首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human peroxins PEX3 and PEX19 are essential for peroxisome biogenesis. They mediate the import of membrane proteins as well as the de novo formation of peroxisomes. PEX19 binds newly synthesized peroxisomal membrane proteins post-translationally and directs them to peroxisomes by engaging PEX3, a protein anchored in the peroxisomal membrane. After protein insertion into the lipid bilayer, PEX19 is released back to the cytosol. Crystallographic analysis provided detailed insights into the PEX3-PEX19 interaction and identified three highly conserved regions, the PEX19-binding region, a hydrophobic groove and an acidic cluster, on the surface of PEX3. Here, we used site-directed mutagenesis and biochemical and functional assays to determine the role of these regions in PEX19-binding and peroxisome biogenesis. Mutations in the PEX19-binding region reduce the affinity for PEX19 and destabilize PEX3. Furthermore, we provide evidence for a crucial function of the PEX3-PEX19 complex during de novo formation of peroxisomes in peroxisome-deficient cells, pointing to a dual function of the PEX3-PEX19 interaction in peroxisome biogenesis. The maturation of preperoxisomes appears to require the hydrophobic groove near the base of PEX3, presumably by its involvement in peroxisomal membrane protein insertion, while the acidic cluster does not appear to be functionally relevant.  相似文献   

2.
The biogenesis of peroxisomes requires the interaction of several peroxins, encoded by PEX genes and is well conserved between yeast and humans. We have cloned the human cDNA of PEX3 based on its homology to different yeast PEX3 genes. The deduced peroxin HsPEX3 is a peroxisomal membrane protein with a calculated molecular mass of 42.1 kDa. We created N- and C-terminal tagged PEX3 to assay its topology at the peroxisomal membrane by immunofluorescence microscopy. Our results and the one predicted transmembrane spanning region are in line with the assumption that H sPEX3 is an integral peroxisomal membrane protein with the N-terminus inside the peroxisome and the C-terminus facing the cytoplasm. The farnesylated peroxisomal membrane protein PEX19 interacts with HsPEX3 in a mammalian two-hybrid assay in human fibroblasts. The physical interaction could be confirmed by coimmunoprecipitation of the two in vitro transcribed and translated proteins. To address the targeting of PEX3 to the peroxisomal membrane, the expression of different N- and C-terminal PEX3 truncations fused to green fluorescent protein (GFP) was investigated in human fibroblasts. The N-terminal 33 amino acids of PEX3 were necessary and sufficient to direct the reporter protein GFP to peroxisomes and seemed to be integrated into the peroxisomal membrane. The expression of a 1-16 PEX3-GFP fusion protein did not result in a peroxisomal localization, but interestingly, this and several other truncated PEX3 fusion proteins were also localized to tubular and/or vesicular structures representing mitochondria.  相似文献   

3.
Matsumoto and colleagues recently identified PEX26 as the gene responsible for complementation group 8 of the peroxisome biogenesis disorders and showed that it encodes an integral peroxisomal membrane protein with a single C-terminal transmembrane domain and a cytosolic N-terminus that interacts with the PEX1/PEX6 heterodimer through direct binding to the latter. They proposed that PEX26 functions as the peroxisomal docking factor for the PEX1/PEX6 heterodimer. Here, we identify new PEX26 disease alleles, localize the PEX6-binding domain to the N-terminal half of the protein (aa 29-174), and show that, at the cellular level, PEX26 deficiency impairs peroxisomal import of both PTS1- and PTS2-targeted matrix proteins. Also, we find that PEX26 undergoes alternative splicing to produce several splice forms--including one, PEX26- delta ex5, that maintains frame and encodes an isoform lacking the transmembrane domain of full-length PEX26 (PEX26-FL). Despite its cytosolic location, PEX26- delta ex5 rescues peroxisome biogenesis in PEX26-deficient cells as efficiently as does PEX26-FL. To test our observation that a peroxisomal location is not required for PEX26 function, we made a chimeric protein (PEX26-Mito) with PEX26 as its N-terminus and the targeting segment of a mitochondrial outer membrane protein (OMP25) at its C-terminus. We found PEX26-Mito localized to the mitochondria and directed all detectable PEX6 and a fraction of PEX1 to this extraperoxisomal location; yet PEX26-Mito retains the full ability to rescue peroxisome biogenesis in PEX26-deficient cells. On the basis of these observations, we suggest that a peroxisomal localization of PEX26 and PEX6 is not required for their function and that the interaction of PEX6 with PEX1 is dynamic. This model predicts that, once activated in an extraperoxisomal location, PEX1 moves to the peroxisome and completes the function of the PEX1/6 heterodimer.  相似文献   

4.
Mutations in peroxisome biogenesis proteins (peroxins) can lead to developmental deficiencies in various eukaryotes. PEX14 and PEX13 are peroxins involved in docking cargo-receptor complexes at the peroxisomal membrane, thus aiding in the transport of the cargo into the peroxisomal matrix. Genetic screens have revealed numerous Arabidopsis thaliana peroxins acting in peroxisomal matrix protein import; the viable alleles isolated through these screens are generally partial loss-of-function alleles, whereas null mutations that disrupt delivery of matrix proteins to peroxisomes can confer embryonic lethality. In this study, we used forward and reverse genetics in Arabidopsis to isolate four pex14 alleles. We found that all four alleles conferred reduced PEX14 mRNA levels and displayed physiological and molecular defects suggesting reduced but not abolished peroxisomal matrix protein import. The least severe pex14 allele, pex14-3, accumulated low levels of a C-terminally truncated PEX14 product that retained partial function. Surprisingly, even the severe pex14-2 allele, which lacked detectable PEX14 mRNA and PEX14 protein, was viable, fertile, and displayed residual peroxisome matrix protein import. As pex14 plants matured, import improved. Together, our data indicate that PEX14 facilitates, but is not essential for peroxisomal matrix protein import in plants.  相似文献   

5.
Peroxin 2 (PEX2) is a 35-kDa integral peroxisomal membrane protein with two transmembrane regions and a zinc RING domain within its cytoplasmically exposed C-terminus. Although its role in peroxisome biogenesis and function is poorly understood, it seems to be involved in peroxisomal matrix protein import. PEX2 is synthesized on free cytosolic ribosomes and is posttranslationally imported into the peroxisome membrane by specific targeting information. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are less well understood. We expressed various deletion constructs of PEX2 in fusion with the green fluorescent protein in COS-7 cells and determined their intracellular localization. We found that the minimum peroxisomal targeting signal of human PEX2 consists of an internal protein region of 30 amino acids (AA130 to AA159) and the first transmembrane domain, and that adding the second transmembrane domain increases targeting efficiency. Within the minimum targeting region we identified the motif "KX6(I/L)X(L/F/I)LK(L/F/I)" that includes important targeting information and is also present in the targeting regions of the 22-kDa peroxisomal membrane protein (PMP22) and the 70-kDa peroxisomal membrane protein (PMP70). Mutations in this targeting motif mislocalize PEX2 to the cytosol. In contrast, the second transmembrane domain does not seem to have specific peroxisomal membrane targeting information. Replacing the second transmembrane domain of human PEX2 with the transmembrane domain of human cytochrome c oxidase subunit IV does not alter PEX2 peroxisome targeting function and efficiency.  相似文献   

6.
PEX19 has been shown to play a central role in the early steps of peroxisomal membrane synthesis. Computational database analysis of the PEX19 sequence revealed three different conserved domains: D1 (aa 1--87), D2 (aa 88--272), and D3 (aa 273--299). However, these domains have not yet been linked to specific biological functions. We elected to functionally characterize the proteins derived from two naturally occurring PEX19 splice variants: PEX19DeltaE2 lacking the N-terminal domain D1 and PEX19DeltaE8 lacking the domain D3. Both interact with peroxisomal ABC transporters (ALDP, ALDRP, PMP70) and with full-length PEX3 as shown by in vitro protein interaction studies. PEX19DeltaE8 also interacts with a PEX3 protein lacking the peroxisomal targeting region located at the N-terminus (Delta66aaPEX3), whereas PEX19DeltaE2 does not. Functional complementation studies in PEX19-deficient human fibroblasts revealed that transfection of PEX19DeltaE8-cDNA leads to restoration of both peroxisomal membranes and of functional peroxisomes, whereas transfection of PEX19DeltaE2-cDNA does not restore peroxisomal biogenesis. Human PEX19 is partly farnesylated in vitro and in vivo. The farnesylation consensus motif CLIM is located in the PEX19 domain D3. The finding that the protein derived from the splice variant lacking D3 is able to interact with several peroxisomal membrane proteins and to restore peroxisomal biogenesis challenges the previous assumption that farnesylation of PEX19 is essential for its biological functionality. The data presented demonstrate a considerable functional diversity of the proteins encoded by two PEX19 splice variants and thereby provide first experimental evidence for specific biological functions of the different predicted domains of the PEX19 protein.  相似文献   

7.
PEX13 is an integral membrane protein on the peroxisome that regulates peroxisomal matrix protein import during peroxisome biogenesis. Mutations in PEX13 and other peroxin proteins are associated with Zellweger syndrome spectrum (ZSS) disorders, a subtype of peroxisome biogenesis disorder characterized by prominent neurological, hepatic, and renal abnormalities leading to neonatal death. The lack of functional peroxisomes in ZSS patients is widely accepted as the underlying cause of disease; however, our understanding of disease pathogenesis is still incomplete. Here, we demonstrate that PEX13 is required for selective autophagy of Sindbis virus (virophagy) and of damaged mitochondria (mitophagy) and that disease‐associated PEX13 mutants I326T and W313G are defective in mitophagy. The mitophagy function of PEX13 is shared with another peroxin family member PEX3, but not with two other peroxins, PEX14 and PEX19, which are required for general autophagy. Together, our results demonstrate that PEX13 is required for selective autophagy, and suggest that dysregulation of PEX13‐mediated mitophagy may contribute to ZSS pathogenesis.  相似文献   

8.
In peroxisomes, peroxins (PEXs) 3 and 19 are the principal protein components of the machinery required for early peroxisomal biogenesis. For further insight into the interaction of PEX3 and PEX19, we used hydrogen exchange mass spectrometry to monitor conformational changes during complex formation between PEX3 and PEX19 in vitro. Our data showed that PEX19 remained highly flexible during interaction with PEX3. However, we could detect three changes, one each in the N-and C-terminus along with a small stretch in the middle of PEX19 (F64–L74) which became shielded from hydrogen exchange when interacting with PEX3. PEX3 became more protected from hydrogen exchange in the binding groove for PEX19 with only small changes elsewhere. Most likely the N-terminus of PEX19 initiates the binding to PEX3, and then subtle conformational changes in PEX3 affect the surface of the PEX3 molecule. PEX19 in turn, is stabilized by folding of a short helix and its C-terminal folding core permitting PEX19 to bind to PEX3 with higher affinity than just the N-terminal interaction allows. Thus within the cell, PEX3 is stabilized by PEX19 preventing PEX3 aggregation.  相似文献   

9.
The human peroxins PEX3 and PEX19 play a central role in peroxisomal membrane biogenesis. The membrane-anchored PEX3 serves as the receptor for cytosolic PEX19, which in turn recognizes newly synthesized peroxisomal membrane proteins. After delivering these proteins to the peroxisomal membrane, PEX19 is recycled to the cytosol. The molecular mechanisms underlying these processes are not well understood. Here, we report the crystal structure of the cytosolic domain of PEX3 in complex with a PEX19-derived peptide. PEX3 adopts a novel fold that is best described as a large helical bundle. A hydrophobic groove at the membrane-distal end of PEX3 engages the PEX19 peptide with nanomolar affinity. Mutagenesis experiments identify phenylalanine 29 in PEX19 as critical for this interaction. Because key PEX3 residues involved in complex formation are highly conserved across species, the observed binding mechanism is of general biological relevance.  相似文献   

10.
11.
Proteins are targeted to the peroxisome matrix via processes that are mechanistically distinct from those used by other organelles. Protein entry into peroxisomes requires peroxin (PEX) proteins, including early-acting receptor (e.g. PEX5) and docking peroxins (e.g. PEX13 and PEX14) and late-acting PEX5-recycling peroxins (e.g. PEX4 and PEX6). We examined genetic interactions among Arabidopsis peroxin mutants and found that the weak pex13-1 allele had deleterious effects when combined with pex5-1 and pex14-2, which are defective in early-acting peroxins, as shown by reduced matrix protein import and enhanced physiological defects. In contrast, combining pex13-1 with pex4-1 or pex6-1, which are defective in late-acting peroxins, unexpectedly ameliorated mutant growth defects. Matrix protein import remained impaired in pex4-1 pex13-1 and pex6-1 pex13-1, suggesting that the partial suppression of pex4-1 and pex6-1 physiological defects by a weak pex13 allele may result from restoring the balance between import and export of PEX5 or other proteins that are retrotranslocated from the peroxisome with the assistance of PEX4 and PEX6. Our results suggest that symptoms caused by pex mutants defective in late-acting peroxins may result not only from defects in matrix protein import but also from inefficient removal of PEX5 from the peroxisomal membrane following cargo delivery.  相似文献   

12.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

13.
《The Journal of cell biology》1996,135(6):1763-1774
PEX5 encodes the type-1 peroxisomal targeting signal (PTS1) receptor, one of at least 15 peroxins required for peroxisome biogenesis. Pex5p has a bimodal distribution within the cell, mostly cytosolic with a small amount bound to peroxisomes. This distribution indicates that Pex5p may function as a cycling receptor, a mode of action likely to require interaction with additional peroxins. Loss of peroxins required for protein translocation into the peroxisome (PEX2 or PEX12) resulted in accumulation of Pex5p at docking sites on the peroxisome surface. Pex5p also accumulated on peroxisomes in normal cells under conditions which inhibit protein translocation into peroxisomes (low temperature or ATP depletion), returned to the cytoplasm when translocation was restored, and reaccumulated on peroxisomes when translocation was again inhibited. Translocation inhibiting conditions did not result in Pex5p redistribution in cells that lack detectable peroxisomes. Thus, it appears that Pex5p can cycle repeatedly between the cytoplasm and peroxisome. Altered activity of the peroxin defective in CG7 cells leads to accumulation of Pex5p within the peroxisome, indicating that Pex5p may actually enter the peroxisome lumen at one point in its cycle. In addition, we found that the PTS1 receptor was extremely unstable in the peroxin-deficient CG1, CG4, and CG8 cells. Altered distribution or stability of the PTS1 receptor in all cells with a defect in PTS1 protein import implies that the genes mutated in these cell lines encode proteins with a direct role in peroxisomal protein import.  相似文献   

14.
PEX19 is a chaperone and import receptor for newly synthesized, class I peroxisomal membrane proteins (PMPs). PEX19 binds these PMPs in the cytoplasm and delivers them to the peroxisome for subsequent insertion into the peroxisome membrane, indicating that there may be a PEX19 docking factor in the peroxisome membrane. Here we show that PEX3 is required for PEX19 to dock at peroxisomes, interacts specifically with the docking domain of PEX19, and is required for recruitment of the PEX19 docking domain to peroxisomes. PEX3 is also sufficient to dock PEX19 at heterologous organelles and binds PEX19 via a conserved motif that is essential for this docking activity and for PEX3 function in general. Not surprisingly, transient inhibition of PEX3 abrogates class I PMP import but has no effect on class II PMP import or peroxisomal matrix protein import. Taken together, these results suggest that PEX3 plays a selective, essential, and direct role in PMP import as a docking factor for PEX19.  相似文献   

15.
Peroxisome is a single-membrane organelle in eukaryotes. The functional importance of peroxisomes in humans is highlighted by peroxisome-deficient peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS). Gene defects of peroxins required for both membrane assembly and matrix protein import are identified: ten mammalian pathogenic peroxins for ten complementation groups of PBDs, are required for matrix protein import; three, Pex3p, Pex16p and Pex19p, are shown to be essential for peroxisome membrane assembly and responsible for the most severe ZS in PBDs of three complementation groups 12, 9, and 14, respectively. Patients with severe ZS with defects of PEX3, PEX16, and PEX19 tend to carry severe mutation such as nonsense mutations, frameshifts and deletions. With respect to the function of these three peroxins in membrane biogenesis, two distinct pathways have been proposed for the import of peroxisomal membrane proteins in mammalian cells: a Pex19p- and Pex3p-dependent class I pathway and a Pex19p- and Pex16p-dependent class II pathway. In class II pathway, Pex19p also forms a soluble complex with newly synthesized Pex3p as the chaperone for Pex3p in the cytosol and directly translocates it to peroxisomes. Pex16p functions as the peroxisomal membrane receptor that is specific to the Pex3p-Pex19p complexes. A model for the import of peroxisomal membrane proteins is suggested, providing new insights into the molecular mechanisms underlying the biogenesis of peroxisomes and its regulation involving Pex3p, Pex19p, and Pex16p. Another model suggests that in Saccharomyces cerevisiae peroxisomes likely emerge from the endoplasmic reticulum. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

16.
The biogenesis of peroxisomes is mediated by peroxins (PEXs). PEX7 is a cytosolic receptor that imports peroxisomal targeting signal type 2 (PTS2)-containing proteins. Although PEX7 is important for protein transport, the mechanisms that mediate its function are unknown. In this study, we performed proteomic analysis to identify PEX7-binding proteins using transgenic Arabidopsis expressing green fluorescent protein (GFP)-tagged PEX7. Our analysis identified RabE1c, a small GTPase, as a PEX7 binding partner. In vivo analysis revealed that GTP-bound RabE1c binds to PEX7 and that a subset of RabE1c localizes to peroxisomes and interacts with PEX7 on the peroxisome membrane. Unlike endogenous PEX7, which is predominantly localized to the cytosol, GFP-PEX7 accumulates abnormally on the peroxisomal membrane and induces degradation of endogenous PEX7, concomitant with a reduction in import of PTS2-containing proteins and decreased peroxisomal β-oxidation activity. Thus, GFP-PEX7 on the peroxisomal membrane exerts a dominant negative effect. Mutation of RabE1c restored endogenous PEX7 protein expression and import of PTS2-containing proteins as well as peroxisomal β-oxidation activity. Treatment with proteasome inhibitors also restored endogenous PEX7 protein levels in GFP-PEX7-expressing seedlings. Based on these findings, we conclude that RabE1c binds PEX7 and facilitates PEX7 degradation in the presence of immobile GFP-PEX7 accumulated at the membrane.  相似文献   

17.
In yeasts, the peroxin Pex3p was identified as a peroxisomal integral membrane protein that presumably plays a role in the early steps of peroxisomal assembly. In humans, defects of peroxins cause peroxisomal biogenesis disorders such as Zellweger syndrome. We previously reported data on the human PEX3 cDNA and its protein, which in addition to the peroxisomal targeting sequence contains a putative endoplasmic reticulum targeting signal. Here we report the genomic organization, sequencing of the putative promoter region, chromosomal localization, and physical mapping of the human PEX3 gene. The gene is composed of 12 exons and 11 introns spanning a region of approximately 40 kb. The highly conserved putative promoter region is very GC rich, lacks typical TATA and CCAAT boxes, and contains potential Sp1, AP1, and AP2 binding sites. The gene was localized to chromosome 6q23-24 and D6S279 was identified to be the closest positional marker. As yeast mutants deficient in PEX3 have been shown to lack peroxisomes as well as any peroxisomal remnant structures, human PEX3 is a candidate gene for peroxisomal assembly disorders. Mutation analysis of the human PEX3 gene was therefore performed in fibroblasts from patients suffering from peroxisome biogenesis disorders. Complementation groups 1, 4, 7, 8, and 9 according to the numbering system of Kennedy Krieger Institute were analyzed but no difference to the wild-type sequence was detected. PEX3 mutations were therefore excluded as the molecular basis of the peroxisomal defect in these complementation groups.  相似文献   

18.
Peroxisomes are essential eukaryotic organelles that mediate various metabolic processes. Peroxisome import depends on a group of peroxisome biogenesis factors called peroxins, many of which are evolutionarily conserved. PEX2, PEX10, and PEX12 are three RING-finger-domain-containing integral membrane peroxins crucial for protein import. In yeast (Saccharomyces cerevisae), RING peroxins act as E3 ligases, facilitating the recycling of the peroxisome import receptor protein PEX5 through ubiquitination. In plants, RING peroxins are essential to plant vitality. To elucidate the mode of action of the plant RING peroxins, we employed in vitro assays to show that the Arabidopsis RING peroxins also have E3 ligase activities. We also identified a PEX2-interacting protein, DSK2b, which is a member of the ubiquitin receptor family known to function as shuttle factors ferrying polyubiquitinated substrates to the proteasome for degradation. DSK2b and its tandem duplicate DSK2a are localized in the cytosol and the nucleus, and both interact with the RING domain of PEX2 and PEX12. DSK2 artificial microRNA lines did not display obvious defects in plant growth or peroxisomal processes, indicating functional redundancies among Arabidopsis ubiquitin receptor proteins. Our results suggest that Arabidopsis RING peroxins can function as E3 ligases and act together with the ubiquitin receptor protein DSK2 in the peroxisomal membrane-associated protein degradation system.  相似文献   

19.
Taras Y. Nazarko 《Autophagy》2017,13(5):991-994
Peroxisome biogenesis disorders (PBDs) is a group of diseases caused by mutations in one of the peroxins, proteins responsible for biogenesis of the peroxisomes. In recent years, it became clear that many peroxins (e.g., PEX3 and PEX14) play additional roles in peroxisome homeostasis (such as promoting autophagic degradation of peroxisomes or pexophagy), which are often opposite to their originally established functions in peroxisome formation and maintenance. Even more interesting, the peroxins that make up the peroxisomal AAA ATPase complex (AAA-complex) in yeast (Pex1, Pex6 and Pex15) or mammals (PEX1, PEX6, PEX26) are responsible for the downregulation of pexophagy. Moreover, this might be even their primary role in human: to prevent pexophagy by removing from the peroxisomal membrane the ubiquitinated peroxisomal matrix protein import receptor, Ub-PEX5, which is also a signal for the Ub-binding pexophagy receptor, NBR1. Remarkably, the peroxisomes rescued from pexophagy by autophagic inhibitors in PEX1G843D (the most common PBD mutation) cells are able to import matrix proteins and improve their biochemical function suggesting that the AAA-complex per se is not essential for the protein import function in human. This paradigm-shifting discovery published in the current issue of Autophagy has raised hope for up to 65% of all PBD patients with various deficiencies in the AAA-complex. Recognizing PEX1, PEX6 and PEX26 as pexophagy suppressors will allow treating these patients with a new range of tools designed to target mammalian pexophagy.  相似文献   

20.
Peroxisome biogenesis disorders (PBDs) such as Zellweger syndrome (ZS) and neonatal adrenoleukodystrophy are autosomal recessive diseases caused by defects in peroxisome assembly, for which 13 genotypes have been identified. Expression of the human peroxin Pex3p cDNA encoding a 373-amino-acid peroxisomal membrane protein morphologically and biochemically restored peroxisome biogenesis, including peroxisomal membrane assembly, in fibroblasts from PBDG-02, a patient with complementation group G (CG-G) ZS. Patient PBDG-02 carried a homozygous, inactivating mutation-a 97-bp deletion of nucleotide residues at positions 942-1038-resulting in a 32-amino-acid truncation and in a frameshift inducing both a 3-amino-acid substitution and a termination codon. Genomic PCR analysis revealed mutation of T-->G at eight bases upstream of the splicing site at the boundary of intron 10 and exon 11 of PEX3 gene, giving rise to a deletion of all of exon 11. When assessed by expression in a pex3 mutant of Chinese hamster ovary cells and the patient's fibroblasts, PBDG-02-derived PEX3 cDNA was found to be defective in peroxisome-restoring activity. These results provide evidence that PEX3 is a novel, pathogenic gene responsible for CG-G PBDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号