首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
RNA editing in flowering plant mitochondria alters numerous C nucleotides in a given mRNA molecule to U residues. To investigate whether neighbouring editing sites can influence each other we analyzed in vitro RNA editing of two sites spaced 30 nt apart. Deletion and competition experiments show that these two sites carry independent essential specificity determinants in the respective upstream 20-30 nucleotides. However, deletion of a an upstream sequence region promoting editing of the upstream site concomitantly decreases RNA editing of the second site 50-70 nucleotides downstream. This result suggests that supporting cis-/trans-interactions can be effective over larger distances and can affect more than one editing event.  相似文献   

8.
RNA editing in flowering plant mitochondria addresses several hundred specific C nucleotides in individual sequence contexts in mRNAs and tRNAs. Many of the in vivo steady state RNAs are edited at some sites but not at others. It is still unclear whether such incompletely edited RNAs can either be completed or are aborted. To learn more about the dynamics of the substrate recognition process, we investigated in vitro RNA editing at a locus in the atp4 mRNA where three editing sites are clustered within four nucleotides. A single cis-element of about 20 nucleotides serves in the recognition of at least two sites. Competition with this sequence element suppresses in vitro editing. Surprisingly, unedited and edited competitors are equally effective. Experiments with partially pre-edited substrates indicate that indeed the editing status of a substrate RNA does not affect the binding affinity of the specificity factor(s). RNA molecules in which all editing sites are substituted by either A or G still compete, confirming that editing site recognition can occur independently of the actual editing site. These results show that incompletely edited mRNAs can be substrates for further rounds of RNA editing, resolving a long debated question.  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
Native mRNA editing complexes from Trypanosoma brucei mitochondria.   总被引:14,自引:0,他引:14       下载免费PDF全文
V W Pollard  M E Harris    S L Hajduk 《The EMBO journal》1992,11(12):4429-4438
The aim of this study was to identify multicomponent complexes involved in kinetoplastid mitochondrial mRNA editing. Mitochondrial extracts from Trypanosoma brucei were fractionated on 10-30% glycerol gradients and assayed for RNAs and activities potentially involved in editing, including pre-edited mRNA, guide RNA (gRNA), endonuclease, terminal uridylyltransferase (TUTase), RNA ligase and gRNA-mRNA chimera-forming activities. These experiments suggest that two distinct editing complexes exist. Complex I (19S) consists of gRNA, TUTase, RNA ligase and chimera-forming activity. Complex II (35-40S) is composed of gRNA, preedited mRNA, RNA ligase and chimera-forming activity. These studies provide the first evidence that editing occurs in a multicomponent complex. The possible roles of complex I, complex II and RNA ligase in editing are discussed.  相似文献   

17.
Summary The extent to which CpG dinucleotides were depleted in a large set of angiosperm genes was, on average, very similar to the extent of CpG depletion in total angiosperm genomic DNA and far less than the extent of CpG depletion in vertebrate genes. Gene sequences from Arabidopsis thaliana, a dicotyledonous species with relatively low levels of total 5-methylcytosine, were just as CpG depleted as the angiosperm genes in general. Furthermore, levels of TpG and CpA, the potential deamination mutation products of methylated CpG, were elevated in A. thaliana genes, supporting a high rate of deamination mutation as the cause of the CpG deficiency. Using a method that takes into account the dinucleotide frequencies within each sequence of interest, we calculated the expected frequencies of CpNpG trinucleotides, which are also highly methylated in angiosperm genomes. CpNpG trinucleotides were not extensively enriched or depleted in the angiosperm genes. Two hypotheses could account for our results. Differential depletion of CpG and CpNpG within angiosperm genes and differential depletion of CpG in angiosperm and vertebrate genes could arise from different efficiencies of mismatch repair or from different levels of cytosine methylation in the cell lineages that contribute to germ cells.Offprint requests to: M. Gardiner-Garden  相似文献   

18.
19.
Initiation sites for translation of sindbis virus 42S and 26S messenger RNAs.   总被引:21,自引:0,他引:21  
Sindbis virus 26S RNA is the principal species of virus-specific RNA found in the infected cell; it is derived from a one third segment of virion 42S RNA. When translated in cell-free extracts from mouse ascites cells or rabbit reticulocytes, 26S RNA directed the synthesis primarily of the 33,000 dalton virus capsid protein, and the protein products were in the form of free peptides rather than peptidyl-tRNA. In contrast, the polypeptides synthesized in either extract in response to Sindbis virus 42S RNA were heterogeneous, ranging in molecular weight from 33,000 to 190,000, and were largely in the form of peptidyl-tRNA. The number of independent initiation sites on the 26S and 42S RNAs was determined by analyzing a tryptic digest of reaction products labeled with yeast N-formyl-35S-methionyl-tRNAFmet. The 26S RNA appeared to contain a single initiation site, and this site could also be found in varying amounts in different preparations of 42S RNA. However, a second initiation site, distinct from that of 26S RNA, was the major site in 42S virion RNA. These results suggest that 42S virion RNA contains two potential sites for initiation of protein synthesis. Only one of these may be active, however, and it is postulated that the second site functions primarily, if not exclusively, in the subgenomic 26S RNA species. In this regard, Sindbis virus 42S RNA may represent a novel form of a eucaryotic messenger RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号