首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inactivation of diploid yeast by hyperthermia has been studied. DO and Dq decrease with temperature for euoxic and anoxic conditions. The Arrhenius plot shows a break at 52 degrees C; the inactivation energies above and below this temperature are 153 and 94kcal/mol respectively. Hyperthermia (20 min at 51 degrees C) also potentiates the lethal action of gamma rays in diploid yeast cells under both euoxic and anoxic conditions. The interaction between hyperthermic and radiation damage appears to be largely at the sublethal level. The euoxic cells, the hyperthermic potentiation decreases with increasing time between the application of hyperthermia and radiation, being completely lost after 24 hours. However, in the anoxic cells there was no decrease in the hyperthermic potentiation with increasing time interval. These results suggest that yeast cells are capable of repairing hyperthermic sublethal damage, but require oxygen to do so. Thus there is a similarity in the process of repair of sublethal damage caused by ionizing radiation on the one hand and hyperthermia on the other.  相似文献   

2.
Formation of strand-breaks in DNA and its repair in Yoshida ascites tumor cells exposed to gamma radiation (100-400 Gy) in presence and absence of misonidazole (10 mM) were studied. The methodology involved pre-labelling of cellular DNA by 3H-thymidine during cell proliferation in rats, irradiation of cells in vitro and analysing sedimentation profile of DNA by ultracentrifugation in alkaline sucrose density gradients. Irradiation under euoxic conditions resulted in formation of about 1.5 times greater number of strand breaks as compared to those formed during irradiation under hypoxic conditions. Misonidazole (10 mM) by its presence along with the cells during irradiation under hypoxic conditions caused a 3-fold increase in the number of single strand breaks, but under euoxic conditions of irradiation the presence of misonidazole did not enhance the strand break formation. Incubation of cells irradiated in absence of misonidazole for 1 hr in tissue culture medium at 37 degrees C resulted in repair of substantial fraction of the strand breaks while there was no repair of the DNA strand breaks in cells irradiated in the presence of the chemical.  相似文献   

3.
The extracellular pH (pHe) in many solid tumors is often lower than the pH of normal tissues. The K+/H+ ionophore nigericin is toxic to CHO cells when pHe is below but not above 6.5, and thus it has potential for selective killing of tumor cells in an acidic environment. This study examines the pH-dependent effects of nigericin on the response of CHO cells to radiation and heat treatment. Cells held for 4 h in Hank's balanced salt solution, after 9 Gy irradiation, exhibit potentially lethal damage recovery (PLDR) which is maximal at pHe 6.7-6.8. Addition of nigericin, postirradiation, not only inhibits PLDR when pHe is below 6.8, but interacts synergistically with radiation to reduce survival below that of cells plated immediately after irradiation when pHe is 6.4 or lower. Nigericin enhances heat killing of CHO cells perferentially under acidic conditions, and where neither heat nor drug treatment alone is significantly toxic. Survival of cells held for 30 min at 42.1 degrees C in the presence of 1.0 microgram/ml nigericin is 0.6, 0.08, 0.003, and 0.00003 at pHe 7.4, 6.8, 6.6, and 6.4, respectively, relative to survival of 1.0 in untreated cultures. The biochemical effects of nigericin at pHe 7.4 vs pHe 6.4 have been investigated. Nigericin inhibits respiration, stimulates glucose consumption, and causes dramatic changes in intracellular concentrations of Na+ and K+ at pHe 7.4 as well as 6.4. The drug reduces intracellular levels of ATP, GTP, and ADP but has more pronounced effects under acidic incubation conditions. Others have shown that nigericin equilibrates pHe and intracellular pH (pHi) only when pHe is 6.5 or lower. Our observations and those of others have led us to conclude that lowering of pHi by nigericin is either the direct or indirect cause of enhancement of radiation and heat killing of cells in an acidic environment.  相似文献   

4.
Hypoxia relieves X-ray-induced delayed effects in normal human embryo cells   总被引:4,自引:0,他引:4  
We studied the effect of hypoxia on X-ray-induced delayed effects in normal human embryo cells to elucidate the role of oxidative stress in the susceptibility of cells to induction of genetic instability by radiation. We examined X-ray-induced delayed cell death, giant cell formation, and chromosome aberrations under normally oxygenated (20%) and hypoxic (2%) conditions at 28-38 population doublings postirradiation. The results revealed that hypoxia reduced the X-ray-induced delayed effects, suggesting that radiation enhances cellular oxidative stress, which plays a significant role in determining the susceptibility of irradiated cells to genetic instability. The present study emphasizes the biological significance of epigenetic effects, such as oxygen tension, as well as direct DNA damage in the induction of genetic instability by radiation.  相似文献   

5.
Survival and mutation to thioguanine resistance were measured in V79-4 hamster cells grown to plateau phase without refeeding and irradiated with 60Co gamma rays. The effects of low-dose-rate irradiation and of postirradiation holding on recovery from gamma-ray damage leading to these two responses were also studied. The responses of these plateau (extended G1)-phase cells to acute irradiation were similar to those we previously found for exponentially growing cells, including the linear relationship between induced mutant frequency and (log) surviving fraction. Irradiation at low dose rate (0.34 rad/min) considerably reduced both the lethal and mutagenic effects of given doses of gamma rays, but the linear mutation-survival relationship was approximately the same as for acute irradiation. In contrast, cells given a 5-hr holding period after acute irradiation showed the anticipated recovery from potentially lethal damage but no recovery from damage leading to mutation. These results are discussed in terms of previously proposed cellular repair processes (sublethal damage repair and potentially lethal damage repair) and the possibility that the radiation damage leading to lethality is different from mutagenic damage.  相似文献   

6.
We have recently demonstrated that postirradiation hypoxia during colony formation in vitro enhanced the radiation sensitivity of murine tumor cells irradiated and maintained at 0.1% O2. The effect of postirradiation hypoxia was expressed by a significant reduction in the oxygen enhancement ratio. We now demonstrate that this enhancement of radiation sensitivity by postirradiation hypoxia is also observed in a human tumor cell line. The effect was observed at [O2] less than or equal to 0.1%, but was not present at [O2] greater than or equal to 0.5%. Time-course experiments suggested that this enhancement of cell killing by X rays required prolonged exposure to hypoxic conditions.  相似文献   

7.
We have studied the effects of actinomycin-D (AMD) and Adriamycin (ADRM) on the repair of radiation damage in Chinese hamster cells (V79) in plateau phase growth. Suppression of potentially lethal damage repair (PLDR) was observed in the presence of non-toxic levels of AMD and minimally toxic levels of ADRM. The suppression of PLDR by AMD persisted as long as the drug was present. Removal of AMD was followed by prompt repair of potentially lethal injury suggesting that suppression of PLDR by AMD was not accompanied by fixation of injury to a non-repairable state. On the other hand, irradiated cells exposed to ADRM eventually repair potentially lethal injury in the presence of drug after an initial delay. AMD, but not ADRM, inhibited repair of sublethal radiation damage.  相似文献   

8.
Summary Diploid wild type yeast strains 211, X2180 and the radiation sensitive mutantsrad2, 6, 9, 18, 50–55, and57 were exposed to cobalt-60 gamma radiation, in the presence and absence of oxygen, in order to identify the RAD loci involved in the repair of sublethal damage (SLD), recovery from potentially lethal damage (PLD) and oxygen enhancement ratio (OER). Response of wild type and mutants were compared in terms of survival curve parameters Dq, D10, D1, and D0. As compared to wild type the mutants showed increased sensitivity to radiation lethality, both under euoxic and hypoxic conditions, as judged by the reduction in Dq and D0 values. OER was reduced in therad2, 9, 18, 50, 51, and57 mutants indicating that these genes could be associated with the repair of gamma radiation damage produced under hypoxic condition.Shoulder (Dq) a measure of the ability of the cells to repair SLD, was reduced in therad6, 9, 18, 50, 53, and57 strains and was almost absent in therad51, 52, 54, and55 mutants. The ability to recover from PLD was equal to that of wild type strain in therad2, 6, 9, and18 strains, reduced in therad53, 55, and57 strains and was absent in therad50–52 and54 strains. In the mutants with liquid holding recovery ability, the extent of recovery from PLD produced under euoxic and hypoxic conditions was the same. These observations suggest that different groups of loci are involved in the control of different repair processes and that the expression of therad50–57 loci play a very important role in the repair of ionising radiation damage.On the basis of the liquid holding recovery data presented here and the observations made by others it is suggested that the unrepaired DSB constitute the PLD and that the repair of DSB involves recombination between homologous chromosomes.  相似文献   

9.
Cell survival, recovery kinetics and inactivation forms after successive and simultaneous treatments with gamma rays (60Co) and high temperatures were studied in diploid yeast cells capable of recovery. Both the extent and the rate of the recovery were shown to be greatly decreased with increase in the duration of heat treatment (60 degrees C) followed by radiation and with increase in exposure temperature after simultaneous treatment with heat and radiation. A quantitative approach describing the recovery process was used to estimate the probability of recovery per unit time and the irreversible component of damage after the combined treatment with heat and radiation. It was shown that the probability of recovery was independent of the conditions of the treatment with heat and radiation, while the irreversible component gradually increased as a function of the duration of heat treatment (60 degrees C) after sequential treatment with heat and radiation and as a function of the exposure temperature after simultaneous treatment with heat and radiation. The increase in the irreversible component was accompanied by an increase in cell death without postirradiation division. It is concluded on this basis that the synergistic interaction of ionizing radiation and hyperthermia in yeast cells is not related to the impairment of the recovery capacity itself and that it may be attributed to an increased yield of irreversible damage.  相似文献   

10.
We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 μM tetrac (1 h at 37oC) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage.  相似文献   

11.
Stable monolayers of contact-inhibited C3H 10T1/2 cells were used in multifraction radiation experiments to measure the oxygen enhancement ratio (OER) at low doses/fraction under conditions where cell cycle effects (repopulation, redistribution) were minimal. Consistent with there being a dose-dependent reduction in the OER at low doses, an extremely low OER of 1.34 was measured after 20 fractions of 1.7 Gy every 12 h. The sparing effects of fractionating radiation doses were not apparent for cells irradiated under hypoxic conditions (i.e., multifraction survivals were lower than acute single-dose values) until doses exceeding 15 Gy were reached. This result suggested a deficiency in the recovery from sublethal and/or potentially lethal damage might exist after hypoxic irradiations, thereby reducing the OER. The capacity to repair potentially lethal damage was found to be nearly the same after hypoxic as compared to aerobic irradiations. However, there was an apparent absence of sublethal damage repair by 10T1/2 cells between two hypoxic irradiations which could be a major contributing factor to the extremely low OER value measured in this multifraction schedule.  相似文献   

12.
Mouse lymphoma strains L5178Y-R (LY-R) and L5178Y-S (LY-S), which are differentially sensitive to the cytotoxic effects of ionizing radiation, were found to differ in their abilities to repair potentially lethal damage (PLD) and sublethal damage (SLD). The results showed that strain LY-R was more proficient than strain LY-S in the repair of SLD. The split dose recovery observed in strain LY-S could be accounted for by its recovery during postirradiation incubation. In contrast, SLD repair occurred in the absence of PLD repair in strain LY-R. The possibility that the repair of PLD might be completed prior to the postirradiation incubation in strain LY-R was suggested by the decreased survival observed when the cells were irradiated in a hypotonic solution. The repair of PLD and SLD in strain LY-S was temperature sensitive, occurring during postirradiation incubations between 15 and 34 degrees C, but not at 37 or 40 degrees C. This temperature sensitivity is very similar to the temperature sensitivity of the repair of pH 9.6-labile lesions in DNA in strain LY-S, as reported previously. Thus postirradiation cellular recovery processes in strain LY-S may involve the repair of pH 9.6-labile lesions in DNA. Temperature-dependent changes in the postirradiation distribution of cells throughout the cell cycle were observed which could contribute to the temperature sensitivity of the postirradiation recovery of strain LY-S.  相似文献   

13.
In experiments with Chinese hamster cells at exponential and stationary growth phases, it has been shown that the postirradiation incubation of irradiated cells in a medium with low pH (up to 6.0) promotes the recovery of cells from potentially lethal damages; it has also been found that the recovery from sublethal radiation damages does not depend on the medium pH. The long-term incubation of nonirradiated cells with low pHc causes death of part of cells.  相似文献   

14.
Lactate is one of several pathophysiological factors accumulating in the micromilieu of tumors under both hypoxic and well-oxygenized conditions, and thus may affect the recovery of irradiated tumor cells in vivo. In the present study, we investigated the effects of postirradiation incubation with exogenous lactate during confluent holding recovery on the repair of potentially lethal damage in three human tumor cell lines. Recovery was either unaffected or enhanced by low concentrations of exogenous lactate (2-5 mM), whereas it was suppressed by higher concentrations (10-50 mM). With high concentrations, survival in all three cell lines was lower at the end of the confluent holding period than at the beginning, yielding recovery ratios of less than 1.0. The effects differed quantitatively among the three tumor cell lines, and between the tumor cells and the normal diploid fibroblasts (AG 1522) studied previously.  相似文献   

15.
Radioimmunotherapy is hindered by the slow penetration of antibody molecules into tumors. Cells that are poorly targeted by antibody, because of their distance from feeding blood vessels, receive the lowest radiation dose, and this problem is compounded if there are radioresistant hypoxic cells present. It would be desirable to combine radioimmunotherapy with an agent that is preferentially toxic to these cells. SR 4233 is a potent hypoxic cytotoxin, and it was combined with 131I-NR-LU-10 to treat LS174T human colon adenocarcinoma multicell spheroids and nude mouse xenografts for these studies. Under conditions of severe hypoxia (< 0.01% O2), 2 h of pretreatment or 18 h of simultaneous treatment with SR 4233 did not significantly enhance the effectiveness of 131I-NR-LU-10 in spheroids. However, under aerobic conditions with a 10% fraction of hypoxic cells, there was more toxicity than would be predicted from simple additivity. Xenografts treated with 131I-NR-LU-10 + SR 4233 had a growth delay that was significantly longer than that achieved with 131I-NR-LU-10 alone. In both spheroids and xenografts, combined treatment produced about 10 times more cell killing than 131I-NR-LU-10 alone. The lack of enhancement in spheroids under complete hypoxia suggests that SR 4233 does not sensitize hypoxic cells to radiation damage. The results with aerobic spheroids and in vivo, where a portion of the cells were hypoxic, could be explained by the targeting of different cell populations (hypoxic and aerobic) by each therapeutic modality. This effect should also be enhanced by reoxygenation and reestablishment of the hypoxic fraction during treatment, thus allowing more than the initially hypoxic fraction of cells to be killed by the SR 4233.  相似文献   

16.
CHO cells subline HA-1 were made thermotolerant by a priming heat treatment (43 degrees C, 30 min). Later, 4, 16, or 24 hr, they were either irradiated or heated (43 degrees C, 30 min) and irradiated. Thermotolerance had no effect on the radiation sensitivity of the cells as measured by the D0 value of the clonogenic survival curve. However, the N value of the curve (width of shoulder) showed a significant increase at 24 hr, indicating an increased capacity to accumulate sublethal damage. This indicates that the fractionation schedule 43 degrees C, 30 min + 37 degrees C, 24 hr + 43 degrees C, 30 min + X ray required approximately 100 rad more radiation than 43 degrees C, 30 min + X ray to reduce survival to the same level. The same priming treatment was given to RIF-1 tumors growing in C3H mice. Later, 24 hr, when the tumors were either irradiated or heated (43 degrees C, 30 min) and irradiated, it was found that thermotolerance had no effect on the radiosensitivity of the cells as measured by in vitro assay. However, thermal radiosensitization was not apparent 24 hr after the priming treatment.  相似文献   

17.
The capacity of plateau-phase Chinese hamster V79 and normal and transformed C3H-10T1/2 cells for repair of potentially lethal radiation damage (PLD) was evaluated for cells irradiated alone or given combined treatments of heat and radiation. The data show that all cell lines tested could repair PLD and that transformation to the tumorigenic state may reduce the capacity to repair PLD, especially if cells are evaluated at equal survival levels. Hyperthermia treatments before irradiation produced less sensitization than treatments after irradiation. In addition, hyperthermia treatment led to the inhibition of cellular capacity to repair PLD. This effect was the greatest for cells heated after irradiation, and repair of PLD could be completely eliminated. Several temperature isodose heat treatments were evaluated, and the lower temperature heat treatments were more effective in the inhibition of PLD than the higher temperature heat treatments; this is consistent with earlier results indicating temperature dependence in thermal radiosensitization (S. A. Sapareto et al., Int. J. Radiat. Oncol. Biol. Phys. 5, 343-347 (1979)).  相似文献   

18.
The radiation sensitivity and potentially lethal damage recovery (PLDR) capacity of A549 human lung carcinoma cells have been studied. For unfed monolayer cultures, radiation sensitivity was greater in plateau phase than in log phase of growth. PLDR was observed when plateau-phase cells were held in their own spent medium postirradiation, such that the dose-response curve with 24 h holding was similar to that for log-phase cells plated immediately after irradiation. The high PLDR capacity of A549 plateau-phase cells (recovery factor between 40 and 70 for 24 h holding after 10 Gy) was reduced 10-fold or more by alkalinizing the pH of the spent medium immediately after irradiation from a value of 6.5 +/- 0.1 to a value of 7.6. Medium alkalinization resulted in an increase in the rate of glycolysis, with subsequent reacidification to a pH of 7.3 within 2 h of the pH adjustment. No change in cell cycle distribution was observed in the plateau-phase cultures up to 32 h after change of medium pH, and no increase in cell density was found after 48 h. A slight increase in the rate of incorporation of radiolabeled thymidine into acid-precipitable material was observed at 4 and 24 h after alkalinization of the medium. While it is not possible at present to define a mechanism for this pH effect, our results demonstrate that, at least for this cell line, variables such as medium pH and glucose concentration can profoundly influence the observation of PLDR.  相似文献   

19.
20.
Further studies are described with a radiation-sensitive clone of V79 Chinese hamster cells, designated V79-AL162/S-10. Extended postirradiation treatment with caffeine causes V79-AL162/S-10 cells to respond like repair-competent V79 cells, but both kinds of cells suffer enhanced killing by caffeine, in a similar fashion, when the postirradiation treatment period is relatively brief. Extended postirradiation treatment of repair-competent cells causes them to respond like sensitive cells without caffeine post-treatment. Treating irradiated V79-AL162/S-10 cells with hypertonic saline appreciably reduces the survival rescue which can be effected by caffeine. This latter observation leads to the inference that the sectors of damage affected by anisotonic shock and caffeine post-treatment overlap. From these and other results we propose that the DNA replicational machinery of the cell is the locus of action of these radiation damage/repair processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号