似文献   

6.
Summary The adhesion to horizontal, planar lipid membranes of lipid vesicles containing calcein in the aqueous compartment or fluorescent phospholipids in the membranes has been examined by phase contrast, differential interference contrast and fluorescence microscopy. With water-immersion lenses, it was possible to study the interactions of vesicles with planar bilayers at magnifications up to the useful limit of light microscopy. In the presence of 15 mM calcium chloride, vesicles composed of phosphatidylserine and either phosphatidylethanolamine or soybean lipids adhere to the torus, bilayer and lenses of planar bilayers of the same composition. Lenses of solvent appear, at the site where vesicles attach to decane-based bilayers and lipid fluorophores move from the vesicles to the lenses. Because the calcein contained in such vesicles is not released, we interpret this as indicating fusion of only the outer monolayer (hemifusion) of the vesicles with the decane lenses. In the case of squalene-based black lipid membranes (BLMs), in contrast, vesicles do not nucleate lenses but they apparently do fuse with the torus at the bilayer boundary. Interactions leading to hemifusions between vesicles and planar membranes thus occur predominantly in regions where hydrocarbon solvent is present. Osmotic water flow, induced by addition of urea to the compartment containing vesicles, causes coalescence of lenses in decane-based, BLMs as well as coalescence of the aqueous spaces of the vesicles that have undergone hemifusion with the lenses. We did not observe transfer of the aqueous phase of vesicles to therans side of either decane-or squalene-based planar membranes; however, we cannot rule out the possibility particularly in the latter case, that rupture of the planar membrane may have been an immediate result of vesicle fusion and thus precluded its detection.  相似文献   

7.
It was previously shown (Cohen, F. S., J. Zimmerberg, and A. Finkelstein, 1980, J. Gen. Physiol., 75:251-270) that multilamellar phospholipid vesicles can fuse with decane-containing phospholipid bilayer membranes. An essential requirement for fusion was an osmotic gradient across the planar membrane, with the vesicle-containing (cis) side hyperosmotic with respect to the opposite (trans) side. We now report that unilamellar vesicles will fuse with "hydrocarbon-free" membranes subject to these same osmotic conditions. Thus the same conditions that apply to fusion of multilamellar vesicles with planar bilayer membranes also apply to fusion of unilamellar vesicles with these membranes, and hydrocarbon is not required for the fusion process. If the vesicles and/or planar membrane contain negatively charged lipids, divalent cation (approximately 15 mM Ca++) is required in the cis compartment (in addition to the osmotic gradient across the membrane) to obtain substantial fusion rates. On the other hand, vesicles made from uncharged lipids readily fuse with planar phosphatidylethanolamine planar membranes in the near absence of divalent cation with just an osmotic gradient. Vesicles fuse much more readily with phosphatidylethanolamine-containing than with phosphatidylcholine-containing planar membranes. Although hydrocarbon (decane) is not required in the planar membrane for fusion, it does affect the rate of fusion and causes the fusion process to be dependent on stirring in the cis compartment.  相似文献   

8.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calcium-induced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy: and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

9.
The fusion of sea urchin egg secretory vesicles to planar phospholipid bilayer membranes was studied by differential interference contrast (DIC) and fluorescent microscopy, in combination with electrical recordings of membrane conductance. A strong binding of vesicles to protein-free planar membranes was observed in the absence of calcium. Calciuminduced fusion of vesicles was detected using two independent assays: loss of the contents of individual vesicles visible by DIC microscopy; and vesicle content discharge across the planar membrane detected by an increase in the fluorescence of a dye. In both cases, no increase in the membrane conductance was observed unless vesicles were incubated with either Amphotericin B or digitonin prior to applying them to the planar membrane, an indication that native vesicles are devoid of open channels. Pre-incubation of vesicles with n-ethylmaleimide (NEM) abolished calcium-induced fusion. Fusion was also detected when vesicles were osmotically swollen to the point of lysis. In contrast, no fusion of vesicles to planar bilayers was seen when vesicles on plasma membrane (native cortices) were applied to a phospholipid membrane, despite good binding of vesicles to the planar membrane and fusion of vesicles to plasma membrane. It is suggested that cortical vesicles (CVs) have sufficient calcium-sensitive proteins for fusion to lipid membranes, but in native cortices granular fusion sites are oriented toward the plasma membrane. Removal of vesicles from the plasma membrane may allow fusion sites on vesicles access to new membranes.  相似文献   

10.
Multilamellar phospholipid vesicles are introduced into the cis compartment on one side of a planar phospholipid bilayer membrane. The vesicles contain a water-soluble fluorescent dye trapped in the aqueous phases between the lamellae. If a vesicle containing n lamellae fuses with a planar membrane, an n-1 lamellar vesicle should be discharged into the opposite trans compartment, where it would appear as a discernible fluorescent particle. Thus, fusion events can be assayed by counting the number of fluorescent particles appearing in the trans compartment. In the absence of divalent cation, fusion does not occur, even after vesicles have been in the cis compartment for 40 min. When CaCl2 is introduced into the cis compartment to a concentration of greater than or equal to 20 mM, fusion occurs within the next 20 min; it generally ceases thereafter because of vesicle aggregation in the cis compartment. With approximately 3 x 10(8) vesicles/cm3 in the cis compartment, about 25-50 fusion events occur following CaCl2 addition. The discharge of vesicular contents across the planar membrane is the most convincing evidence of vesicle-membrane fusion and serves as a model for that ubiquitous biological phenomenon--exocytosis.  相似文献   

11.
Vesicle fusion, the central process of neurotransmitter release and hormonal secretion, is a complex process culminating in simultaneous incorporation of vesicle membrane into the plasma membrane and release of the vesicular contents extracellularly. This report describes simultaneous observation of membrane incorporation and content release using a model system composed of a planar bilayer and dye-filled vesicles.  相似文献   

12.
When phospholipid vesicles bound to a planar membrane are osmotically swollen, they develop a hydrostatic pressure (delta P) and fuse with the membrane. We have calculated the steady-state delta P, from the equations of irreversible thermodynamics governing water and solute flows, for two general methods of osmotic swelling. In the first method, vesicles are swollen by adding a solute to the vesicle-containing compartment to make it hyperosmotic. delta P is determined by the vesicle membrane's permeabilities to solute and water. If the vesicle membrane is devoid of open channels, then delta P is zero. When the vesicle membrane contains open channels, then delta P peaks at a channel density unique to the solute permeability properties of both the channel and the membrane. The solute enters the vesicle through the channels but leaks out through the region of vesicle-planar membrane contact. delta P is largest for channels having high permeabilities to the solute and for solutes with low membrane permeabilities in the contact region. The model predicts the following order of solutes producing pressures of decreasing magnitude: KCl greater than urea greater than formamide greater than or equal to ethylene glycol. Differences between osmoticants quantitatively depend on the solute permeability of the channel and the density of channels in the vesicle membrane. The order of effectiveness is the same as that experimentally observed for solutes promoting fusion. Therefore, delta P drives fusion. When channels with small permeabilities are used, coupling between solute and water flows within the channel has a significant effect on delta P. In the second method, an impermeant solute bathing the vesicles is isosmotically replaced by a solute which permeates the channels in the vesicle membrane. delta P resulting from this method is much less sensitive to the permeabilities of the channel and membrane to the solute. delta P approaches the theoretical limit set by the concentration of the impermeant solute.  相似文献   

13.
A single-vesicle, fluorescence-based, SNARE-driven fusion assay enables simultaneous measurement of lipid mixing and content release with 5 ms/frame, or even 1 ms/frame, time resolution. The v-SNARE vesicles, labeled with lipid and content markers of different color, dock and fuse with a planar t-SNARE bilayer supported on glass. A narrow (<5 ms duration), intense spike of calcein fluorescence due to content release and dequenching coincides with inner-leaflet lipid mixing within 10 ms. The spike provides more sensitive detection of productive hemifusion events than do lipid labels alone. Consequently, many fast events previously thought to be prompt, full fusion events are now reclassified as productive hemifusion. Both full fusion and hemifusion occur with a time constant of 5-10 ms. At 60% phosphatidylethanolamine lipid composition, productive and dead-end hemifusion account for 65% of all fusion events. However, quantitative analysis shows that calcein is released into the space above the bilayer (vesicle bursting), rather than the thin aqueous space between the bilayer and glass. Evidently, at the instant of inner-leaflet mixing, flattening of the vesicle increases the internal pressure beyond the bursting point. This may be related to in vivo observations suggesting that membrane lysis often competes with membrane fusion.  相似文献   

14.
In order to study interactions between ryanodine receptor calcium release (RyR2) channels during excitation-contraction coupling in cardiac muscle, we used bilayer lipid membrane (BLM) and improved the method of cardiac sarcoplasmic vesicle fusion into BLM. We increased fusion gradient for the vesicles, used chloride ions for fusion up to concentration of 1.2 mol/l and fused the vesicles by adding them directly to the forming BLM. Under these conditions, increased probability of fusion of vesicles containing 2-7 ryanodine channels into BLM was observed. Interestingly about 10% of the channels did not gate into BLM independently, but their gating was coupled. At 53 mmol/l calcium solution, two coupled gating channels had double conductance (191 +/- 15 pS) in comparison with the noncoupled channels (93 +/- 10 pS). Activities of the coupled channels were decreased by 5 micromol/l ryanodine and inhibited by 10 micromol/l ruthenium red similarly as single RyR2 channels. We suppose that cardiac sarcoplasmic vesicles contain single as well as coupled RyR2 channels.  相似文献   

15.
Interaction of wheat alpha-thionin with large unilamellar vesicles.   总被引:1,自引:0,他引:1       下载免费PDF全文
The interaction of the wheat antibacterial peptide alpha-thionin with large unilamellar vesicles has been investigated by means of fluorescence spectroscopy. Binding of the peptide to the vesicles is followed by the release of vesicle contents, vesicle aggregation, and lipid mixing. Vesicle fusion, i.e., mixing of the aqueous contents, was not observed. Peptide binding is governed by electrostatic interactions and shows no cooperativity. The amphipatic nature of wheat alpha-thionin seems to destabilize the membrane bilayer and trigger the aggregation of the vesicles and lipid mixing. The presence of distearoylphosphatidylethanolamine-poly(ethylene glycol 2000) (PEG-PE) within the membrane provides a steric barrier that inhibits vesicle aggregation and lipid mixing but does not prevent leakage. Vesicle leakage through discrete membrane channels is unlikely, because the release of encapsulated large fluorescent dextrans is very similar to that of 8-aminonaphthalene-1,3,6,trisulfonic acid (ANTS). A minimum number of 700 peptide molecules must bind to each vesicle to produce complete leakage, which suggests a mechanism in which the overall destabilization of the membrane is due to the formation of transient pores rather than discrete channels.  相似文献   

16.
Lipid vesicle-cell interactions. II. Induction of cell fusion   总被引:3,自引:2,他引:1       下载免费PDF全文
The ability of lipid vesicles of simple composition (lecithin, lysolecithin, and stearylamine) to induce cells of various types to fuse has been investigated. One in every three or four cells in monolayer cultures can be induced to fuse with a vesicle dose of about 100 per cell. At such dosages and for exposures of 15 min to 1 h, vesicles have essentially no effect on cell viability. Under anaerobic conditions, these cells lyse rather than fuse. Avian erythrocytes are readily fused with lipid vesicles in the presence of dextran. Fusion indices increase linearly with the zeta potential of the vesicles (increasing stearylamine content), indicating that contact between vesicle and cell membrane is required. Fusion indices increase sublinearly with increasing lysolecithin content. Divalent cations increase fusion indices at high vesicle doses. The data presented are consistent with the hypothesis that cell fusion occurs via simultaneous fusion of a vesicle with two adhering cell membranes.  相似文献   

17.
Small unilamellar phosphatidylserine/phosphatidylcholine liposomes incubated on one side of planar phosphatidylserine bilayer membranes induced fluctuations and a sharp increase in the membrane conductance when the Ca2+ concentration was increased to a threshold of 3--5 mM in 100 mM NaCl, pH 7.4. Under the same ionic conditions, these liposomes fused with large (0.2 micrometer diameter) single-bilayer phosphatidylserine vesicles, as shown by a fluorescence assay for the mixing of internal aqueous contents of the two vesicle populations. The conductance behavior of the planar membranes was interpreted to be a consequence of the structural rearrangement of phospholipids during individual fusion events and the incorporation of domains of phosphatidylcholine into the Ca2+-complexed phosphatidylserine membrane. The small vesicles did not aggregate or fuse with one another at these Ca2+ concentrations, but fused preferentially with the phosphatidylserine membrane, analogous to simple exocytosis in biological membranes. Phosphatidylserine vesicles containing gramicidin A as a probe interacted with the planar membranes upon raising the Ca2+ concentration from 0.9 to 1.2 mM, as detected by an abrupt increase in the membrane conductance. In parallel experiments, these vesicles were shown to fuse with the large phosphatidylserine liposomes at the same Ca2+ concentration.  相似文献   

18.
Fusion of multilamellar phospholipid vesicles with planar phospholipid bilayer membranes was monitored by the rate of appearance in the planar membrane of an intrinsic membrane protein present in the vesicle membranes. An essential requirement for fusion is an osmotic gradient across the planar membrane, with the cis side (the side containing the vesicles) hyperosmotic to the opposite (trans) side; for substantial fusion rates, divalent cation must also be present on the cis side. Thus, the low fusion rates obtained with 100 mM excess glucose in the cis compartment are enhanced orders of magnitude by the addition of 5-10 mM CaCl2 to the cis compartment. Conversely, the rapid fusion rates induced by 40 mM CaCl2 in the cis compartment are completely suppressed when the osmotic gradient (created by the 40 mM CaCl2) is abolished by addition of an equivalent amount of either CaCl2, NaCl, urea, or glucose to the trans compartment. We propose that fusion occurs by the osmotic swelling of vesicles in contact with the planar membrane, with subsequent rupture of the vesicular and planar membranes in the region of contact. Divalent cations catalyze this process by increasing the frequency and duration of vesicle-planar membrane contact. We argue that essentially this same osmotic mechanism drives biological fusion processes, such as exocytosis. Our fusion procedure provides a general method for incorporating and reconstituting transport proteins into planar phospholipid bilayer membranes.  相似文献   

19.
The presynaptic nerve terminal is of key importance in communication in the nervous system. Its primary role is to release transmitter quanta on the arrival of an appropriate stimulus. The structural basis of these transmitter quanta are the synaptic vesicles that fuse with the surface membrane of the nerve terminal, to release their content of neurotransmitter molecules and other vesicular components. We subdivide the control of quantal release into two major classes: the processes that take place before the fusion of the synaptic vesicle with the surface membrane (the pre-fusion control) and the processes that occur after the fusion of the vesicle (the post-fusion control). The pre-fusion control is the main determinant of transmitter release. It is achieved by a wide variety of cellular components, among them the ion channels. There are reports of several hundred different ion channel molecules at the surface membrane of the nerve terminal, that for convenience can be grouped into eight major categories. They are the voltage-dependent calcium channels, the potassium channels, the calcium-gated potassium channels, the sodium channels, the chloride channels, the non-selective channels, the ligand gated channels and the stretch-activated channels. There are several categories of intracellular channels in the mitochondria, endoplasmic reticulum and the synaptic vesicles. We speculate that the vesicle channels may be of an importance in the post-fusion control of transmitter release.  相似文献   

20.
We have investigated the interaction of Pseudomonas exotoxin A with small unilamellar vesicles comprised of different phospholipids as a function of pH, toxin, and lipid concentration. We have found that this toxin induces vesicle permeabilization, as measured by the release of a fluorescent dye. Permeabilization is due to the formation of ion-conductive channels which we have directly observed in planar lipid bilayers. The toxin also produces vesicle aggregation, as indicated by an increase of the turbidity. Aggregation and permeabilization have completely different time course and extent upon toxin dose and lipid composition, thus suggesting that they are two independent events. Both time constants decrease by lowering the pH of the bulk phase or by introducing a negative lipid into the vesicles. Our results indicate that at least three steps are involved in the interaction of Pseudomonas exotoxin A with lipid vesicles. After protonation of one charged group the toxin becomes competent to bind to the surface of the vesicles. Binding is probably initiated by an electrostatic interaction because it is absolutely dependent on the presence of acidic phospholipids. Binding is a prerequisite for the subsequent insertion of the toxin into the lipid bilayer, with a special preference for phosphatidylglycerol-containing membranes, to form ionic channels. At high toxin and vesicle concentrations, bound toxin may also induce aggregation of the vesicles, particularly when phosphatidic acid is present in the lipid mixture. A quenching of the intrinsic tryptophan fluorescence of the protein, which is induced by lowering the pH of the solution, becomes more drastic in the presence of lipid vesicles. However, this further quenching takes so long that it cannot be a prerequisite to either vesicle permeabilization or aggregation. Pseudomonas exotoxin A shares many of these properties with other bacterial toxins like diphtheria and tetanus toxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号