首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bluegill (Lepomis macrochirus) and yellow perch (Perca flavescens) populations are often sympatric in the Great Plains region of the U.S.A. and portions of Canada; however, very little attention has been given to potential interactions between these species for available resources, especially during the early life stages. Relationships between age-0 bluegill and yellow perch growth and relative abundance were explored across multiple lakes and years within the Nebraska Sandhill region, USA. In addition, four habitat patch types (open water, Phragmites spp., Typha spp., Scirpus spp.) were sampled for age-0 bluegill and yellow perch, and food habits were examined for each species during August, September, and October of 2009 in one of these lakes. Age-0 yellow perch growth was negatively related to age-0 bluegill relative abundance across a spatiotemporal scale. Age-0 bluegill and yellow perch exhibited similar habitat use (moderate–high overlap), but generally consumed different important and dominant prey taxa (bluegill consumed both macroinvertebrates—56?% and zooplankton—44?%, while yellow perch consumed more zooplankton—66?%), which resulted in low overall diet overlap between species. Previous research indicates that age-0 yellow perch diet ontogeny often results in feeding predominately on macroinvertebrates and positively selecting them (and avoiding zooplankton prey) at sizes observed in our study. Therefore, yellow perch growth rates may be compromised by the presence of bluegill because of the need to consume less energetically profitable prey items such as zooplankton.  相似文献   

2.
3.
1. The outcome of interspecific competition for food resources depends both on the competitors’ sensory abilities and on environmental conditions. In laboratory experiments we tested the influence of daylight and darkness on feeding behaviour and specific growth rate (SGR) of two species with different sensory abilities. 2. We used perch (Perca fluviatilis) as a visually orientated, and ruffe (Gymnocephalus cernuus) as a mechano‐sensory oriented predator and tested their growth rates and behaviour under conditions of interspecific and intraspecific competition. Three different foraging conditions were used: food supplied (i) only during the day, (ii) only during the night or (iii) during both day and night. 3. In perch neither SGR nor feeding behaviour were influenced substantially by interspecific competition during daylight. During darkness their foraging behaviour changed markedly and their access to the food source as well as their SGR were negatively affected by the presence of ruffe. 4. Ruffe's foraging behaviour did not change during either day or night with interspecific competition. During the night ruffe's SGR was higher with interspecific competition, probably because of a release from intraspecific competition and the competitive inferiority of perch during the night. 5. Because of its seonsory abilities ruffe feeds predominantly at night, thereby reducing competitive interference from perch.  相似文献   

4.
Complex habitat structures can influence the foraging success of fish. Competition for food between fish species can therefore depend on the competitors' abilities to cope with structural complexity. In laboratory experiments, we comparatively assessed effects of zebra mussels (Dreissena polymorpha Pall .) on the foraging success of Eurasian perch (Perca fluviatilis L.) and ruffe (Gymnocephalus cernuus (L.)). In single‐species and mixed‐species experiments, the fish were fed caddisfly larvae (Tinodes waeneri (L.)) over complex (mussel‐covered stones) and less‐complex (bare stones) substrates. With intraspecific competition, food consumption by perch and ruffe decreased significantly when the complex substrate was used. With interspecific competition, food consumption by perch and ruffe did not change with substrate complexity, but perch clearly out‐competed ruffe on both substrates. Zebra mussel beds provide a refuge for macrozoobenthos against predation by ruffe and probably also by perch. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Asymmetry in the competition abilities between invasive and native consumers can potentially influence the colonization success by invasive species. We tested whether a subsidy of allochthonous prey enhanced an asymmetric competition between invasive bluegill (Lepomis macrochirus) and two native cyprinid fish, that is, stone moroko (Pseudorasbora parva) and tamoroko (Gnathopogon elongatus elongatus). A field experiment was conducted using enclosures wherein the strength of interspecific competition and the presence/absence of allochthonous prey were manipulated. The experiment revealed that allochthonous prey alleviated the limitation of fish growths caused by a severe competition for aquatic prey resources. However, the importance of allochthonous prey differed considerably between invasive bluegill and the two native cyprinids. Individual bluegills grew faster when the allochthonous prey was supplied, whereas no difference in growth was observed in the two cyprinids whether or not allochthonous prey was supplied. Interestingly, the importance of allochthonous prey on the total amount of bluegill growth varied depending on the numerical abundance of native cyprinid competitors, and this importance increased when the native cyprinids were abundant. These findings indicated that allochthonous prey provides an asymmetric growth benefit to invasive bluegills over the two native cyprinids by alleviating asymmetrically the competition strength in a Japanese pond, especially under the conditions of severe interspecific resource competition and a limitation in the utilization of in situ prey resources.  相似文献   

6.
Summary One potentially important effect of interspecific competition in freshwater fish communities is to increase predation intensity from gape-limited piscivores by lowering growth rates of prey species. We investigated the operation and consequences of competition between central mudminnows (Umbra limi) and yearling yellow perch (Perca flavescens) in a system where size-limited predation on mudminnows by larger perch is a principle structuring mechanism. During laboratory experiments in which mudminnows foraged for patchily-presented food in the presence and absence of yearling perch, the food intake of mudminnows decreased at both the population and individual-fish levels when perch were present. Mudminnows were neither less active nor did they occupy lower-quality food patches in the presence of perch; exploitation competition, rather than interference or predator avoidance, appeared responsible for reduced feeding success. To assess effects of competition in the field, we examined size distributions and condition factors of yearling mudminnows and perch in small Wisconsin lakes having mudminnow-only and mudminnow-perch assemblages. Yearling mudminnows were smaller and in poorer condition in an assemblage composed (by mass) of 45% yearling perch than in two mudminnow-only assemblages. Conversely, yearling perch were larger and in better condition when the mudminnow-perch assemblage contained only 45% perch then when it contained 92% perch. Our experimental and field results indicated that an asymmetrical competitive relationship could contribute directly to the interspecific population dominance of perch over mudminnows in Umbra-Perca assemblages through reduced food intake, growth, and condition of mudminnows, and indirectly through increased vulnerability of mudminnows to size-limited predation.  相似文献   

7.
Using an artificial stream, habitat use by two sympatric native salmonids in the presence and absence of introduced salmonid species was investigated experimentally. When only native white‐spotted charr Salvelinus leucomaenis and masu salmon Oncorhynchus masou were sympatric, they occupied different microhabitats. In the presence of introduced brown trout Salmo trutta or rainbow trout Oncorhynchus mykiss , however, white‐spotted charr and masu salmon were observed to use a similar habitat and interspecific competition between white‐spotted charr and masu salmon was initiated. The study suggested that the coexistence of native salmonids was negatively affected through interspecific competition between native and introduced salmonids.  相似文献   

8.
We characterized 23 polymorphic tetranucleotide microsatellite loci for Sacramento perch (Archoplites interruptus). This species is extirpated in its native range, the Sacramento–San Joaquin Delta (California, USA), and is therefore targeted for recovery. A concerted effort is currently underway to re‐establish self‐sustaining populations of Sacramento perch in its native range. These microsatellites will be used to analyse the population structure of the species and, in conjunction with life history and physiological data, develop a comprehensive recovery plan.  相似文献   

9.
Habitat partitioning is a common ecological mechanism to avoid competition among coexisting species, and the introduction of new species into existing assemblages can increase competitive pressures. However, situations of species in allopatry and sympatry only differing in species presence but not in environmental conditions are scarce. Thus, discerning whether niche segregation arises from competition or from different habitat preferences is usually unfeasible. Here, we analyse species’ habitat niches in an assemblage of native and introduced herbivores in southern Patagonia. We test if niche overlap is higher between native and domestic herbivores than among natives as expected from the relatively short time of coexistence, and we evaluate the effect of intra‐ and interspecific competition on niche breadth. We use a probabilistic multidimensional approach and null models to evaluate overlap and changes in niche dimensions. Overlap among native species is low as expected for species coexisting in evolutionary time. In native‐domestic species pairs, niche overlap was higher than among natives, although showing some niche segregation indicating niche differentiation in ecological time. Moreover, the presence of domestic species was associated with niche narrowing of both native and introduced species, revealing interspecific density‐dependent effects on their habitat niche during resource shortage periods.  相似文献   

10.
1. When available, Daphnia spp. are often preferred by age‐0 yellow perch and bluegill sunfish because of energetic profitability. We hypothesised that predation by age‐0 yellow perch could lead to a midsummer decline (MSD) of Daphnia spp. and that priority effects may favour yellow perch because they hatch before bluegill, allowing them to capitalise on Daphnia spp. prior to bluegill emergence. 2. Data were collected from 2004 to 2010 in Pelican Lake, Nebraska, U.S.A. The lake experienced a prolonged MSD in all but 1 year (2005), generally occurring within the first 2 weeks of June except in 2008 and 2010 when it occurred at the end of June. MSD timing is not solely related to seasonal patterns of age‐0 yellow perch consumption. Nevertheless, when Daphnia spp. biomass was low during 2004 and 2006–2010 (<4 mg wet weight L?1), predation by age‐0 yellow perch seems to have suppressed Daphnia spp. biomass (i.e. <1.0 mg wet weight L?1). The exception was 2005 when age‐0 yellow perch were absent. 3. Growth of age‐0 bluegill was significantly faster in 2005, when Daphnia spp. were available in greater densities (>4 mg wet weight L?1) compared with the other years (<0.2 mg wet weight L?1). 4. We conclude that age‐0 yellow perch are capable of reducing Daphnia biomass prior to the arrival of age‐0 bluegill, ultimately slowing bluegill growth. Thus, priority effects favour age‐0 yellow perch when competing with age‐0 bluegill for Daphnia. However, these effects may be minimised if there is a shorter time between hatching of the two species, higher Daphnia spp. densities or lower age‐0 yellow perch densities.  相似文献   

11.
Björn Söderbäck 《Oecologia》1994,100(3):229-235
Two freshwater crayfish species, Astacus astacus L. and Pacifastacus leniusculus Dana, co-occur in some Swedish lakes. Observational studies indicate that the introduced, North American species P. leniusculus may gradually replace the native A. astacus, but the mechanism behind the replacement is not known. This study examined the direct effects of interspecific competition between the crayfish, and indirect effects of competitive interactions and fish (European perch, Perca fluviatilis L.) predation. Three different experiments with young-of-the-year (YOY) crayfish were performed. P. leniusculus was strongly dominant over similar-sized A. astacus in interference competition for shelter in a laboratory experiment. However, in a 35-day experiment in outdoor pools, A. astacus growth and survival were about equally affected by interactions with conspecifics and P. leniusculus. In contrast, P. leniusculus was significantly more affected by intraspecific competition than by competition with A. astacus, suggesting asymmetric competition between the two species. The presence of perch in outdoor ponds with mixed-species groups of the two crayfish species resulted in considerably higher predation rates on A. astacus than on P. leniusculus. Both species showed strong antipredator responses to perch by increasing refuge use. I suggest that higher perch predation rates on A. astacus originate from P. leniusculus being the superior species in interspecific competition for shelter. Because of displacement from refuges, A. astacus individuals become more exposed to the predator. This indirect effect of interactions among the two cray-fish species and the predator may be important in the observed in situ replacement of A. astacus by P. leniusculus.  相似文献   

12.
Summary The central mudminnow (Umbra limi) and yellow perch (Perca flavescens) are two species of fishes that commonly co-occur in small bog lakes in the Great Lakes region of North America. Both species are dietary generalists with a high degree of dietary overlap, and perch populations have been shown to have a strong negative effect on mudminnow populations. I compared the foraging rates of the two species in a series of laboratory experiments in which four foraging sites were simulated (open bottom substrate, water column, submerged aquatic macrophytes, and water surface). Fish were observed as they foraged singly, in monospecific pairs, and in mixed species pairs to evaluate the effects of intra- and interspecific competition on foraging success and the potential for resource partitioning based on foraging site. Single species trials showed that each species had similar foraging rates at each of the four sites. Across all sites combined, interspecific competition had a greater negative effect on the foraging success of mudminnows than did intraspecific competition. Conversely, intraspecific competition had a greater negative effect on the foraging success of perch than did interspecific competition. In mixed species trials perch took more food items from each of the four foraging sites than did mudminnows and caused shifts in site-use patterns of mudminnows. Differences in the foraging success of the two species reflected the superior ability of perch to discover the presence of food and to search rapidly for additional items, but were unrelated to handling times. These differences were linked to the species' foraging modes. The competitive superiority of perch, demonstrated in these experiments, could contribute to the negative impact of perch on mudminnow populations under natural conditions.  相似文献   

13.
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition between introduced and native species can strongly influence the distribution and spread of exotic species and in some cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the potential of interspecific competition among these two introduced ants by measuring interspecific aggression between Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants.  相似文献   

14.
Synopsis Crayfish are not native to the Colorado River basin (CRB), however they are now established in portions of the mainstem and in many tributaries. I used density manipulation experiments in a laboratory setting to determine intra- and interspecific competition for food between Orconectes virilis, an aggressive polytrophic crayfish now common in the CRB, and two native fishes: Gila chub, Gila intermedia, and flannelmouth sucker, Catostomus latipinnis. I tested each fish species in separate trials. Growth of Gila chub decreased when animal densities increased, however they were more affected by intraspecific competition than by crayfish presence. In contrast, growth of flannelmouth suckers was more affected by crayfish than by intraspecific competition. Crayfish growth was not significantly altered by presence of either fish. Crayfish thus reduced fish growth by competition for food, but the effect differed markedly between the two species. An erratum to this article can be found at .  相似文献   

15.
The effects of competition on the evolution of interspecific interference mechanisms were studied by comparing the aggressive behavior of two terrestrial salamander species from two localities that differ in the intensity of interspecific competition. Plethodon jordani and P. glutinosus are closely related, ecologically similar species that are sympatric at intermediate elevations in the southern Appalachian Mountains. Previous removal and transplant experiments showed that interspecific competition is more intense in the northeastern Great Smoky Mountains, where the species are narrowly sympatric, than in the nearby Balsam Mountains, where sympatry is broader. In laboratory encounters, P. glutinosus from the Great Smoky Mountains were more aggressive to heterospecific and conspecific intruders than were P. glutinosus from the Balsam Mountains. For P. jordani, however, the variation in interspecific and intraspecific aggressive behavior among individuals within populations was as great as the variation between populations. Alpha-selection (i.e., improved competitive ability by the acquisition of interspecific interference mechanisms) has occurred in populations of P. glutinosus under conditions of intense interspecific competition. The evolution of aggressive behavior appears to have been influenced by the intensity of intraspecific competition as well.  相似文献   

16.
17.
A fundamental goal of evolutionary ecology is to understand the environmental drivers of ecological divergence during the early stages of adaptive diversification. Using the model system of the post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes, we used a comparative field study to examine variation in density, age structure, tertiary (adult) sex ratio, habitat use, as well as adult feeding and social behaviors in relation to environmental features including predation risk, interspecific competition, productivity (e.g. chlorophyll a, zooplankton density), and abiotic factors (e.g. salinity, surface diameter). The primary environmental factor associated with ecological differentiation in G. hubbsi was the presence of piscivorous fish. Gambusia hubbsi populations coexisting with predatory fish were less dense, comprised of a smaller proportion of juveniles, and were more concentrated in shallow, near-shore regions of blue holes. In addition to predation risk, the presence of a competitor fish species was associated with G. hubbsi habitat use, and productivity covaried with both age structure and habitat use. Feeding and social behaviors differed considerably between sexes, and both sexes showed behavioral differences between predator regimes by exhibiting more foraging behaviors in the absence of predators and more sexual behaviors in their presence. Males additionally exhibited more aggressive behaviors toward females in the absence of predators, but were more aggressive toward other males in the presence of predators. These results largely matched a priori predictions, and several findings are similar to trends in other related systems. Variation in predation risk appears to represent the primary driver of ecological differentiation in this system, but other previously underappreciated factors (interspecific competition, resource availability) are notable contributors as well. This study highlights the utility of simultaneously evaluating multiple environmental factors and multiple population characteristics within a natural system to pinpoint environmental drivers of ecological differentiation.  相似文献   

18.
Reciprocal transplant experiments were completed to test for selection against the mixing of behavioural phenotypes in a desert spider. Most Agelenopsis aperta populations experience low prey abundances and competition for web‐sites that provide shelter from thermal extremes. These conditions favour aggressiveness towards both prey and conspecifics (an ‘arid‐land behavioural phenotype’). The spider also occupies narrow stretches of riparian habitat bordering spring‐fed streams and rivers. Here it is released from competition for prey and foraging sites, but is subject to predation by birds. A less aggressive/more fearful behaviour is selected for in these riparian habitats (a ‘riparian behavioural phenotype’). Previous work with this spider indicates that there is genetic differentiation between arid‐land and riparian populations. However, the degree to which genetic differentiation is achieved may be limited by gene flow. Reciprocal sets of enclosures were established in: (1) a dry evergreen woodland site (arid‐land phenotype) and (2) a neighbouring riparian site (riparian phenotype) in south‐eastern Arizona. Equal numbers of field collected, early instar A. aperta were introduced into native and transplant enclosures in each habitat. After 6 months of site‐imposed selection, survivorship was determined and growth estimates and behavioural trials completed on spiders remaining in the different enclosures. The same behavioural test was subsequently applied to lab‐reared offspring of the spiders surviving the respective selection regimes. Riparian transplants showed both poor survival and retarded growth in the dry woodland habitat when compared with both arid‐land and riparian natives. Arid‐land transplants that survived, however, grew equally well in riparian habitat as did dry woodland and riparian natives. Behavioural assays conducted on test subjects after selection and on their offspring reared in a controlled laboratory environment indicate that phenotypes that were inappropriate to the respective habitats were selected against in the transplant experiments. The frequency distribution of transplant spider behaviour on a continuum from fearful to aggressive was intermediate between that exhibited by respective native riparian and dry woodland spiders. It is concluded that while arid‐land and riparian behavioural ecotypes do exist, directional gene flow of arid‐land phenotypes into riparian habitat limits population subdivision.  相似文献   

19.
We studied the potential influence of predation risk on the competitive ability and habitat use of foraging perch and the effect of these interactions on growth. Groups of four similar-sized young-of-the-year perch were in visual contact with a piscivorous perch during feeding. The fry had the choice of vegetation and open habitat, with food presented in the open habitat. Competitive ability, defined as proportion of prey attacks, varied between perch individuals and was unaffected by predation risk. The variation in proportion of prey attacks was affected by relative size within each replicate group, despite small size differences (±1 mm), with the largest individual being a better competitor than the smallest ones. The degree of boldness, measured as the proportion of time spent in the open habitat, was significantly related to both competitive ability and prey attack order. Observations of aggressive behaviour indicated a possible occurrence of interference competition, which may contribute to the appearance of different competitive abilities between individuals within a group of perch. A significant correlation was found between competitive ability and growth. Growth variation within groups was not affected by predation risk.  相似文献   

20.
Strategic use of oral toxicants could allow for practical and sustainable control schemes for the invasive common carp (Cyprinus carpio, or ‘carp’) if a toxicant selectively targeted carp and not native species. In this study, we incorporated antimycin-a (ANT-A), a known fish toxicant, into a corn-based bait and conducted a series of experiments to determine its toxicity, leaching rate, and species-specificity. Our results showed that ANT-A was lethal to carp at doses ≥ 4 mg/kg and that the amount of ANT-A that leached out of the bait in 72 h was not lethal to carp or bluegill (Lepomis macrochirus). Species-specificity trials were conducted in 227 L tanks, in which carp were stocked with three native species representing families that occur sympatrically with carp in our study region: the fathead minnow (Pimephales promelas), yellow perch (Perca flavescens) and bluegill. These trials showed high mortality of carp (46%) and fathead minnows (76%) but no significant mortality of perch or bluegill. Finally, a pond study, which used the same species composition except for fathead minnows, resulted in 37% morality among adult carp and no mortality among perch or bluegill. Our results suggest that corn-based bait that contains ANT-A could be used to selectively control carp in ecosystems dominated by percids or centrarchids, such as lakes across the Great Plains ecoregion of North America, where carp are especially problematic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号