首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Ubiquitin‐mediated protein modification via covalent attachment of ubiquitin has emerged as one of the most common regulatory processes in all eukaryotes. Nedd4‐2, closely related to neuronal precursor cell‐expressed developmentally down‐regulated 4 (Nedd4), is a multimodular ubiquitin–protein ligase comprised of four WW domains and a Hect domain. The WW domains recognize the proline‐rich motifs on the multi‐subunit amiloride‐sensitive epithelial sodium channel (ENaC). To gain insights into the binding of the WW domain to proline‐rich peptides, a protein fragment (78 amino acids) containing the fourth WW domain (WW4) of the Nedd4‐2 protein was purified and crystallized and X‐ray diffraction data were collected. A data set was obtained to 2.5 Å resolution from a cryocooled single crystal at a synchrotron source. The crystals belong to the tetragonal space group P41212 (or P43212), with unit‐cell parameters a = b = 113.43, c = 103.21 Å. Analysis of the self‐rotation function suggests the presence of four WW4 molecules in the asymmetric unit, with a high unit‐cell solvent content of 74%.  相似文献   

2.
Fibroblast growth factor receptor 1 (FGFR1) has critical roles in cellular proliferation and differentiation during animal development and adult homeostasis. Here, we show that human Nedd4 (Nedd4‐1), an E3 ubiquitin ligase comprised of a C2 domain, 4 WW domains, and a Hect domain, regulates endocytosis and signalling of FGFR1. Nedd4‐1 binds directly to and ubiquitylates activated FGFR1, by interacting primarily via its WW3 domain with a novel non‐canonical sequence (non‐PY motif) on FGFR1. Deletion of this recognition motif (FGFR1‐Δ6) abolishes Nedd4‐1 binding and receptor ubiquitylation, and impairs endocytosis of activated receptor, as also observed upon Nedd4‐1 knockdown. Accordingly, FGFR1‐Δ6, or Nedd4‐1 knockdown, exhibits sustained FGF‐dependent receptor Tyr phosphorylation and downstream signalling (activation of FRS2α, Akt, Erk1/2, and PLCγ). Expression of FGFR1‐Δ6 in human embryonic neural stem cells strongly promotes FGF2‐dependent neuronal differentiation. Furthermore, expression of this FGFR1‐Δ6 mutant in zebrafish embryos disrupts anterior neuronal patterning (head development), consistent with excessive FGFR1 signalling. These results identify Nedd4‐1 as a key regulator of FGFR1 endocytosis and signalling during neuronal differentiation and embryonic development.  相似文献   

3.
  总被引:1,自引:0,他引:1  
The epithelial-Na(+)-channel (alphabetagammaENaC) regulates kidney salt-transport and blood pressure. Each ENaC subunit contains a PY motif (PPxY) and its mutation in beta/gammaENaC causes Liddle syndrome, a hereditary hypertension. These (extended) PY motifs (PP(616)xY(618)xxL(621)) serve as binding sites for the ubiquitin ligase Nedd4-2, which decreases cell-surface expression of ENaC by unknown route(s). Using polarized kidney epithelia [Madin-Darby canine kidney I (MDCK-I)] cells stably expressing extracellularly myc-tagged wild type (WT) or PY-motif mutants of betaENaC (P616A, Y618A or L621A, with WT-alphagammaENaC), and live-imaging plus enzyme-linked immunosorbent assay (ELISA)-type assays to analyze routes/rates of ENaC internalization/recycling, we show here that cell-surface half-life of all PY mutants was fourfold longer than WT-ENaC (approximately 120 versus 30 minutes), reflecting primarily reduced channel internalization but also attenuated replenishment of cell-surface ENaC from a large subapical pool. The Y618A mutant revealed more severe internalization and replenishment defects than the other PY mutants. Internalized WT-ENaC was detected in sorting/recycling and late endosomes/lysosomes, while the Y618A mutant accumulated in the former. Nedd4-2 ubiquitinated ENaC at the apical membrane causing channel internalization and degradation. Cyclic AMP (cAMP) accelerated mobilization of subapical ENaC to the cell surface and long-term ENaC recycling, but only mobilization, not recycling, was inhibited in the PY mutants. These results suggest that the ENaC PY motifs (and Nedd4-2) primarily regulate channel internalization but also affect cAMP-dependent replenishment, providing important insight into the Liddle syndrome defects.  相似文献   

4.
    
Like most enveloped viruses, HIV must acquire a lipid membrane as it assembles and buds through the plasma membrane of infected cells to spread infection. Several sets of host cell machinery facilitate this process, including proteins of the endosomal sorting complexes required for transport pathway, which mediates the membrane fission reaction required to complete viral budding, as well as angiomotin (AMOT) and NEDD4L, which bind one another and promote virion membrane envelopment. AMOT and NEDD4L interact through the four NEDD4L WW domains and three different AMOT Pro-Pro-x (any amino acid)-Tyr (PPxY) motifs, but these interactions are not yet well defined. Here, we report that individual AMOT PPxY and NEDD4L WW domains interact with the following general affinity hierarchies: AMOT PPxY1>PPxY2>PPxY3 and NEDD4L WW3>WW2>WW1∼WW4. The unusually high-affinity of the AMOT PPxY1–NEDD4L WW3 interaction accounts for most of the AMOT–NEDD4L binding and is critical for stimulating HIV-1 release. Comparative structural, binding, and virological analyses reveal that complementary ionic and hydrophobic contacts on both sides of the WW–PPxY core interaction account for the unusually high affinity of the AMOT PPxY1–NEDD4L WW3 interaction. Taken together, our studies reveal how the first AMOT PPxY1 motif binds the third NEDD4L WW domain to stimulate HIV-1 viral envelopment and promote infectivity.  相似文献   

5.
    
The BAG family of Hsp70/Hsc70 co‐chaperones is characterised by the presence of a conserved BAG domain at the carboxyl‐terminus. BAG3 protein is the only member of this family containing also the N‐terminally located WW domain. We describe here the identification of adenovirus (Ad) penton base protein as the first BAG3 partner recognising BAG3 WW domain. Ad penton base is the viral capsid constituent responsible for virus internalisation. It contains in the N‐terminal part two conserved PPxY motifs, known ligands of WW domains. In cells producing Ad penton base protein, cytoplasmic endogenous BAG3 interacts with it and co‐migrates to the nucleus. Preincubation of BAG3 with Ad base protein results in only slight modulation of BAG3 co‐chaperone activity, suggesting that this interaction is not related to the classical BAG3 co‐chaperone function. However, depletion of BAG3 impairs the cell entry of the virus and viral progeny production in Ad‐infected cells, suggesting that the interaction between virus penton base protein and cellular co‐chaperone BAG3 positively influences virus life cycle. These results thus demonstrate a novel host–pathogen interaction, which contributes to the successful infectious life cycle of adenoviruses. In addition, these data enrich our knowledge about the multifunctionality of the BAG3 co‐chaperone. J. Cell. Biochem. 111: 699–708, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Previous studies have characterized interactions between the ubiquitin ligase Nedd4-1 and the epithelial Na+ channel (ENaC). Such interactions control the channel cell surface expression and activity. Recently, evidence has been provided that a related protein, termed Nedd4-2, is likely to be the true physiological regulator of the channel. Unlike Nedd4-1, Nedd4-2 also interacts with the aldosterone-induced channel activating kinase sgk-1. The current study uses surface plasmon resonance to quantify the binding of the four WW domains of Nedd4-2 to synthetic peptides corresponding to the PY motifs of ENaC and sgk-1. The measurements demonstrate that WW3 and WW4 are the only Nedd4-2 domains interacting with both ENaC and sgk-1 and that their binding constants are in the 1-6 μM range.  相似文献   

7.
Interactions mediated by short linear motifs in proteins play major roles in regulation of cellular homeostasis since their transient nature allows for easy modulation. We are still far from a full understanding and appreciation of the complex regulation patterns that can be, and are, achieved by this type of interaction. The fact that many linear-motif-binding domains occur in tandem repeats in proteins indicates that their mutual communication is used extensively to obtain complex integration of information toward regulatory decisions. This review is an attempt to overview, and classify, different ways by which two and more tandem repeats cooperate in binding to their targets, in the well-characterized family of WW domains and their corresponding polyproline ligands.  相似文献   

8.
Epithelial Na(+) channels (ENaC) mediate the transport of sodium (Na) across epithelia in the kidney, gut, and lungs and are required for blood pressure regulation. They are inhibited by ubiquitin protein ligases, such as Nedd4 and Nedd4-2, which bind to proline-rich motifs (PY motifs) present in the C-termini of ENaC subunits. Loss of inhibition leads to hypertension. ENaC channels are maintained in the active state by G-protein-coupled receptor kinase 2 (GRK2), an enzyme implicated in the development of essential hypertension. Here, we report that GRK2 interacts not only with ENaC, but also with both Nedd4 and Nedd4-2. Additionally, GRK2 is capable of phosphorylating both Nedd4 and Nedd4-2 at multiple sites. Of possible significance is the phosphorylation of the threonine at position 466 in Nedd4, which is located in the area of the ww3 domain that binds ENaC. These results support and extend the role of GRK2 in sodium transport regulation.  相似文献   

9.
    
Nuclei of the dinoflagellate Crypthecodinium cohnii strain Whd were isolated and nuclear proteins were extracted in three fractions, corresponding to the increasing affinity of these proteins to genomic DNA. One fraction contained two major bands (48- and 46-kDa) and antibodies specific to this fraction revealed two major bands by Western blot on nuclear extracts, corresponding to the 46- and 48-kDa bands. The 48-kDa protein was detected in G1 phase but not in M phase cells. An expression cDNA library of C. cohnii was screened with these antibodies, and two different open reading frames were isolated. Dinoflagellate nuclear associated protein (Dinap1), one of these coding sequences, was produced in E. coli and appeared to correspond to the 48-kDa nuclear protein. No homologue of this sequence was found in the data bases, but two regions were identified, one including two putative zinc finger repeats, and one coding for two potential W/W domains. The second coding sequence showed a low similarity to non-specific sterol carrier proteins. Immunocytolocalization with specific polyclonal antibodies to recombinant Dinap1 showed that the nucleus was immunoreactive only during the G1 phase: the nucleoplasm was immunostained, while chromosome cores and nuclear envelopes were negative.  相似文献   

10.
WW domain proteins are usually regarded as simple models for understanding the folding mechanism of β-sheet. CC45 is an artificial protein that is capable of folding into the same structure as WW domain. In this article, the replica exchange molecular dynamics simulations are performed to investigate the folding mechanism of CC45. The analysis of thermal stability shows that β-hairpin 1 is more stable than β-hairpin 2 during the unfolding process. Free energy analysis shows that the unfolding of this protein substantially proceeds through solvating the smaller β-hairpin 2, followed by the unfolding of β-hairpin 1. We further propose the unfolding process of CC45 and the folding mechanism of two β-hairpins. These results are similar to the previous folding studies of formin binding protein 28 (FBP28). Compared with FBP28, it is found that CC45 has more aromatic residues in N-terminal loop, and these residues contact with C-terminal loop to form the outer hydrophobic core, which increases the stability of CC45. Knowledge about the stability and folding behaviour of CC45 may help in understanding the folding mechanisms of the β-sheet and in designing new WW domains.  相似文献   

11.
12.
The sub-viral dodecahedral particle of human adenovirus type 3, composed of the viral penton base and fiber proteins, shares an important characteristic of the entire virus: it can attach to cells and penetrate them. Structure determination of the fiberless dodecahedron by cryo-electron microscopy to 9 Angstroms resolution reveals tightly bound pentamer subunits, with only minimal interfaces between penton bases stabilizing the fragile dodecahedron. The internal cavity of the dodecahedron is approximately 80 Angstroms in diameter, and the interior surface is accessible to solvent through perforations of approximately 20 Angstroms diameter between the pentamer towers. We observe weak density beneath pentamers that we attribute to a penton base peptide including residues 38-48. The intact amino-terminal domain appears to interfere with pentamer-pentamer interactions and its absence by mutation or proteolysis is essential for dodecamer assembly. Differences between the 9 Angstroms dodecahedron structure and the adenovirus serotype 2 (Ad2) crystallographic model correlate closely with differences in sequence. The 3D structure of the dodecahedron including fibers at 16 Angstroms resolution reveals extra density on the top of the penton base that can be attributed to the fiber N terminus. The fiber itself exhibits striations that correlate with features of the atomic structure of the partial Ad2 fiber and that represent a repeat motif present in the amino acid sequence. These new observations offer important insights into particle assembly and stability, as well as the practicality of using the dodecahedron in targeted drug delivery. The structural work provides a sound basis for manipulating the properties of this particle and thereby enhancing its value for such therapeutic use.  相似文献   

13.
14.
蛋白转导域内在化机制的研究进展   总被引:1,自引:0,他引:1  
曲恒燕  孙曼霁 《生命科学》2007,19(2):220-223
蛋白转导域(protein transduction domain,PTD)可以携带外源生物大分子进入细胞,在分子生物学、细胞生物学的基础研究及生物技术应用中,都展示出良好的前景,应用广泛,但机制不甚明确。已知的PTD均有其关键的特定氨基酸存在和较强的正电荷分布,并具有独特的二级结构及空间构象,这些特殊的结构特征对其内在化机制起决定作用。目前认为巨胞饮作用是PTD入胞的主要机制,PTD在经过细胞表面糖胺聚糖紧密结合快速作用及电荷作用后,由脂筏蛋白介导的巨胞饮作用内在化,然后巨胞饮体脂质双层破裂,使蛋白转导域.大分子释放入胞浆及胞核。  相似文献   

15.
Target recognition by the ubiquitin system is mediated by E3 ubiquitin ligases. Nedd4 family members are E3 ligases comprised of a C2 domain, 2–4 WW domains that bind PY motifs (L/PPxY) and a ubiquitin ligase HECT domain. The nine Nedd4 family proteins in mammals include two close relatives: Nedd4 (Nedd4‐1) and Nedd4L (Nedd4‐2), but their global substrate recognition or differences in substrate specificity are unknown. We performed in vitro ubiquitylation and binding assays of human Nedd4‐1 and Nedd4‐2, and rat‐Nedd4‐1, using protein microarrays spotted with ~8200 human proteins. Top hits (substrates) for the ubiquitylation and binding assays mostly contain PY motifs. Although several substrates were recognized by both Nedd4‐1 and Nedd4‐2, others were specific to only one, with several Tyr kinases preferred by Nedd4‐1 and some ion channels by Nedd4‐2; this was subsequently validated in vivo. Accordingly, Nedd4‐1 knockdown or knockout in cells led to sustained signalling via some of its substrate Tyr kinases (e.g. FGFR), suggesting Nedd4‐1 suppresses their signalling. These results demonstrate the feasibility of identifying substrates and deciphering substrate specificity of mammalian E3 ligases.  相似文献   

16.
  总被引:2,自引:0,他引:2  
The functionally exchangeable L domains of HIV-1 and Rous sarcoma virus (RSV) Gag bind Tsg101 and Nedd4, respectively. Tsg101 and Nedd4 function in endocytic trafficking, and studies show that expression of Tsg101 or Nedd4 fragments interfere with release of HIV-1 or RSV Gag, respectively, as virus-like particles (VLPs). To determine whether functional exchangeability reflects use of the same trafficking pathway, we tested the effect on RSV Gag release of co-expression with mutated forms of Vps4, Nedd4 and Tsg101. A dominant-negative mutant of Vps4A, an AAA ATPase required for utilization of endosomal sorting proteins that was shown previously to interfere with HIV-1 budding, also inhibited RSV Gag release, indicating that RSV uses the endocytic trafficking machinery, as does HIV. Nedd4 and Tsg101 interacted in the presence or absence of Gag and, through its binding of Nedd4, RSV Gag interacted with Tsg101. Deletion of the N-terminal region of Tsg101 or the HECT domain of Nedd4 did not prevent interaction; however, three-dimensional spatial imaging suggested that the interaction of RSV Gag with full-length Tsg101 and N-terminally truncated Tsg101 was not the same. Co-expression of RSV Gag with the Tsg101 C-terminal fragment interfered with VLP release minimally; however, a significant fraction of the released VLPs was tethered to each other. The results suggest that, while Tsg101 is not required for RSV VLP release, alterations in the protein interfere with VLP budding/fission events. We conclude that RSV and HIV-1 Gag direct particle release through independent ESCRT-mediated pathways that are linked through Tsg101-Nedd4 interaction.  相似文献   

17.
18.
TAT蛋白转导域:蛋白质治疗的新曙光   总被引:7,自引:0,他引:7  
TAT蛋白转导域是源自人类免疫缺陷病毒Tat蛋白的一段碱性氨基酸多肽,能够将与之共价连接的多肽、蛋白、核酸等生物大分子快速而高效地转导入细胞内部,在药物转运和疾病治疗等领域有着巨大的应用潜力.TAT蛋白转导域首先通过电荷相互作用吸附于细胞膜,然后通过脂筏介导的巨胞饮作用进入细胞.随着体外研究的不断成熟,应用TAT蛋白转导域治疗人类肿瘤、卒中、炎症等疾病的动物模型也获得了成功,TAT蛋白转导域进入临床指日可待.  相似文献   

19.
    
The NMR solution structure of the isolated Apo Pin1 WW domain (6-39) reveals that it adopts a twisted three-stranded antiparallel beta-sheet conformation, very similar to the structure exhibited by the crystal of this domain in the context of the two domain Pin1 protein. While the B factors in the apo x-ray crystal structure indicate that loop 1 and loop 2 are conformationally well defined, the solution NMR data suggest that loop 1 is quite flexible, at least in the absence of the ligand. The NMR chemical shift and nuclear Overhauser effect pattern exhibited by the 6-39 Pin1 WW domain has proven to be diagnostic for demonstrating that single site variants of this domain adopt a normally folded structure. Knowledge of this type is critical before embarking on time-consuming kinetic and thermodynamic studies required for a detailed understanding of beta-sheet folding.  相似文献   

20.
WW结构域是由38~40个氨基酸残基严密组织形成一个连贯、紧凑的结构域;它以包含两个色氨酸残基为主要特征,能专一地与含有XPPXY保守序列的蛋白质相互作用.这种相互作用涉及许多细胞内事件,如非受体信号传导、转录调节、蛋白质降解等等,并且这种相互作用的变化会直接或间接影响到人体的正常生理代谢功能而引起疾病.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号