首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Yan JX  Wang KR  Chen R  Song JJ  Zhang BZ  Dang W  Zhang W  Wang R 《Biochimie》2012,94(1):184-191
As the increasing emergence of multi-drug resistant tumor cells, there is an urgent need for developing new chemotherapeutic agents. NK-lysin was a novel effector of cytotoxic T cells and natural killer (NK) cells and had broad antimicrobial activity. In this study, we developed a core region of NK-lysin termed NK-18, and studied its antitumor activity and possible action mode. Our results showed that NK-18 (with 18 amino acids) possesses potent antitumor activity against bladder and prostate cancer cells by disrupting the integrity of cell membrane, but has negligible hemolysis activity against mouse erythrocytes. In addition, CD spectra was employed to study its conformation in membrane mimicking environment. NK-18 takes a standard α-helical conformation in membrane mimicking environment, which could be accounted for its more potent antitumor activity compared with its low α-helical content homologous derivatives. These findings together with its shorter amino acid sequence and lower synthesis cost suggest that NK-18 could present an alternative therapeutic strategy to cancer chemotherapy and play a promising role in fighting the multi-drug resistant tumors.  相似文献   

2.
Chen L  Li Y  Li J  Xu X  Lai R  Zou Q 《Peptides》2007,28(8):1527-1531
An antimicrobial peptide named odorranain-HP was identified from skin secretions of the diskless odorous frog, Odorrana grahami. It is composed of 23 amino acids with an amino acid sequence of GLLRASSVWGRKYYVDLAGCAKA. By BLAST search, odorranain-HP had similarity to antimicrobial peptide odorranain-W1 but it has a different GLLR N-terminus. The cDNA encoding odorranain-HP was cloned from the cDNA library of the skin of O. grahami. This peptide showed antimicrobial activities against tested microorganisms. Interestingly, odorranain-HP could exert antimicrobial capability against Helicobacter pylori, along with its antimicrobial activities similar to odorranain-W1. This is the first report of naturally occurring peptide with anti-H. pylori activity from amphibian skins.  相似文献   

3.
HP (2-20) is a peptide derived from the N-terminus of Helicobacter pylori ribosomal protein L1 that has been shown to have antimicrobial activity against various species of bacteria. When we tested the effects of HP (2-20), we found that this peptide displayed strong activity against pathogens from a patient with gallstones, but it did not have hemolytic activity against human erythrocytes. We also found that HP (2-20) had potent activity against cefazolin sodium-resistant bacterial cell lines, and that HP (2-20) and cefazolin sodium had synergistic effects against cell lines resistant to the latter. To investigate the mechanism of action of HP (2-20), we performed fluorescence activated flow cytometry using pathogens from the patient with gallstones. As determined by propidium iodide (PI) staining, pathogenic bacteria treated with HP (2-20) showed higher fluorescence intensity than untreated cells, similar to melittin-treated cells, and that HP (2-20) acted in an energy- and salt-dependent manner. Scanning electron microscopy showed that HP (2-20) caused significant morphological alterations in the cell surface of pathogens from the patient with gallstones. By determining their 16S rDNA sequences, we found that both the pathogens from the patient with gallstones and the cefazolin sodium-resistant cell lines showed 100% homology with sequences from Pseudomonas aeruginosa. Taken together, these results suggest that HP (2-20) has antibiotic activity and that it may be used as a lead drug for the treatment of acquired pathogens from patients with gallstones and antibiotic-resistant cell lines.  相似文献   

4.
Antimicrobial peptides (AMPs) provide a potential source of new antimicrobial therapeutics for the treatment of multidrug-resistant pathogens. To develop Gram-negative selective AMPs that can inhibit the effects of lipopolysaccharide (LPS)-induced sepsis, we added various rationally designed LPS-targeting peptides [amino acids 28–34 of lactoferrin (Lf28–34), amino acids 84–99 of bactericidal/permeability increasing protein (BPI84–99), and de novo peptide (Syn)] to the potent AMP, GNU7 (RLLRPLLQLLKQKLR). Compared to our original starting peptide GNU7, hybrid peptides had an 8- to 32-fold improvement in antimicrobial activity against Gram-negative bacteria, such as Escherichia coli and Salmonella typhimurium. Among them, Syn-GNU7 showed the strongest LPS-binding and -neutralizing activities, thus allowing it to selectively eliminate Gram-negative bacteria from within mixed cultures. Our results suggest that LPS-targeting peptides would be useful to increase the antimicrobial activity and selectivity of other AMPs against Gram-negative bacteria.  相似文献   

5.
VmCT1 is a cationic antimicrobial peptide (AMP) from the venom of the scorpion Vaejovis mexicanus. VmCT1 and analogs were designed with single substitutions for verifying the influence of changes in physicochemical features described as important for AMPs antimicrobial and hemolytic activities, as well as their effect on VmCT1 analogs resistance against proteases action. The increase of the net positive charge by the introduction of an arginine residue in positions of the hydrophilic face of the helical structure affected directly the antimicrobial activity. Arg-substituted analogs presented activity against Gram-negative bacteria from the ESKAPE list of pathogens that were not observed for VmCT1. Additionally, peptides with higher net positive charge presented increased antimicrobial activity with values ranging from 0.39 to 12.5 μmol L−1 against Gram-positive and Gram-negative bacteria and fungi. The phenylalanine substitution by glycine (position 1), and the valine substitution by a proline residue (position 8) led to analogs with lower hemolytic activity (at concentrations 50 and 100 μmol L−1, respectively). These results revealed that it is possible to modulate the biological activities of VmCT1 derivatives by designing single substituted-analogs as prospective therapeutics against bacteria and fungi.  相似文献   

6.
The structure of the antimicrobial peptide NK-2 has been studied at the air-water interface and in different solutions using spectroscopic methods such as circular dichroism (CD) and infrared reflection absorption spectroscopy (IRRAS) as well as specular X-ray reflectivity (XR). NK-2 adopts an unordered structure in water, buffer, and in the presence of monomeric cationic and noncharged amphiphiles. However, it forms a stable alpha-helix in 2,2,2-trifluoroethanol (TFE) and in micellar solutions of anionic, cationic as well as nonionic amphiphiles, whereas only in sodium dodecyl sulfonate solutions the alpha-helical structure can also be found below the critical micellar concentration (cmc). The amphiphilic molecule NK-2 is surface active and forms a Gibbs monolayer at the air-buffer interface. In contrast, no adsorption was observed if NK-2 is dissolved in water. During the adsorption process in buffer solutions, NK-2 undergoes a conformational transition from random coil in bulk to alpha-helix at the interface. This change of the peptide's secondary structure is known to be associated with its antimicrobial activity. A comparison of the experimental IRRA spectra with the simulated spectra indicates that the adsorbed NK-2 alpha-helix lies flat at the interface. This is confirmed by XR measurements which show that the thickness of the NK-2 layer is approximately 17 A, which is the average diameter of a alpha-helix, indicating that only a monomolecular adsorption layer is formed.  相似文献   

7.
Currently, novel antibiotics are urgently required to combat the emergence of drug‐resistant bacteria. Antimicrobial peptides with membrane‐lytic mechanism of action have attracted considerable interest. Anoplin, a natural α‐helical amphiphilic antimicrobial peptide, is an ideal research template because of its short sequence. In this study, we designed and synthesized a group of analogues of anoplin. Among these analogues, anoplin‐4 composed of d ‐amino acids displayed the highest antimicrobial activity due to increased charge, hydrophobicity and amphiphilicity. Gratifyingly, anoplin‐4 showed low toxicity to host cells, indicating high bacterial selectivity. Furthermore, the mortality rate of mice infected with Escherichia coli was significantly reduced by anoplin‐4 treatment relative to anoplin. In conclusion, anoplin‐4 is a novel anoplin analogue with high antimicrobial activity and enzymatic stability, which may represent a potent agent for the treatment of infection. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
We designed and prepared peptidotriazoles based on the antimicrobial peptide BP100 (LysLysLeuPheLysLysIleLeuLysTyrLeu-NH(2)) by introducing a triazole ring in the peptide backbone or onto the side chain of a selected residue. These compounds were screened for their in vitro growth inhibition of bacterial and fungal phytopathogens, and for their cytotoxic effects on eukaryotic cells and tobacco leaves. Their proteolytic susceptibility was also analyzed. The antibacterial activity and the hemolysis were influenced by the amino acid that was modified with the triazole as well as by the absence of presence of a substituent in this heterocyclic ring. We identified sequences active against the bacteria Xanthomonas axonopodis pv. vesicatoria, Erwinia amylovora, Pseudomonas syringae pv. syringae (MIC of 1.6-12.5 μM), and against the fungi Fusarium oxysporum (MIC<6.2-12.5 μM) with low hemolytic activity (0-23% at 50 μM), high stability to protease digestion and no phytotoxicity. These peptidotriazoles constitute good candidates to design new antimicrobial agents.  相似文献   

9.
A key target of many intracellular pathogens is the macrophage. Although macrophages can generate antimicrobial activity, neutrophils have been shown to have a key role in host defense, presumably by their preformed granules containing antimicrobial agents. Yet the mechanism by which neutrophils can mediate antimicrobial activity against intracellular pathogens such as Mycobacterium tuberculosis has been a long-standing enigma. We demonstrate that apoptotic neutrophils and purified granules inhibit the growth of extracellular mycobacteria. Phagocytosis of apoptotic neutrophils by macrophages results in decreased viability of intracellular M. tuberculosis. Concomitant with uptake of apoptotic neutrophils, granule contents traffic to early endosomes, and colocalize with mycobacteria. Uptake of purified granules alone decreased growth of intracellular mycobacteria. Therefore, the transfer of antimicrobial peptides from neutrophils to macrophages provides a cooperative defense strategy between innate immune cells against intracellular pathogens and may complement other pathways that involve delivery of antimicrobial peptides to macrophages.  相似文献   

10.
The burden of nosocomial or health care-associated infection (HCAI) is increasing worldwide. According to the World Health Organization (WHO), it is several fold higher in low- and middle-income countries. Considering the multidrug-resistant infections, the development of new and more effective drugs is crucial. Herein, two series (I and II) of 5-nitrofuran derivatives were designed, synthesized and assayed against microorganisms, including Gram-positive and -negative bacteria, and fungi. The pathogens screened was directly related to either the most currently relevant HCAI, or to multidrug-resistant infection caused by MRSA/VRSA strains, for instance. The sets I and II were composed by substituted-[N′-(5-nitrofuran-2-yl)methylene]benzhydrazide and 3-acetyl-5-(substituted-phenyl)-2-(5-nitro-furan-2-yl)-2,3-dihydro-1,3,4-oxadiazole compounds, respectively. The selection of the substituent groups was based upon physicochemical properties, such as hydrophobicity and electronic effect. The compounds have showed better activity against Staphylococcus aureus, Escherichia coli, and Enterococcus faecalis. The findings from S. aureus strain, which was more susceptible, were used to investigate the intersamples and intervariables relationships by applying chemometric methods. It is noteworthy that the compound 4-butyl-[N′-(5-nitrofuran-2-yl)methylene]benzhydrazide has showed similar MIC value to vancomycin, which is the reference drug for multidrug-resistant S. aureus infections. Taken the findings together, the 5-nitrofuran derivatives might be indeed considered as promising hits to develop novel antimicrobial drugs to fight against nosocomial infection.  相似文献   

11.
12.
Biofilms are complex microbial communities that tend to attach to either biotic or abiotic surface. Enclosed in a self-produced extracellular polymeric substance (EPS) matrix, the biofilms often cause persistent infections. The objective of this study was to investigate the antibiofilm activity of dimethyl sulfoxide (DMSO) and afatinib against Gram-negative pathogens. Test microorganisms used in this study were Escherichia coli ATCC 1299, Pseudomonas aeruginosa ATCC 10145, and Salmonella typhimurium ATCC 14028. Biofilms were developed in 96-well microplate at 37°C for 24 h. Following removal of non-adherent cells, analysis of biofilm viability, biofilm biomass, and extracellular polymeric substances (EPS) matrix were performed using resazurin assay, crystal violet assay, and attenuated total reflectance fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Bradford protein assay was conducted to determine the total amount of EPS proteins. The results demonstrated that both 32% DMSO alone and its combination with 3.2 μg/mL afatinib were effective in killing biofilm cells and reducing biofilm biomass. IR spectral variations of EPS matrix of biofilms in the range between 1700 and 900 cm?1 were also observed. Reduction in EPS proteins verified the chemical modifications of EPS matrix. In conclusion, 32% DMSO alone and its combination with 3.2 μg/mL afatinib showed remarkable antibiofilm activities against Gram-negative pathogens. It was suggested that the biofilm inhibition was mediated by the chemical modification of EPS matrix.  相似文献   

13.
Infections caused by Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa foremost among them, constitute a major worldwide health problem. Bioinformatics methodologies are being used to rationally design new antimicrobial peptides, a potential alternative for treating these infections. One of the algorithms used to develop antimicrobial peptides is the Joker, which was used to design the peptide PaDBS1R6. This study evaluates the antibacterial activities of PaDBS1R6 in vitro and in vivo, characterizes the peptide interaction to target membranes, and investigates the PaDBS1R6 structure in contact with mimetic vesicles. Moreover, we demonstrate that PaDBS1R6 exhibits selective antimicrobial activity against Gram-negative bacteria. In the presence of negatively charged and zwitterionic lipids the structural arrangement of PaDBS1R6 transits from random coil to α-helix, as characterized by circular dichroism. The tertiary structure of PaDBS1R6 was determined by NMR in zwitterionic dodecylphosphocholine (DPC) micelles. In conclusion, PaDBS1R6 is a candidate for the treatment of nosocomial infections caused by Gram-negative bacteria, as template for producing other antimicrobial agents.  相似文献   

14.
The threat of antimicrobial resistance has placed increasing emphasis on the development of innovative approaches to eradicate multidrug‐resistant pathogens. Biofilm‐forming microorganisms, for example, Staphylococcus epidermidis and Staphylococcus aureus, are responsible for increased incidence of biomaterial infection, extended hospital stays and patient morbidity and mortality. This paper highlights the potential of ultrashort tetra‐peptide conjugated to hydrophobic cinnamic acid derivatives. These peptidomimetic molecules demonstrate selective and highly potent activity against resistant biofilm forms of Gram‐positive medical device‐related pathogens. 3‐(4‐Hydroxyphenyl)propionic)‐Orn‐Orn‐Trp‐Trp‐NH2 displays particular promise with minimum biofilm eradication concentration (MBEC) values of 125 µg/ml against methicillin sensitive (ATCC 29213) and resistant (ATCC 43300) S. aureus and activity shown against biofilm forms of Escherichia coli (MBEC: 1000 µg/ml). Kill kinetics confirms complete eradication of established 24‐h biofilms at MBEC with 6‐h exposure. Reduced cell cytotoxicity, relative to Gram‐positive pathogens, was proven via tissue culture (HaCaT) and haemolysis assays (equine erythrocytes). Existing in nature as part of the immune response, antimicrobial peptides display great promise for exploitation by the pharmaceutical industry in order to increase the library of available therapeutic molecules. Ultrashort variants are particularly promising for translation as clinical therapeutics as they are more cost‐effective, easier to synthesise and can be tailored to specific functional requirements based on the primary sequence allowing factors such as spectrum of activity to be varied. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
Antibiotic-resistant bacterial infections are becoming a serious health issue and will cause 10 million deaths per year by 2050. As a result, the development of new antimicrobial agents is urgently needed. Antimicrobial peptides (AMPs) are found in the innate immune systems of various organisms to effectively fend off invading pathogens. In this study, we designed a series of AMPs (THL-2-1 to THL-2-9) with centrosymmetric and amphipathic properties, through substituting different amino acids on the hydrophobic side and at the centrosymmetric position to improve their antimicrobial activity. The results showed that leucine as a residue on the hydrophobic side of the peptide could enhance its antimicrobial activity and that glutamic acid as a centrosymmetric residue could increase the salt resistance of the peptide. Thus, the THL-2-3 peptide (KRLLRELKRLL-NH2) showed the greatest antimicrobial activity (MIC90 of 16 μM) against Gram-negative bacteria and had the highest salt resistance and cell selectivity among all the designed peptides. In summary, the results of this study provide useful references for the design of AMPs to enhance antimicrobial activity.  相似文献   

16.
Antibiotic‐resistant bacteria, such as methicillin‐resistant Staphylococcus aureus and vancomycin‐resistant Enterococcus, pose serious threat to human health. The outbreak of antibiotic‐resistant pathogens in recent years emphasizes once again the urgent need for the development of new antimicrobial agents. Here, we discovered a novel antimicrobial peptide from the scorpion Opistophthalmus glabrifrons, which was referred to as Opisin. Opisin consists of 19 amino acid residues without disulfide bridges. It is a cationic, amphipathic, and α‐helical molecule. Protein sequence homology search revealed that Opisin shares 42.1–5.3% sequence identities to the 17/18‐mer antimicrobial peptides from scorpions. Antimicrobial assay showed that Opisin is able to potently inhibit the growth of the tested Gram‐positive bacteria with the minimal inhibitory concentration (MIC) values of 4.0–10.0 μM; in contrast, it possesses much lower activity against the tested Gram‐negative bacteria and a fungus. It is interesting to see that Opisin is able to strongly inhibit the growth of methicillin‐ and vancomycin‐resistant pathogens with the MICs ranging from 2.0 to 4.0 μM and from 4.0 to 6.0 μM, respectively. We found that at a concentration of 5 × MIC, Opisin completely killed all the cultured methicillin‐resistant Staphylococcus aureus. These results suggest that Opisin is a promising therapeutic candidate for the treatment of the antibiotic‐resistant bacterial infections. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
天然抗菌肽具有较强的杀菌能力,但高生物相容性抗菌肽的构建一直阻碍着该领域的发展.为了提高抗菌肽的选择特异性,通过分子动力学分析探讨了抗菌肽的结构特性,并检测其生物学活性.首先以(RXKY)2(YRY)2 (X代表Ile,Y代表Leu)为模板设计新型抗菌肽分子RIKL.通过圆二色谱(circular dichroism,...  相似文献   

18.
The antifungal effect of three furyl compounds closely related to resveratrol, (E)-3,4,5-trimethoxy-β-(2-furyl)-styrene (1), (E)-4-methoxy-β-(2-furyl)-styrene (2) and (E)-3,5-dimethoxy-β-(2-furyl)-styrene (3) against Botrytis cinerea was analyzed. The inhibitory effect, at 100 μg ml(-1) of compounds 1, 2, 3 and resveratrol on conidia germination, was determined to be about 70%, while at the same concentration pterostilbene (a dimethoxyl derivative of resveratrol) produced complete inhibition. The title compounds were more fungitoxic towards in vitro mycelial growth than resveratrol and pterostilbene. Compound 3 was the most active and a potential explanation of this feature is given using density functional theory (DFT) calculations on the demethoxylation/demethylation process. Compound 3 was further evaluated for its effects on laccase production, oxygen consumption and membrane integrity of B. cinerea. An increase of the laccase activity was observed in the presence of compound 3 and, using Sytox Green nucleic acid stain, it was demonstrated that this compound altered B. cinerea membrane. Finally, compound 3 partially affected conidia respiration.  相似文献   

19.
We investigated the in vitro antibiotic activity of the 19-amino acid antimicrobial peptide HP (2-20), derived from the N-terminus of Helicobacter pylori Ribosomal Protein L1 (RPL1), against antibiotic susceptible and resistant pathogens from a patient with gallstones. HP (2-20) was active against antibiotic-susceptible and antibiotic-resistant clinical isolates of pathogens from a patient with gallstones, but this peptide showed no hemolytic activity against normal human erythrocytes. HP (2-20) acted synergistically with ciprofloxacin against pathogenic bacteria. Fluorescence activated flow cytometry revealed that the effect of HP (2-20) was dependent on energy and salt concentration. In addition, scanning electron microscopy showed that HP (2-20) caused significant morphological alterations to the cell surface of pathogens. Using 16S rDNA sequences, we found that isolates from bile were 100% homologous to Pseudomonas aeruginosa. These findings suggest that HP (2-20) may be useful clinically as an antibiotic against acquired pathogens from patients with gallstones and against pathogens resistant to other antibiotics.  相似文献   

20.
Aims: Natural and synthetic antimicrobial peptides (AMPs) are of increasing interest as potential resistance conferring elements in plants against pathogen infection. The efficacy of AMPs against pathogens is prescreened by in vitro assays, and promising AMP candidates are introduced as transgenes into plants. As in vitro and in planta environments differ, a prescreening procedure of the AMP efficacy in the plant environment is desired. Here, we report the efficacy of the purified synthetic peptide D4E1 against the grapevine‐infecting bacterial pathogens Agrobacterium vitis and Xylophilus ampelinus in vitro and describe for the first time an in planta prescreening procedure based on transiently expressed D4E1. Methods and Results: The antimicrobial effect of D4E1 against Ag. vitis and X. ampelinus was shown by a reduction in colony‐forming units in vitro in a traditional plate‐based assay and by a reduction in bacterial titres in planta as measured by quantitative real‐time PCR (qPCR) in grapevine leaves transiently expressing D4E1. A statistically significant reduction in titre was shown for X. ampelinus, but for Agvitis, a significant reduction in titre was only observed in a subset of plants. Conclusions: The titres of both grapevine‐infecting bacterial pathogens were reduced in an in vitro assay and for Xampelinus in an in planta assay by D4E1 application. This widens the applicability of D4E1 as a potential resistance‐enhancing element to additional pathogens and in a novel plant species. Significance and Impact of the Study: D4E1 is a promising candidate to confer enhanced resistance against the two tested grapevine bacterial pathogens, and the applied transient expression system proved to be a valuable tool for prescreening of D4E1 efficacy in an in planta environment. The described prescreening procedure can be used for other AMPs and might be adapted to other plant species and pathogens before the expensive and tedious development of stably transgenic lines is started.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号