首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we usedin vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them is β-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the autophosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.  相似文献   

2.
Phosphatase plays a crucial role in determining cellular fate by inactivating its substrate kinase, but it is not known whether a kinase can vice versa phosphorylate its phosphatase to execute this function. Protein-tyrosine phosphatase H1 (PTPH1) is a specific phosphatase of p38γ mitogen-activated protein kinase (MAPK) through PDZ binding, and here, we show that p38γ is also a PTPH1 kinase through which it executes its oncogenic activity and regulates stress response. PTPH1 was identified as a substrate of p38γ by unbiased proteomic analysis, and its resultant phosphorylation at Ser-459 occurs in vitro and in vivo through their complex formation. Genetic and pharmacological analyses showed further that Ser-459 phosphorylation is directly regulated by Ras signaling and is important for Ras, p38γ, and PTPH1 oncogenic activity. Moreover, experiments with physiological stimuli revealed a novel stress pathway from p38γ to PTPH1/Ser-459 phosphorylation in regulating cell growth and cell death by a mechanism dependent on cellular environments but independent of canonical MAPK activities. These results thus reveal a new mechanism by which a MAPK regulates Ras oncogenesis and stress response through directly phosphorylating its phosphatase.  相似文献   

3.
G protein-coupled receptor kinases (GRKs) are serine/threonine kinases first discovered by its role in receptor desensitization. Phosphorylation of the C-terminal tail of GPCRs by GRKs triggers the docking of β-arrestins and the functional uncoupling of G proteins and receptors. In addition, we and others have uncovered new direct ways by which GRKs could impinge into intracellular signalling pathways independently of receptor phosphorylation. In particular, we have characterized that elevated GRK2 levels can reduce CCR2-mediated activation of the ERK MAPK route in a manner that is independent of kinase activity and also of G proteins. This inhibition of ERK occurred in the absence of any reduction on MEK phosphorylation, what implicates that GRK2 is acting at the level of MEK or at the MEK-ERK interface to achieve a downregulation of ERK phosphorylation. In fact, we describe here that a direct association between GRK2 and MEK proteins can be detected in vitro. p38 MAPK pathway also appears to be regulated directly by GRK2 in a receptor-independent manner. p38 can be phosphorylated by GRK2 in threonine 123, a residue sitting at the entrance of a docking groove by which this MAPK associates to substrates and upstream activators. The T123phospho-mimetic mutant of p38 shows a reduced ability to bind to MKK6, concomitant with an impaired p38 activation, and a decreased phosphorylation of downstream substrates such as MEF2, MK2 and ATF2. Elevated levels of GRK2 downregulate p38-dependent cellular responses, such as differentiation of preadipocytic cells, while LPS-induced cytokine release is enhanced in macrophages from GRK2 (+/?) mice. In sum, we describe in this article different ways by which GRK2 directly regulates MAPK-mediated cellular events. This regulation of the MAPK modules by GRK2 could be relevant in pathological situations where the levels of this kinase are altered, such as during inflammatory diseases or cardiovascular pathologies.  相似文献   

4.
丝裂原和应激激活的蛋白激酶(MSK)是一类核内丝/苏氨酸蛋白激酶,参与丝裂原激活蛋白激酶(MAPK)信号通路介导的下游基因转录调控和表观遗传学调控.首先,MSK是MAPK通路的下游媒介分子.在丝裂原或应激刺激下,p38或ERK激酶通过级联磷酸化激活MSK蛋白.然后,活化的MSK介导转录因子磷酸化活化和组蛋白H3的10位丝氨酸磷酸化.MSK介导的组蛋白H3磷酸化,可引发组蛋白乙酰化和甲基化修饰的动态变化,相互协同或拮抗,开放染色质结构,利于诱导型基因的表达.除组蛋白H3外,MSK直接磷酸化的下游底物还包括CREB、NF-κB等转录因子以及多个非转录相关蛋白.因此,MSK能在多层次调控基因表达和细胞功能,广泛参与肿瘤转化、炎症反应、神经突触可塑性以及心肌肥大等生物学事件.本文将简要介绍MSK蛋白的研究进展,探讨其在转录调控、表观遗传学修饰等生物学事件中的作用.  相似文献   

5.
Selenium, an essential biological trace element, has been shown to modulate functions of many regulatory proteins involved in signal transduction and to affect a variety of cellular activities including cell growth, survival, and death. The molecular mechanism by which selenium exerts its action on the cellular events, however, remains unclear. In our present study, we observed that selenite suppresses both the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and the p38 mitogen-activated protein kinase pathway in 293T cells. In contrast, selenite had little effect on the extracellular signal-regulated kinase pathway. Furthermore, selenite directly inhibited JNK/SAPK activity in vitro but not the p38 activity. The in vitro inhibition of JNK/SAPK by selenite was reversed by the addition of reducing agents such as dithiothreitol and beta-mercaptoethanol. Replacement of cysteine 116 in JNK1 by serine abolished the inhibitory effect of selenite on JNK1 activity both in vitro and in vivo. Selenite also suppressed a c-Jun-dependent luciferase reporter activity stimulated through the JNK signaling pathway. Taken together, our findings strongly suggest that selenite differentially modulates the mammalian mitogen-activated protein kinase pathways and that it can repress the JNK/SAPK signaling pathway by inhibiting JNK/SAPK through a thiol redox mechanism.  相似文献   

6.
Paralytic peptide (PP) activates innate immunity of silkworm Bombyx mori, inducing production of anti-microbial peptides (AMPs) and phagocytosis-related proteins; however the signal pathways of PP-dependent immune responses are not clear. In present study, we characterized BmE cells as a PP-responsive cell line by examining the expression of AMP genes and activation of p38 mitogen-activated protein kinase (p38 MAPK) under PP stimulation, and we also found PP directly binds to BmE cell membrane. Then we found that PP-dependent expression of AMP genes is suppressed by tyrosine kinase inhibitor (genistein) both in BmE cells and in fat body of silkworm larvae. Moreover, the specific tyrosine kinase epidermal growth factor receptor (EGFR) inhibitor (AG1478) attenuates PP-induced expression of AMP genes in BmE cells and fat body of silkworm and RNA interference (RNAi) to BmEGFR also suppresses PP-induced expression of AMP genes. Furthermore, the PP-induced p38 MAPK phosphorylation is inhibited by AG1478. Our results suggest that BmE cells can be used as a cell model to investigate the signal pathway of PP-dependent humoral immune response and receptor tyrosine kinase EGFR/p38 MAPK pathway is involved in the production of AMPs induced by PP.  相似文献   

7.
8.
9.
Recent studies of intracellular signal transduction mechanisms for the transforming growth factor-beta (TGF-beta) superfamily have focused on Smad proteins, but have paid little attention to mitogen-activated protein (MAP) kinase cascades. Here we demonstrate that growth/differentiation factor-5 (GDF-5), but neither bone morphogenetic protein-2 (BMP-2) nor TGF-beta1, fully promotes the early phase of the chondrogenic response by inducing cellular condensation followed by cartilage nodule formation in a mouse chondrogenic cell line, ATDC5. We investigated which, if any, of the three major types of MAP kinase plays a functional role in the promotion of chondrogenesis induced by GDF-5. GDF-5 induced phosphorylation of p38 MAP kinase and extracellular signal-regulated kinase (ERK) but not that of c-Jun N-terminal kinase (JNK). The phosphorylation of p38 MAP kinase was also induced by BMP-2 and TGF-beta1. An inhibitor of p38 and p38 beta MAP kinase, SB202190, showed complete inhibition of cartilage nodule formation but failed to affect alkaline phosphatase (ALP) activity induced by GDF-5. Expression of the type II collagen gene, a hallmark of chondrogenesis in vertebrates, was also induced by GDF-5 treatment and strongly suppressed by SB202190. On the other hand, although an inhibitor of MAP/ERK kinase, PD98059, inhibited the rapid phosphorylation of ERK by GDF-5, it inhibited neither ALP activity nor cartilage nodule formation induced by GDF-5. These results strongly suggest that the p38 MAP kinase cascade is involved in GDF-5 signaling pathways and that a role of the p38 MAP kinase pathway is necessary over a longer period to promote chondrogenesis in ATDC5 cells.  相似文献   

10.
In eukaryotes, mitogen-activated protein kinase (MAPK) pathways are very important signal transduction modules that regulate various cellular processes. Although eukaryotic cells possess a number of MAP kinase pathways, normally the MAPKKs selectively activate their cognate MAPK. Recent studies suggest that the MAPK-docking site in MAPKK facilitates this specific recognition and activation. However, the role of the docking site under in vivo conditions has not been demonstrated. In yeast external high osmolarity activates HOG (high osmolarity glycerol) MAPK pathway that consists of MAPKKK (Ste11p or Ssk2p/Ssk22p), MAPKK (Pbs2p), and MAPK (Hog1p). Previously, we have isolated a Pbs2p homologue (Dpbs2p) from osmo-tolerant and salt-tolerant yeast Debaryomyces hansenii that complemented pbs2 mutation in Saccharomyces cerevisiae. Here we show, for the first time, the presence of a MAPK-docking domain in Dpbs2p that is essential for its function in vivo. Mutation in this motif completely abolished its binding to Hog1p in vitro.  相似文献   

11.
The human immunodeficiency virus type 1 (HIV-1) can interact with and exploit the host cellular machinery to replicate and propagate itself. Numerous studies have shown that the Mitogen-activated protein kinase (MAPK) signal pathway can positively regulate the replication of HIV-1, but exactly how each MAPK pathway affects HIV-1 infection and replication is not understood. In this study, we used the Extracellular signal-regulated kinase (ERK) pathway inhibitor, PD98059, the Jun N-terminal kinase (JNK) pathway inhibitor, SP600125, and the p38 pathway inhibitor, SB203580, to investigate the roles of these pathways in HIV-1 replication. We found that application of PD98059 results in a strong VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus and HIV-1NL4-3 virus inhibition activity. In addition, SB203580 and SP600125 also elicited marked VSV-G pseudotyped HIV-1NL4-3 luciferase reporter virus inhibition activity but no HIV-1NL4-3 virus inhibition activity. We also found that SB203580 and SP600125 can enhance the HIV-1 inhibition activity of PD98059 when cells were treated with all three MAPK pathway inhibitors in combination. Finally, we show that HIV-1 virus inhibition activity of the MAPK pathway inhibitors was the result of the negative regulation of HIV-1 LTR promoter activity.  相似文献   

12.
Abnormal expression of tumour necrosis factor-α (TNF-α) can lead to various pathological reactions, such as arthritis, psoriasis, krone disease, etc. p38 mitogen-activated protein kinase (p38 MAPK) is an important signal transduction enzyme that plays important roles in influencing the release of intracellular TNF-α factor. It is very meaningful to study the targeting kinase with specific inhibitors in the treatment of related diseases. In order to achieve a deeper insight, it is necessary to analyse the structural characteristics and the action mode of the p38 MAPK inhibitors in the active site. In the study, a ligand-based common feature pharmacophore model and the receptor structure-based pharmacophore model were constructed, respectively. Their common chemical features consisted of the hydrophobic groups (H) and the hydrogen bond acceptors (A), and kept the consistency of spatial structure distribution. Then, the molecular docking and molecular dynamics simulation were performed with the eight training set compounds. The binding characteristics of molecules binding were described in the topological region of the active site. Finally, the structure–activity relationship (SAR) was obtained by analysing docking results with the different pharmacophore models. This research leads to the proposal of an interaction model in the p38 MAPK active site and provides guidance for the screening and design of more potent and selective p38 MAPK inhibitors.  相似文献   

13.
14.
The p38 mitogen-activated protein (MAP) kinases function as signaling molecules essential for many cellular processes, particularly mediating stress response. The activity of p38 MAP kinases is meticulously regulated to reach the desired cellular phenotype. Several alternative activation and attenuation mechanisms have been characterized recently which include new phosphorylation sites. Here we present the crystal structure of p38α MAP kinase in complex with n-octyl-β-glucopyranoside detergent. The complex unveils a novel lipid-binding site formed by a local conformational change of the MAP kinase insert. This binding is the first attribution for a possible role of the MAP kinase insert in p38. The binding site can accommodate a large selection of lipidic molecules. In addition, we also show via biophysical methods that arachidonic acid and its derivatives bind p38α in vitro. Based on our analysis we propose that the binding of lipids could fine-tune p38α catalytic activity towards a preferred phenotype.  相似文献   

15.
Recently we demonstrated that PP2 (4-amino-5-(4-chloro-phenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine), a potent and selective inhibitor of the Src-family tyrosine kinase, markedly enhanced Ras-independent activation of Raf-1 by the combination of phorbol myristate acetate (PMA) and hydrogen peroxide (H(2)O(2)). We report here that Raf-1 knockdown cells were significantly more sensitive to treatment of PP2 than control cells. This PP2-induced growth inhibition was found to be linked to decreased ERK and p38 activity. Interestingly, the growth of Sprouty knockdown cells appeared to be inhibited at earlier time points of PP2 treatment when compared with control cells. Unexpectedly, siRNA-mediated knockdown of Spry2, which is known to modulate the Ras/Raf/MAPK signal through feedback regulation, resulted in decreased Raf-1 kinase activity. PP2 had limited effect on the ability of PMA/H(2)O(2) to induce significant phosphorylation of MEK/ERK proteins in both Spry2 knockdown and control cells, indicating that PP2-mediated activation of Raf-1 did not potentiate signaling through the downstream MEK/ERK pathway. Taken together our results suggest that Raf-1 signaling may be bypassed in PP2-treated cells by uncoupling from downstream MEK/ERK pathway.  相似文献   

16.
The p38 MAPK signal transduction pathway plays an important role in inflammatory and stress responses. MAPKK6 (MKK6), a dual specificity protein kinase, is a p38 activator. Activation of the MKK6-p38 pathway is kept in check by multiple layers of regulations, including autoinhibition, dimerization, scaffold proteins, and Lys-63-linked polyubiquitination. However, the mechanisms underlying deactivation of MKK6-p38, which is crucial for maintaining the magnitude and duration of signal transduction, are not well understood. Lys-48-linked ubiquitination, which marks substrates for proteasomal degradation, is an important negative posttranslational regulatory machinery for signal pathway transduction. Here we report that the accumulation of F-box only protein 31 (FBXO31), a component of Skp1·Cul1·F-box protein E3 ligase, negatively regulated p38 activation in cancer cells upon genotoxic stresses. Our results show that FBXO31 binds to MKK6 and mediates its Lys-48-linked polyubiquitination and degradation, thereby functioning as a negative regulator of MKK6-p38 signaling and protecting cells from stress-induced cell apoptosis. Taken together, our findings uncover a new mechanism of deactivation of MKK6-p38 and substantiate a novel regulatory role of FBXO31 in stress response.  相似文献   

17.
18.
19.
p38 mitogen-activated protein kinase alpha (MAPKalpha) belongs to the MAPK subfamily, which plays a pivotal role in cell signal transduction, where it mediates responses to cell stresses and, to a lesser extent, growth factors. Although its cellular function has been under intense scrutiny since its initial discovery, little progress has been made in understanding its kinetic mechanism. A contributory factor has been the lack of a fast and rigorous method for the purification of activated p38 MAPKalpha in sufficient quantity and purity for biophysical studies. Here we present a method for the preparation of milligram quantities of activated p38 MAPKalpha, specifically phosphorylated on Thr180 and Tyr182. Purification of the inactive (unphosphorylated) p38 MAPKalpha is facilitated by an N-terminal hexahistidine tag. Removal of this tag from His6-p38 MAPKalpha, prior to its activation, is essential to ensure preparation of high yields of homogeneous, dually phosphorylated enzyme. Activation is achieved on incubation with a glutathione S-transferase (GST) fusion of the constitutively active mutant of the upstream activator, MKK6b (GST-MKK6b S207E T211E), in the presence of MgATP2-. Notably, we show that specific formation of activated p38 MAPKalpha can be quantified by following the formation of the bis-phosphorylated tryptic peptide, 173-HTDDEMT*GY*VATR-186, using [gamma-32P]adenosine triphosphate (ATP) as the phosphate source and reverse-phase high-performance liquid chromatography (HPLC) to separate the phosphopeptides. This approach offers the only means to specifically determine both stoichiometry and specificity of p38 MAPKalpha phosphorylation.  相似文献   

20.
B‐cell novel protein‐1 (BCNP1) or Family member of 129C (FAM129C) was identified as a B‐cell‐specific plasma‐membrane protein. Bioinformatics analysis predicted that BCNP1 might be heavily phosphorylated. The BCNP1 protein contains a pleckstrin homology (PH) domain, two proline‐rich (PR) regions and a Leucine Zipper (LZ) domain suggesting that it may be involved in protein‐protein interactions. Using The Cancer Genome Atlas (TCGA) data sets, we investigated the correlation of alteration of the BCNP1 copy‐number changes and mutations in several cancer types. We also investigated the function of BCNP1 in cellular signalling pathways. We found that BCNP1 is highly altered in some types of cancers and that BCNP1 copy‐number changes and mutations co‐occur with other molecular alteration events for TP53 (tumour protein P53), PIK3CA (Phosphatidylinositol‐4,5‐Bisphosphate 3‐Kinase, Catalytic Subunit Alpha), MAPK1 (mitogen‐activated protein kinase‐1; ERK: extracellular signal regulated kinase), KRAS (Kirsten rat sarcoma viral oncogene homolog) and AKT2 (V‐Akt Murine Thymoma Viral Oncogene Homolog 2). We also found that PI3K (Phoshoinositide 3‐kinase) inhibition and p38 MAPK (p38 mitogen‐activated protein kinase) activation leads to reduction in phosphorylation of BCNP1 at serine residues, suggesting that BCNP1 phosphorylation is PI3K and p38MAPK dependent and that it might be involved in cancer. Its degradation depends on a proteasome‐mediated pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号