首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cyclic mares were assigned to 1 of 3 treatments (n=15 per group): Group 1 received equine pituitary extract (EPE; 25 mg, i.m.) on Day 5 after ovulation; Group 2 received EPE on Day 12 after ovulation; while Group 3 received 3.3 mg of GnRH analogue (buserelin implant) on the day of ovulation and 25 mg, i.m. EPE on Day 12. Mares in each group were given 10 mg PGF(2)alpha on the first and second day of EPE treatment. The EPE treatment was continued daily until the first spontaneous ovulation, at which time 3,300 IU of human chorionic gonadotropin (hCG) were given to induce further ovulations. Mares in estrus with a >/=35 mm follicle were inseminated every other day with pooled semen from 2 stallions. Embryo recovery was attempted 7 days after the last ovulation. Follicular changes and embryo recovery during 15 estrous cycles prior to treatment were used as control data. During treatment, the number of follicles >/=25 mm was higher (P<0.05) for Day 5 than for Day 12 or control mares, but the number for Day-5 mares was similar (P>0.05) to that of mares treated with buserelin implants (Group 3). Initiation of EPE treatment on Day 5 resulted in a greater (P<0.05) number of ovulation (2.9) than on Day 12 (1.1) or in the control mares (1.3) but not in the buserelin-treated mares (1.8). The number of embryos recovered from mares in the Day 5 (1.2), Day 12 (1.0), buserelin (0.9) and control (0.9) groups was similar (P>0.05). The conclusions were 1) EPE initiated in early diestrus increased follicular development and ovulation and 2) treatment with GnRH analogue marginally improved response to EPE treatment.  相似文献   

2.
Embryo recovery from single ovulating mares is approximately 50 per cent per estrous cycle. Superovulation could be used to increase embryo recovery and provide extra embryos for embryo freezing. This review addresses some historical approaches to superovulation, as well as examines factors that affect the response of mares to equine FSH. eCG, GnRH and inhibin vaccines have been of limited success in stimulating multiple ovulation. Numerous studies have shown that injection of equine pituitary extract (EPE) will result in three to four ovulations per estrous cycle and two embryos. A purified, standardized EPE preparation (eFSH) also results in a similar response to EPE. Factors affecting the response to EPE and eFSH include day of initial treatment, size of largest follicle at initial treatment and frequency of injection. Embryos from single ovulating, untreated mares and eFSH-treated mares provide similar pregnancy rates upon nonsurgical transfer. Five to 7 days of eFSH treatment also has been shown to hasten the first ovulation of the breeding season. Potential problems after eFSH injections include anovulatory or luteinized follicles and overstimulation. Studies are needed to further evaluate the criteria for initiation of treatment and to determine how to increase ovulation rate without decreasing embryo recovery per ovulation.  相似文献   

3.
Equine pituitary extract (EPE), has been reported to induce multiple ovulation in mares, however ovulation rates are poor in comparison to those obtained in other species. Attempts to improve the effectiveness of EPE for induction of superovulation in cyclic mares has focused on daily frequency of EPE treatment. Two experiments were performed to compare the ovarian response of cyclic mares given EPE once or twice-daily. Mares were assigned to one of two treatment groups 6 to 8 days after ovulation: prostaglandin was given once and EPE (25 mg) was given once daily (Group 1) or twice daily (Group 2). In Experiment 1, more (P < 0.05) follicles > or = 35 mm were detected in mares treated with EPE twice daily (6.1 +/- 3.1) than in mares treated once a daily (2.0 +/- 0.6). In a second experiment, the embryo recovery rates of mares given the two EPE protocols used in Experiment 1 were compared. The number of ovulations per mare was higher (P < 0.05) for mares treated twice-daily (7.1 +/- 5.1, range 3 to 18) than for mares treated once daily (2.4 +/- 1.8, range 1 to 6). The number of embryos produced per mare was higher (P < 0.05) in mares in Group 2 (3.5) than in Group 1 (1.6). Although it is not clear whether the increased ovulation rate is due specifically to dose or frequency, twice-daily administration of a high dose of EPE significantly improved follicular development, ovulation and embryo recovery over the standard treatment of once-daily injection.  相似文献   

4.
Embryo recovery per ovulation has been shown to be lower in superovulated mares than in untreated controls. The objectives of this study were to 1) determine whether follicles stimulated with superovulatory treatment ovulate or luteinize without ovulation, 2) determine fertilization rates of oocytes in oviducts of superovulated and control mares, and 3) evaluate viability of early stage embryos from superovulated and control mares when cultured in equine oviductal cell-conditioned medium. Cyclic mares were randomly assigned to 1 of 2 groups (n=14 per group) on the day of ovulation (Day 0): Group 1 received 40 mg of equine pituitary extract (EPE; i.m.) daily beginning on Day 5 after ovulation; mares assigned to Group 2 served as untreated controls. All mares were given 10 mg PGF(2alpha) on Day 5 and Day 6, and 3,300 IU of human chorionic gonadotropin (hCG) were administered intravenously once mares developed 2 follicles >/=35 mm in diameter (Group 1) or 1 follicle >/=35 mm in diameter (Group 2). Mares in estrus were inseminated daily with 1 x 10(9) progressively motile spermatozoa once a >/=35 mm follicle was obtained. Two days after the last ovulation the ovaries and oviducts were removed. Ovaries were examined for ovulatory tracts to confirm ovulation, while the oviducts were trimmed and flushed with Dulbeccos PBS + 10% FCS to recover fertilized oocytes. All fertilized oocytes (embryos) recovered were cultured in vitro for 5 d using TCM-199 conditioned with equine oviductal cells. Ninety-two percent of the CL's from EPE mares resulted from ovulations compared with 94% for mares in the control group (P>0.05). The percentages of ovulations resulting in embryos were 57.1 and 62.5% for EPE-treated and control mares, respectively (P>0.05). Eighty-eight (Group 1) and 91% (Group 2) of the freshly ovulated oocytes recovered were fertilized (P>0.05). After 5 d of culture, 46.4 and 40.0% of the embryos from EPE-treated and control mares developed to the morula or early blastocyst stage (P>0.05). In summary, the CL's formed in superovulated mares were from ovulations not luteinizations. Although embryo recovery was less than expected, fertilization rates and embryo development were similar (P>0.05) between superovulated and control mares.  相似文献   

5.
Equine pituitary extract (EPE) has been reported to induce heightened follicular development in mares, but the response is inconsistent and lower than results obtained in ruminants undergoing standard superovulatory protocols. Three separate experiments were conducted to improve the ovarian response to EPE by evaluating: (1) effect of increasing the frequency or dose of EPE treatment; (2) use of a potent gonadotropin-releasing hormone agonist (GnRH-a) prior to EPE stimulation; (3) administration of EPE twice daily in successively decreasing doses. In the first experiment, 50 mares were randomly assigned to one of four treatment groups. Mares received (1) 25 mg EPE once daily; (2) 50 mg EPE once daily; (3) 12.5 mg EPE twice daily; or (4) 25 mg EPE twice daily. All mares began EPE treatment 5 days after detection of ovulation and received a single dose of cloprostenol sodium 7 days postovulation. EPE was discontinued once half of a cohort of follicles reached a diameter of >35 mm and hCG was administered. Mares receiving 50 mg of EPE once daily developed a greater number (P = 0.008) of preovulatory follicles than the remaining groups of EPE-treated mares, and more (P = 0.06) ovulations were detected for mares receiving 25 mg EPE twice daily compared to those receiving either 25 mg EPE once daily and 12.5 mg EPE twice daily. Embryo recovery per mare was greater (P = 0.05) in the mares that received 12.5 mg EPE twice daily than those that received 25 mg EPE once daily. In Experiment 2, 20 randomly selected mares received either 25 mg EPE twice daily beginning 5 days after a spontaneous ovulation, or two doses of a GnRH-a agonist upon detection of a follicle >35 mm and 25 mg EPE twice daily beginning 5 days after ovulation. Twenty-four hours after administration of hCG, oocytes were recovered by transvaginal aspiration from all follicles >35 mm. No differences were observed between groups in the numbers of preovulatory follicles generated (P = 0.54) and oocytes recovered (P = 0.40) per mare. In Experiment 3, 18 mares were randomly assigned to one of two treatment groups. Then, 6-11 days after ovulation, mares were administered a dose of PGF2, and concomitantly began twice-daily treatments with EPE given in successively declining doses, or a dose of PGF2alpha, but no EPE treatment. Mares administered EPE developed a higher (P = 0.0004) number of follicles > or = 35 mm, experienced more (P = 0.02) ovulations, and yielded a greater (P = 0.0006) number of embryos than untreated mares. In summary, doubling the dose of EPE generated a greater ovarian response, while increasing the frequency of treatment, but not necessarily the dose, improved embryo collection. Additionally, pretreatment with a GnRH-a prior to ovarian stimulation did not enhance the response to EPE or oocyte recovery rates.  相似文献   

6.
Watson ED  Sertich PL  Hunt PR 《Theriogenology》1992,37(5):1075-1083
Follicular growth and ovulation were monitored in 18 horse mares during a control cycle and during a cycle in which the mares received a GnRH agonist, leuprolide acetate (LA; 200 or 400 mug), twice daily until ovulation. Prior to both of these cycles, follicular growth was suppressed using a 10-day estrogen-progesterone treatment regimen, with prostaglandin F-2alpha (10 mg) administered on Day 10. Four of the mares treated with LA remained anovulatory for at least 3 weeks after the end of treatment and were excluded from statistical analysis. The dosage of LA did not affect response. Treatment with LA significantly (P=0.0375) increased the percentage of large follicles per ovulation (i.e., follicles greater than 30 mm in diameter on the day on which the largest follicle reached 35 mm) and also increased (P=0.0539) the diameter of the second largest follicle. However LA did not significantly alter the number of ovulations. Mean daily concentrations of luteinizing hormone (LH) were not significantly different during treatment and control cycles. The LH in blood samples collected repeatedly on Day 19 after the start of estrogen-progesterone treatment did not show a difference in frequency or amplitude of pulses between treatment and control cycles. Mares were artificially inseminated during estrus and the embryos were recovered. Fewer embryos were recovered per ovulation from mares after treatment with LA (26%) than during the control cycle (64%). Results indicate that treatment with LA either suppressed follicular activity or induced multiple follicular growth.  相似文献   

7.
The dynamics of ovarian follicular development depend on a timely interaction of gonadotropins and gonadal feedback in the mare. The development and efficacy of genetically cloned recombinant equine gonadotropins (reFSH and reLH) increase follicular activity and induce ovulation, respectively, but an optimum embryo recovery regimen in superovulated mares has not been established. The objective of this study was to determine if treatment with reFSH followed by reLH would increase the embryo per ovulation ratio and the number of embryos recovered after superovulation in mares. Sixteen estrous cycling mares of light horse breeds (4-12 years) were randomly assigned to one of two groups: Group 1; reFSH (0.65mg)/PBS (n=8) and Group 2; reFSH (0.65mg)/reLH (1.5mg) (n=8). On the day of a 22-25mm follicle post-ovulation mares were injected IV twice daily with reFSH for 3 days (PGF(2α) given IM on the second day of treatment) and once per day thereafter until a follicle or cohort of follicles reached 29mm after which either PBS or reLH was added and both groups injected IV twice daily until the presence of a 32mm follicles, when reFSH was discontinued. Thereafter, mares were injected three times daily IV with only PBS or reLH until a majority of follicles reached 35-38mm when treatment was discontinued. Mares were given hCG IV (2500IU) to induce ovulation and bred. Embryo recovery was performed on day 8 day post-treatment ovulation. Daily jugular blood samples were collected from the time of first ovulation until 8 days post-treatment ovulation. Blood samples were analyzed for LH, FSH, estradiol, progesterone and inhibin by validated RIA. Duration of treatment to a ≥35mm follicle(s) and number of ovulatory size follicles were similar between reFSH/reLH and reFSH/PBS treated mares. The number of ovulations was greater (P<0.01) in the reFSH/reLH group, while the number of anovulatory follicles was less (P<0.05) compared to the reFSH/PBS group. Number of total embryos recovered were greater in reFSH/reLH mares than in the reFSH/PBS mares (P≤0.01). The embryo per ovulation ratio tended to be greater (P=0.07) in the reFSH/reLH mares. Circulating concentrations of estradiol, inhibin, LH and progesterone were not statistically different between groups. Plasma concentrations of FSH were less (P<0.01) in the reFSH/reLH treated mares on days 0, 1, 4, 6, 7 and 8 post-treatment ovulation. In summary, reFSH with the addition of reLH, which is critical for final follicular and oocyte maturation, was effective in increasing the number of ovulations and embryos recovered, as well as reduce the number of anovulatory follicles, making this a more viable option than treatment with reFSH alone. Further evaluation is needed to determine the dose and regimen of reFSH/reLH to significantly increase the embryo per ovulation ratio.  相似文献   

8.
Control of the equine estrous cycle was studied by suppressing gonadotropin secretion by administration of a GnRH antagonist to cyclic pony mares. Four mares received vehicle (control cycle) or a GnRH antagonist, Antarelix (100 microg/kg) on Day 8 of diestrus, and blood samples were collected at 15-min intervals from 0 to 16 h, 24 to 36 h, and daily until the next ovulation. Ovarian activity was monitored by transrectal ultrasonography, and measurement of plasma concentrations of progesterone and estradiol. Antagonist treatment eliminated large diestrous pulses of LH. Progesterone concentrations had fallen significantly in all mares by the day after treatment and, in three of the four mares, remained low until luteolysis. However timing of luteolysis (ie., progesterone concentrations <1 ng/mL) was not affected by antagonist treatment. The preovulatory surges of estradiol and LH were significantly delayed in the treatment cycle, as was the appearance of a preovulatory follicle >30 mm. Cycle length was significantly longer during the treatment than the control cycle. These results show that treatment of diestrous mares with a GnRH antagonist attenuated progesterone secretion, indicating a role for LH in control of CL function in the mare, and delayed ovulation presumably because of lack of gonadotropic support.  相似文献   

9.
The negative effect of estradiol-17beta (E2) on LH, based on exogenous E2 treatments, and the reciprocal effect of LH on endogenous E2, based on hCG treatments, were studied throughout the ovulatory follicular wave during a total of 103 equine estrous cycles in seven experiments. An initial study developed E2 treatment protocols that approximated physiologic E2 concentrations during the estrous cycle. On Day 13 (ovulation = Day 0), when basal concentrations of E2 and LH precede the ovulatory surges, exogenous E2 significantly depressed LH concentrations to below basal levels. Ablation of all follicles > or = 10 mm when the largest was > or =20 mm resulted in an increase in percentage change in LH concentration within 8 h that was greater (P < 0.03) than for controls or E2-treated/follicle-ablated mares. Significant decreases in LH occurred when E2 was given when the largest follicle was either > or =25 mm, > or =28 mm, > or =35 mm, or near ovulation. Treatment with 200 or 2000 IU of hCG did not affect E2 concentrations during the initial portion of the LH surge (largest follicle, > or =25 mm), but 2000 IU significantly depressed E2 concentrations before ovulation (largest follicle, > or =35 mm). Results indicated a continuous negative effect of E2 on LH throughout the ovulatory follicular wave and may be related to the long LH surge and the long follicular phase in mares. Results also indicated that a reciprocal negative effect of LH on E2 does not develop until the E2 surge reaches a peak.  相似文献   

10.
The only gonadotrophin preparation shown to stimulate commercially useful multiple ovulation in mares is equine pituitary extract (EPE); even then, the low and inconsistent ovulatory response has been ascribed to the variable, but high, LH content. This study investigated the effects of an LH-free FSH preparation, recombinant human follicle stimulating hormone (rhFSH), on follicle development, ovulation and embryo production in mares. Five mares were treated twice-daily with 450 i.u. rhFSH starting on day 6 after ovulation, coincident with PGF(2alpha) analogue administration; five control mares were treated similarly but with saline instead of rhFSH. The response was monitored by daily scanning of the mares' ovaries and assay of systemic oestradiol-17beta and progesterone concentrations. When the dominant follicle(s) exceeded 35 mm, ovulation was induced with human chorionic gonadotrophin; embryos were recovered on day 7 after ovulation. After an untreated oestrous cycle to 'wash-out' the rhFSH, the groups were crossed-over and treated twice-daily with 900 i.u. rhFSH, or saline. At the onset of treatment, the largest follicle was <25 mm in all mares, and mares destined for rhFSH treatment had at least as many 10-25 mm follicles as controls. However, neither dose of rhFSH altered the number of days before the dominant follicle(s) reached 35 mm, the number of follicles of any size class (10-25, 25-35, >3 mm) at ovulation induction, the pre- or post-ovulatory oestradiol-17beta or progesterone concentrations, the number of ovulations or the embryo yield. It is concluded that rhFSH, at the doses used, is insufficient to stimulate multiple follicle development in mares.  相似文献   

11.
The treatment of early pregnant mares with a history of repeated early embryonic loss with the progestin altrenogest has become routine; however no controlled studies on the efficiency of altrenogest to prevent embryonic losses are available so far. In the present study, we have investigated effects of altrenogest treatment in mares on conceptus development and the secretion of LH, progesterone, and eCG until day 100 of pregnancy. In addition, differences related to age of mares were assessed. Mares were treated with altrenogest (0.044 mg/kg per os once daily) or sunflower oil (10 ml per os once daily) from day 6 to day 100 after ovulation. Blood samples for analysis of LH, progesterone, and eCG were collected. The size of the embryonic vesicle and embryo/fetus was determined by ultrasound. No difference in the per cycle pregnancy rate between altrenogest-treated (75%) and sunflower oil-treated mares (74%) was detected (n.s.). A significant effect of age but not of altrenogest treatment on mean diameter of the embryonic vesicle was found between days 12 and 22 of pregnancy (e.g. day 15: control, 4-8 years: 22.9 ± 1.0 mm, >8 years: 22.0 ± 1.7 mm, altrenogest, 4-8 years: 26.1 ± 2.0 mm, >8 years: 20.4 ± 1.0 mm, P < 0.05). A significant effect of age and treatment on size of the embryo proper between days 30 and 45 was detected (P < 0.05). In the control group but not in the altrenogest group, size of the embryo proper respective fetus was negatively correlated with age of the mares (day 30: r = −0.834, P < 0.05; day 35: r = −0.506, P < 0.05). Plasma concentrations of LH and progesterone were neither effected by age nor by treatment of mares, but significant effects of age and altrenogest treatment on eCG concentrations between days 40 and 130 were detected (P < 0.05). The present study demonstrates for the first time a positive influence of altrenogest-treatment on a retarded development of the embryo respective fetus around the beginning of placentation in mares older than 8 years.  相似文献   

12.
We investigated the role of dopamine in the regulation of seasonal reproductive activity in mares. Nine seasonal anestrous mares, maintained under a natural photoperiod, were treated daily with a dopamine D2 antagonist, [-]-sulpiride (200 mg/mare, im), beginning February 5 (day of year = 36) until the first ovulation of the year or for a maximum of 58. Nine untreated anestrous mares were maintained under the same conditions. The ovaries were examined by ultrasonography twice a week, and blood was collected three times a week for progesterone, LH, FSH and prolactin determinations. Mean day of first ovulation was significantly advanced for [-]-sulpiride-treated mares than control mares (mean day of year +/- SEM = 77.3 +/- 7.9 and 110.0 +/- 6.8, respectively; P < 0.01). Eight mares ovulated during [-]-sulpiride treatment while one mare failed to ovulate. Ovulation occurred 91 d after the start of treatment or on Day 127. All mares continued to have normal estrous cycles after the first ovulation. First cycle length and luteal progesterone concentrations did not differ between [-]-sulpiride-treated and control mares. Plasma prolactin concentrations were significantly increased at 2 and 9 h after [-]-sulpiride administration (P < 0.05), and had returned to basal levels by 24 h. At the time of the LH surge associated with the first ovulation, mean LH and FSH secretion was significantly higher in [-]-sulpiride-treated mares than in control mares (P < 0.05). These results suggest that dopamine plays a role in the control of reproductive seasonality in mares and exerts a tonic inhibition on reproductive activity during the anovulatory season.  相似文献   

13.
The objective was to determine differences in follicle and reproductive hormone characteristics in mares with ovulatory and flunixin meglumine (FM)-induced anovulatory cycles. Estrous mares were given 1500 IU hCG when the follicle was ≥ 32 mm (0 h). In Experiment 1, control mares (n = 7) were not treated further. The remaining mares (n = 11) were given 1.7 mg/kg FM i.v. twice daily, from 0 to 36 h after hCG treatment. Blood samples and ultrasonographic examinations were performed every 12 h. All control mares ovulated normally between 36 and 48 h. In contrast, eight of 11 FM mares did not ovulate, but developed luteinized unruptured follicles (LUFs). Three FM-treated mares did not develop conventional LUFs. Plasma progesterone concentrations were lower (P < 0.05) in LUF mares at 96, 120, and 216 h than in controls, whereas plasma LH concentrations were higher (P < 0.05) between 108 and 120 h in LUF mares than in controls. Plasma concentrations of PGFM and estradiol did not differ significantly between groups. In Experiment 2, the three mares that did not develop LUFs were treated, during the consecutive cycle, with the same dose of FM but with increased frequency at zero, 12, 24, 30, 36, and 48 h after hCG. One mare formed a LUF, whereas the other two did not. These two mares had lower LH concentrations than LUF or control mares in the two consecutive cycles. In conclusion, systemic treatment with FM blocked ovulation in 73% of treated mares. Mares with LUFs had lower progesterone and higher LH concentrations than control mares.  相似文献   

14.
Sixty light-horse, nonlactating mares were used to compare the efficacy of equine pituitary extract versus follicle stimulating hormone (FSH-P) for inducing multiple ovulations. On Day 12 of diestrus, mares were assigned to receive 1) no treatment, controls; 2) subcutaneous injections of 750 Fevold rat units of equine pituitary extract once daily; or 3) intramuscular injection of 150 mg of FSH-P twice daily. Ultrasound was used twice daily to visualize follicular changes and ovulation. For mares in Groups 2 and 3, treatment was initiated when two or more follicles > 20 mm were detected, and it continued until all large follicles (> 30 mm) had ovulated or regressed. Five milligrams of prostaglandin F(2)alpha (PGF(2)) were administered to mares in Groups 2 and 3 on the first day of treatment. Human chorionic gonadotropin (3,300 IU) was given to all groups of mares during estrus when a 35-mm follicle was detected. Ovulation rate was greater (P < 0.05) for mares treated with pituitary extract (2.2) compared to FSH-P treatment (1.6) or no treatment (1.0). Thirteen of 18 mares treated with the extract had more than one ovulation versus only four of nine FSH-treated mares. Mares in the pituitary extract group were given injections for an average of 6.4 d compared to 6.8 d (13.7 injections) for FSH-treated mares. Intervals to estrus and ovulation from initial injection of extract were 2.9, 7.6; and 2.6, 9.2 d for FSH-treated mares. The mean number of medium-sized follicles (25 to 30 mm) was greater (P < 0.05) in extract-treated mares compared to the FSH-treated mares. Both extract and FSH increased (P < 0.05) the number of follicles > 30 mm and the size of the second largest follicle 1 and 2 d prior to ovulation when compared to controls. Overall, mares with multiple ovulations had more (P < 0.05) follicles 25 to 30 mm and > 30 mm on Day -6 through -1 (Day 0 = day of ovulation) than single ovulating mares. Those mares that had multiple ovulations had less (P < 0.05) size difference between the largest and second largest follicle when compared to single ovulating mares. In summary, FSH-P at the one dose studied was less effective than equine pituitary extract in inducing follicular activity and multiple ovulation in the mare.  相似文献   

15.
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25mg EPE and treated with 2500 IU hCG, (2) superovulation with 25mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles >10mm were aspirated 24h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group, 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%; p<0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15+/-4 days for control to 27+/-15 days for EPE (p<0.05) and to 23+/-13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations.  相似文献   

16.
Mares at Day 42 of pregnancy received daily intramuscular (i.m.) injection of 5 mg of prostaglandin F2alpha (PGF(2alpha)) until the beginning of the first (Group I, n = 3) or second estrous cycle (Group II, n = 2). All mares aborted 3 to 4 d after the first injection; they displayed estrus 2 to 6 d after this injection. As determined by palpation per rectum and serum progesterone levels, each estrus was accompanied by an ovulation. Endometrial cups did not regress after PGF(2alpha) treatment since serum samples from the mares contained pregnant mare serum gonadotropin (PMSG) for at least 30 d after first injection, as determined by mare immunopregnancy test. After the first estrus, two of three mares in Group I displayed a prolonged diestrus (> 25 d). In contrast, the first estrous cycle was short (8 to 12 d) for mares in Group II. Serum progesterone levels in the first 6 d postovulation were lower (P < 0.05) for Group II than for Group I, indicating that formation of the corpus luteum was impaired by daily injections of PGF(2). Results indicate that 1) daily injections of PGF(2alpha) can induce abortion in mares at Day 42 of pregnancy, 2) abortion is followed by estrus and ovulation, 3) the endometrial cups do not regress as a result of this treatment, and 4) daily injections of PGF(2) can impair early corpus luteum development.  相似文献   

17.
Transcervical diagnostic techniques may alter the length of the equine estrous cycle and affect subsequent luteal function. Therefore, nine mares were used to determine the effect of cervical dilation on plasma 13, 14-dihydro, 15-keto-prostaglandin F(2) (PGFM), progesterone (P(4)) and posttreatment duration of luteal function. Mares were given a daily score of 0 to 4 based on sexual receptivity. Five days following the end of receptivity, mares were randomly assigned to one of three, 3 x 3 latin squares. Control mares received no cervical dilation. Cervically stimulated mares recieved cervical dilation for 60 sec. Cervically stimulated plus inhibitor mares were dilated similarly to cervically stimulated mares, but received a prostaglandin synthetase inhibitor 30 min prior to treatment. Each mare completed all three treatments in three consecutive estrous cycles. Plasma PGFM and P(4) were determined by RIA. Plasma PGFM was lower (P<0.05) in cervically stimulated plus inhibitor than control and cervically stimulated mares. In addition, plasma P(4) was lower (P<0.10) in cervically stimulated plus inhibitor than in control and cervically stimulated mares. Luteal function following treatments did not differ. These data indicate that neither plasma PGFM and P(4) nor the duration of luteal function were affected by cervical dilation. However, administration of a prostaglandin synthetase inhibitor prior to cervical dilation decreased plasma PGFM and P(4) concentrations.  相似文献   

18.
Progesterone and estradiol 17-beta in poly (DL-lactide) microspheres were used to control estrus and ovulation in mares after luteolysis was induced by prostaglandin F(2)infinity. Mares were given a single intramuscular injection of biodegradable poly (DL-lactide) microspheres, 1 day following prostaglandin treatment, containing no hormones (control), 0.625 g progesterone and 50 mg estradiol (low dose), 1.25 g progesterone and 100 mg estradiol (medium dose), or 1.875 g progesterone and 150 mg estradiol (high dose; n=15 mares per group). Mares treated with the low dose had significantly longer intervals (P<0.05) to estrus and ovulation than the control mares; however, low dose mares had shorter intervals (P<0.05) to estrus than high dose mares and shorter intervals to ovulation than medium and high dose mares. Regression analysis indicated that the medium dose was sufficient for maximizing interval to ovulation while the high dose maximized interval to estrus. All groups of mares exhibited similar (P>0.05) post-treatment estrus lengths. A clinical response scoring system based on synchrony of both estrus and ovulation within a treatment group was also used to measure the effectiveness of treatments on control of estrus and ovulation. Clinical response scores did not differ (P>0.05) among treatment groups. Mares were randomly assigned for insemination at the beginning of the first post-treatment estrus. Rates for embryo recovery performed by uterine lavage 7 days post-ovulation did not differ (P>0.05) among groups. Concentrations of serum progesterone increased in mares receiving progesterone and estradiol microspheres. At 10 to 14 days post-injection of microspheres, progesterone concentrations were higher (P<0.05) and remained above 1 ng/ml in the mares receiving the high dose. Progesterone concentrations were also higher (P<0.05) on Days -3 to -1 (Day 0 = day of post-treatment ovulation) in mares receiving the high dose when compared to control mares. Gonadotropin concentrations were suppressed (P<0.05) in the medium and high dose groups.  相似文献   

19.
The efficacy of a recently engineered single chain recombinant equine follicle stimulating hormone (reFSH) was investigated in estrous cycling mares whose gonadotropins and follicular activity had been suppressed by concurrent treatment with progesterone and estradiol (P&E). Time of estrus was synchronized in 15 estrous cycling mares during the breeding season with prostaglandins F (PGF). The day after ovulation, mares were treated once daily with P&E for 14 days. Mares received a second injection of PGF on day 6 of the synchronized estrous cycle to induce luteolysis. On day 8 post-ovulation mares were randomly assigned to three groups: small dose reFSH-treatment group (0.5 mg reFSH IV, twice daily); large dose reFSH-treatment group (0.85 mg reFSH IV twice daily); control group (saline IV, twice daily). reFSH treatment occurred concurrently with the last week of P&E treatment. After a follicle or cohort of follicles reached 35 mm in diameter, mares were injected with 0.75 mg of recombinant equine luteinizing hormone (reLH) to induce ovulation. Post-treatment ovulation was assessed. Daily blood samples were collected for analysis of FSH, LH, estradiol, progesterone, and inhibin by radioimmunoassay (RIA). On the first day of reFSH/saline treatment, blood samples were collected periodically from 1 h prior to treatment to 6 h post-injection via an indwelling jugular catheter to determine acute changes in FSH concentrations. Monitoring of follicular activity, estrus, and ovulation was performed daily by utilizing a stallion and transrectal ultrasonography.A difference (p ≤ 0.05) between the largest diameter follicle in the reFSH-treatment groups compared to controls occurred on day 14 post-ovulation, the day treatments ended, and the difference continued until day 21 post-ovulation. reFSH-treatment groups had larger (p ≤ 0.05) numbers of 20–29 mm follicles (days 13–18), 30–34 mm follicles (days 15–20) and ≥35 mm follicles (days 16–21) than controls. Mares treated with reFSH, at either dose, took less time (average: 2.95 ± 0.42 days) to develop 2–3 times more pre-ovulatory follicles than control mares (7.8 ± 0.51 days) (p ≤ 0.05). The number of ovulations between treated mares and controls were similar due to a greater incidence of ovulation failure in reFSH-treated mares. During reFSH treatment, concentrations of plasma FSH, inhibin and estradiol were greater (p ≤ 0.05) compared to control concentrations. Plasma LH concentrations in reFSH-treated mares were suppressed and did not exhibit the ovulatory surge of controls (p ≤ 0.05). Plasma progesterone concentrations were not different across groups.These findings demonstrate the specific effects of reFSH to increase number of total follicles including pre-ovulatory follicles in mares with endogenous pituitary gonadotropins and follicular growth suppressed by a regimen of P&E.  相似文献   

20.
The objective was to compare the reproductive performances associated with the first (Cycle-1), second (Cycle-2), and mid-season (MS-Cycle) ovulations of the breeding season in donor mares that were treated with equine-FSH (eFSH) in the early vernal transition. Mares (n = 15) kept under ambient light were examined ultrasonographically per-rectum starting January 30. When an ovarian follicle ≥25 mm in diameter was detected, twice daily eFSH treatments were initiated. The eFSH treatments ceased when a follicle ≥35 mm was detected, and 36 h later hCG was administered. Thereafter, mares were artificially inseminated every 48 h until ovulation (Day 0). Trans-cervical embryo recovery attempts were performed on Day 8, and subsequently PGF2α was administered. Equine FSH was not administered in the subsequent estrous cycles. In Cycle-2 and in the MS-Cycle, hCG was administered when a follicle ≥35 mm was detected; breeding, embryo recovery, and PGF2α administration, were similar to Cycle-1. Mares had an untreated estrous cycle (no treatment or breeding) between Cycle-2 and the MS-Cycle. All mares developed follicle(s) ≥35 mm after 4.9 ± 0.6 days of eFSH treatment, and subsequently ovulations occurred; mean (95% CI) interval from treatment initiation to ovulation was 7.9 (6.5–9.3) days. The number of preovulatory follicles (≥30 mm) at the time of hCG administration (Cycle-1: 2.2 ± 0.3 compared with Cycle-2: 1.0 ± 0 compared with MS-Cycle: 1.1 ± 0.1 follicles), and the number of ovulations (2.5 ± 0.4 compared with 1.0 ± 0 compared with 1.1 ± 0.1 ovulations) were greater (p < 0.05) in Cycle-1. Nevertheless, mean embryo numbers did not differ among cycles (0.8 ± 0.2 compared with 0.5 ± 0.1 compared with 0.5 ± 0.1 embryo/mare). On average, embryo morphology grade was less (p < 0.05) in Cycle-1 as compared to non-eFSH cycles (combined Cycle-2 and MS-Cycle). This impaired embryo quality could be due to a seasonal effect, or negative effect of the eFSH treatment, which was possibly related to alterations in the hormonal environment (estradiol-17β and progesterone). A prolonged IOI (>21 days) was recorded in 7 of 15 mares following the Cycle-1 ovulation, but not subsequently. In conclusion, eFSH treatment of vernal transitional donor mares stimulated ovulation within only few days of treatment, and the following embryo recovery rate was at least as good as in the subsequent estrous cycles; however, on average, embryos were morphologically impaired. In subsequent estrous cycles in the breeding season, ovulations, embryo recovery rates, and embryo variables did not appear to be negatively affected; however, the first inter-ovulatory interval of the breeding season was prolonged in approximately half of the mares.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号