首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
The nuclear enzyme poly(ADP-ribose) polymerase is involved in basic cellular processes such as DNA replication and repair, cell differentiation and transformation, gene expression. We have studied the effect of 2AAF, a genotoxic aromatic amine, on pADPRP activity during DNA synthesis stimulated by EGF, using the cultured rat hepatocytes model. DNA synthesis was measured as [3H]thymidine incorporated/microgram DNA while pADPRP activity was expressed in pmol[32P]NAD incorporated/min/microgram DNA. Our results show that 2AAF treatment of EGF-stimulated rat hepatocytes induces a full block of DNA replication which is preceded and accompanied by a net inhibition of endogenous and total pADPRP activity, respectively. A block in pADPRP activity in normal hepatocytes, exposed to 2AAF in vitro or in vivo, could play a key role in cell transformation. Our data add further information on the possible involvement of this nuclear catalytic activity during DNA replication.  相似文献   

2.
NadR is a 45-kDa bifunctional regulator protein. In vivo genetic studies indicate that NadR represses three genes involved in the biosynthesis of NAD. It also participates with an integral membrane protein (PnuC) in the import of nicotinamide mononucleotide, an NAD precursor. NadR was overexpressed and purified as a His-tagged fusion in order to study its DNA-binding properties. The protein bound to DNA fragments containing NAD box consensus sequences. NAD proved to be the relevant in vivo corepressor, but full NAD dependence of repressor activity required nucleotide triphosphates. DNA footprint analysis and gel shift assays suggest that NadR binds as a multimer to adjacent NAD boxes. The DNA-repressor complex would sequester a potential RNA polymerase binding site and thereby decrease expression of the nad regulon.  相似文献   

3.
4.
A Staphylococcus aureus mutant conditionally defective in DNA ligase was identified by isolation of complementing plasmid clones that encode the S. aureus ligA gene. Orthologues of the putative S. aureus NAD(+)-dependent DNA ligase could be identified in the genomes of Bacillus stearothermophilus and other gram-positive bacteria and confirmed the presence of four conserved amino acid motifs, including motif I, KXDG with lysine 112, which is believed to be the proposed site of adenylation. DNA sequence comparison of the ligA genes from wild type and temperature-sensitive S. aureus strain NT64 identified a single base alteration that is predicted to result in the amino acid substitution E46G. The S. aureus ligA gene was cloned and overexpressed in Escherichia coli, and the enzyme was purified to near homogeneity. NAD(+)-dependent DNA ligase activity was demonstrated with the purified enzyme by measuring ligation of (32)P-labeled 30-mer and 29-mer oligonucleotides annealed to a complementary strand of DNA. Limited proteolysis of purified S. aureus DNA ligase by thermolysin produced products with apparent molecular masses of 40, 22, and 21 kDa. The fragments were purified and characterized by N-terminal sequencing and mass analysis. The N-terminal fragment (40 kDa) was found to be fully adenylated. A fragment from residues 1 to 315 was expressed as a His-tagged fusion in E. coli and purified for functional analysis. Following deadenylation with nicotinamide mononucleotide, the purified fragment could self-adenylate but lacked detectable DNA binding activity. The 21- and 22-kDa C-terminal fragments, which lacked the last 76 amino acids of the DNA ligase, had no adenylation activity or DNA binding activity. The intact 30-kDa C terminus of the S. aureus LigA protein expressed in E. coli did demonstrate DNA binding activity. These observations suggest that, as in the case with the NAD(+)-dependent DNA ligase from B. stearothermophilus, two independent functional domains exist in S. aureus DNA ligase, consisting of separate adenylation and DNA binding activities. They also demonstrate a role for the extreme C terminus of the ligase in DNA binding. As there is much evidence to suggest that DNA ligase is essential for bacterial survival, its discovery in the important human pathogen S. aureus indicates its potential as a broad-spectrum antibacterial target for the identification of novel antibiotics.  相似文献   

5.
Ubiquitin-binding domains (UBDs) provide specificity to the ubiquitin system, which is also involved in translesion synthesis (TLS) in eukaryotic cells. Upon DNA damage, the UBDs (UBM domains) of polymerase iota (Pol ι) interact with ubiquitinated proliferating cell nuclear antigen to regulate the interchange between processive DNA polymerases and TLS. We report a biophysical analysis and solution structures of the two conserved UBM domains located in the C-terminal tail of murine Pol ι in complex with ubiquitin. The 35-amino acid core folds into a helix-turn-helix motif, which belongs to a novel domain fold. Similar to other UBDs, UBMs bind to ubiquitin on the hydrophobic surface delineated by Leu-8, Ile-44, and Val-70, however, slightly shifted toward the C terminus. In addition, UBMs also use electrostatic interactions to stabilize binding. NMR and fluorescence spectroscopy measurements revealed that UBMs bind monoubiquitin, and Lys-63- but not Lys-48-linked chains. Importantly, these biophysical data are supported by functional studies. Indeed, yeast cells expressing ubiquitin mutants specifically defective for UBM binding are viable but sensitive to DNA damaging conditions that require TLS for repair.  相似文献   

6.
Poly(ADP-ribose) polymerase specifically recognizes DNA strand breaks by its DNA-binding domain. DNA binding activates the enzyme to catalyze the formation of poly(ADP-ribose) utilizing NAD as substrate. By a molecular genetic approach we set out to inhibit this enzyme activity in a highly specific manner, thus avoiding the inherent side effects of NAD analogs which have been used extensively as enzyme inhibitors. cDNA sequences coding for the human poly(ADP-ribose) polymerase DNA-binding domain were subcloned into eucaryotic expression plasmids and transiently transfected into monkey cells. Cells were fixed with ethanol followed by incubation with NAD. Indirect double immunofluorescence to detect both overexpressed protein and poly(ADP-ribose) in situ revealed that overexpression of the DNA-binding domain greatly inhibited poly(ADP-ribosyl)ation catalyzed by the resident enzyme during NAD postincubation. The same inhibition was observed when transfected cells were treated with N-methyl-N'-nitro-N-nitrosoguanidine to induce DNA strand breaks in vivo and subjected to trichloroacetic acid/ethanol fixation and subsequent immunofluorescence analysis, a novel method we developed for the in situ detection of polymer synthesis in intact cells. This molecular genetic approach may prove to be a selective and efficient tool to investigate possible functions of poly(ADP-ribosyl)ation in living cells.  相似文献   

7.
8.
FHL2转录激活结构域的定位   总被引:2,自引:0,他引:2  
LIM蛋白家族成员FHL2 (fourandhalfLIMdomainprotein)在转录调节、细胞凋亡及肿瘤的发生发展中都起着重要作用。利用GAL4转录因子中的DNA结合结构域 (DBD)和含有与DBD结合序列的荧光素酶报告基因(GAL4 LUC)构建了哺乳动物细胞转录激活系统 ,并利用该系统定位了FHL2的转录激活结构域。首先将GAL4 DBD序列以正确读框插入到pcDNA3载体的多克隆位点中 ,构建成真核表达载体pDBD ,再将野生型FHL2及其不同片段以正确读框与pDBD中GAL4 DBD序列融合 ,构建成野生型FHL2及其缺失突变体表达载体。将这些表达载体分别瞬时转染 2 93T胚胎肾细胞 ,野生型FHL2及其缺失突变体都得到了表达。利用GAL4 荧光素酶报告基因对野生型FHL2及其不同突变体的转录激活活性检测表明 ,在 2 93T胚胎肾细胞和乳腺癌MCF 7细胞中 ,野生型FHL2具有转录激活活性 ,缺失N端半个LIM结构域使FHL2转录激活活性降低 ,缺失C末端第二个LIM结构域对FHL2的转录激活功能影响不大 ,缺失C末端最后一个LIM结构域则使FHL2的转录激活功能完全丧失 ,而C末端缺失 2个LIM结构域使FHL2转录激活活性又有所恢复。这说明FHL2C末端最后一个LIM结构域对其转录激活功能是必需的 ,而C末端第二个LIM结构域可能对FHL2的转录激活功能有负调控作用 ,这种负调控作用取决于  相似文献   

9.
Isolation and characterization of functional domains of UvrA.   总被引:2,自引:0,他引:2  
G M Myles  A Sancar 《Biochemistry》1991,30(16):3834-3840
The sequence of Escherichia coli UvrA protein suggests that it may fold into two functional domains each possessing DNA binding and ATPase activities. We have taken two approaches to physically isolate polypeptides corresponding to the two putative domains. First, a 180 base pair DNA segment encoding multiple collagenase recognition sequences was inserted into UvrA's putative interdomain hinge region. This UvrA derivative was purified and digested with collagenase, and the resulting 70-kDa N-terminal and 35-kDa C-terminal fragments were purified. Both fragments possessed nonspecific DNA binding activity, but only the N-terminal domain retained its nucleotide binding capacity as evidence by measurements of ATP hydrolysis and by ATP photo-cross-linking. Together, the two fragments failed to substitute for UvrA in reconstituting (A)BC excinuclease and, therefore, were presumed to be unable to load UvrB onto damaged DNA. Second, the DNA segments encoding the two domains were fused to the beta-galactosidase gene. The UvrA N-terminal domain-beta-galactosidase fusion protein was overproduced and purified. This fusion protein had ATPase activity, thus confirming that the amino-terminal domain does possess an intrinsic ATPase activity independent of any interaction with the carboxy terminus. Our results show that UvrA has two functional domains and that the specificity for binding to damaged DNA is provided by the proper three-dimensional orientation of one zinc finger motif relative to the other and is not an intrinsic property of an individual zinc finger domain.  相似文献   

10.
11.
Poly(ADP-ribose) polymerase (PARP) is a DNA binding zinc finger protein that catalyzes the transfer of ADP-ribose residues from NAD(+) to itself and different chromatin constituents, forming branched ADP-ribose polymers. The enzymatic activity of PARP is induced upon DNA damage and the PARP protein is cleaved during apoptosis, which suggested a role of PARP in DNA repair and DNA damage-induced cell death. We have generated transgenic mice that lack PARP activity in thymocytes owing to the targeted expression of a dominant negative form of PARP. In the presence of single-strand DNA breaks, the absence of PARP activity correlated with a strongly increased rate of apoptosis compared to cells with intact PARP activity. We found that blockage of PARP activity leads to a drastic increase of p53 expression and activity after DNA damage and correlates with an accelerated onset of Bax expression. DNA repair is almost completely blocked in PARP-deficient thymocytes regardless of p53 status. We found the same increased susceptibility to apoptosis in PARP null mice, a similar inhibition of DNA repair kinetics, and the same upregulation of p53 in response to DNA damage. Thus, based on two different experimental in vivo models, we identify a direct, p53-independent, functional connection between poly(ADP-ribosyl)ation and the DNA excision repair machinery. Furthermore, we propose a p53-dependent link between PARP activity and DNA damage-induced cell death.  相似文献   

12.
Ubiquitin ligases define the substrate specificity of protein ubiquitination and subsequent proteosomal degradation. The catalytic sequence was first characterized in the C terminus of E6-associated protein (E6AP) and referred to as the HECT (homologous to E6AP C terminus) domain. The human homologue of the regulator of cell proliferation hyperplastic discs in Drosophila, designated hHYD, is a HECT-domain ubiquitin ligase. Here we show that hHYD provides a ubiquitin system for a cellular response to DNA damage. A yeast two-hybrid screen showed that DNA topoisomerase IIbeta-binding protein 1 (TopBP1) interacted with hHYD. Endogenous hHYD bound the BRCA1 C-terminus domains of TopBP1 that are highlighted in DNA damage checkpoint proteins and cell cycle regulators. Using an in vitro reconstitution, specific E2 (ubiquitin-conjugating) enzymes (human UbcH4, UbcH5B, and UbcH5C) transferred ubiquitin molecules to hHYD, leading to the ubiquitination of TopBP1. TopBP1 was usually ubiquitinated and degraded by the proteosome, whereas X-irradiation diminished the ubiquitination of TopBP1 probably via the phosphorylation, resulting in the stable colocalization of up-regulated TopBP1 with gamma-H2AX nuclear foci in DNA breaks. These results demonstrated that hHYD coordinated TopBP1 in the DNA damage response.  相似文献   

13.
V L Miller  R K Taylor  J J Mekalanos 《Cell》1987,48(2):271-279
  相似文献   

14.
E3 ubiquitin ligases catalyze the transfer of ubiquitin from an E2-conjugating enzyme to a substrate. UBR5, homologous to the E6AP C terminus (HECT)-type E3 ligase, mediates the ubiquitination of proteins involved in translation regulation, DNA damage response, and gluconeogenesis. In addition, UBR5 functions in a ligase-independent manner by prompting protein/protein interactions without ubiquitination of the binding partner. Despite recent functional studies, the mechanisms involved in substrate recognition and selective ubiquitination of its binding partners remain elusive. The C terminus of UBR5 harbors the HECT catalytic domain and an adjacent MLLE domain. MLLE domains mediate protein/protein interactions through the binding of a conserved peptide motif, termed PAM2. Here, we characterize the binding properties of the UBR5 MLLE domain to PAM2 peptides from Paip1 and GW182. The crystal structure with a Paip1 PAM2 peptide reveals the network of hydrophobic and ionic interactions that drive binding. In addition, we identify a novel interaction of the MLLE domain with the adjacent HECT domain mediated by a PAM2-like sequence. Our results confirm the role of the MLLE domain of UBR5 in substrate recruitment and suggest a potential role in regulating UBR5 ligase activity.  相似文献   

15.
16.
17.
18.
Taq DNA聚合酶功能区域的定位   总被引:4,自引:0,他引:4  
通过参U法定点突变产生了TaqDNA聚合酶N端分别缺失3个,235个,287个和443个氨基酸的4个缺失体,利用Bal-31连续缺失法产生了TaqDNA聚合酶的C端分别缺失了2个、16个、29个、32个、34个氨基酸的5个缺失体.经DNA聚合酶活性测定表明N端缺失3个,235个,287个氨基酸后活力和完整的Taq相近,而缺失443个氨基酸后则失去了DNA聚合酶活力;C端的5个缺失体都失去了DNA聚合酶活性.据此TaqDNA聚合酶的功能区域被定位在287~832氨基酸之间.  相似文献   

19.
The breast cancer suppressor BRCA2 is essential for the maintenance of genomic integrity in mammalian cells through its role in DNA repair by homologous recombination (HR). Human BRCA2 is 3,418 amino acids and is comprised of multiple domains that interact with the RAD51 recombinase and other proteins as well as with DNA. To gain insight into the cellular function of BRCA2 in HR, we created fusions consisting of various BRCA2 domains and also introduced mutations into these domains to disrupt specific protein and DNA interactions. We find that a BRCA2 fusion peptide deleted for the DNA binding domain and active in HR is completely dependent on interaction with the PALB2 tumor suppressor for activity. Conversely, a BRCA2 fusion peptide deleted for the PALB2 binding domain is dependent on an intact DNA binding domain, providing a role for this conserved domain in vivo; mutagenesis suggests that both single-stranded and double-stranded DNA binding activities in the DNA binding domain are required for its activity. Given that PALB2 itself binds DNA, these results suggest alternative mechanisms to deliver RAD51 to DNA. In addition, the BRCA2 C terminus contains both RAD51-dependent and -independent activities which are essential to HR in some contexts. Finally, binding the small peptide DSS1 is essential for activity when its binding domain is present, but not when it is absent. Our results reveal functional redundancy within the BRCA2 protein and emphasize the plasticity of this large protein built for optimal HR function in mammalian cells. The occurrence of disease-causing mutations throughout BRCA2 suggests sub-optimal HR from a variety of domain modulations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号