首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oncoidal limestones with different oncoid types are ubiquitous in back-reef open-lagoonal and, to a minor amount, in closed-lagoonal facies of the Late Jurassic Plassen Carbonate Platform of the Northern Calcareous Alps. A common feature of the oncoids from moderately to well-agitated open-lagoonal habitats are incorporated small trochospiral benthic foraminifers, tentatively assigned to trochamminids, switched between individual micritic layers. Their life style is discussed concluding a specialized feeding on cyanophytes on the outer side of the oncoids and later becoming biomurated by successive sheet formations due to oncoid growing.  相似文献   

2.
Oncoids from two localities (Ogrodzieniec and Blanowice) of the Polish Jura, southern Poland, have been investigated with respect to their genesis and paleoecology. These oncoids occur within Middle Jurassic (Bathonian) deposits. Those from Ogrodzieniec are large, elliptical, and embedded within a presumably condensed carbonate bed. Those from Blanowice, on the contrary, are significantly smaller, irregular to box-like in shape, and occur within the ore-bearing clays. The oncoids from both localities consist of a distinct carbonate core and laminated cortex that is significantly thicker and better preserved in the Ogrodzieniec oncoids. SEM and optical microscopic investigation of the oncoid cortices revealed the presence of carbonate and silicate layers with web-like structures similar to those occurring in recent cyanobacterial microbialites. Thus, the oncoid cortices investigated may have formed in a photic zone environment with the aid of coccoid and filamentous cyanobacteria. Oxic conditions prevailed during oncoid cortex formation within the siliciclastic setting, which is manifested by low total organic carbon content, high pristane/phytane (Pr/Ph) ratio, and significant predomination of the C31 homohopanes. On the cortices’ surfaces, as well as between particular laminae, various encrusting organisms have been found. The encrusters, dominated by serpulids and bryozoans, are cryptic species that inhabited the undersides and recesses of the oncoids. Their presence on both the upper and lower surfaces of the oncoids indicates that the oncoids were episodically overturned on the seafloor. The much better developed cortex lamination and much higher diversity and abundance of encrusters in the Ogrodzieniec oncoids may point to better trophic conditions prevailing in a shallower marine environment characterized by transparent waters, as opposed to a deeper siliciclastic environment with less transparent waters and probably worse trophic conditions prevailing during formation of the Blanowice oncoids.  相似文献   

3.
Lower Jurassic deposits of the middle member (19 m) of the Remoredo Formation at Arroyo Montañesito, southwestern Mendoza Province (Neuquén Basin, Argentina), and its oncoids are described. Four lithofacies constitute the lacustrine deposits of the Remoredo Formation: (1) laminated green to gray calcareous shales; (2) laminated to massive dark gray mudstones; (3) massive to upward-coarsening dark gray oncolite wackestones; and (4) massive dark gray packstones with abundant macro-oncolites. According to layer configuration, two types of oncoids were recognized: (a) those having distinctly banded, well defined concentric and continuous lamination (Type I); and (b) those having a vertical arrangement of irregular and discontinuous laminae (Type I3–I). The continuous micritic laminations suggest growth during agitated conditions, and the discontinuous laminations reflect short periods of non agitation or tranquility in the water mass. The oncolites are associated with a well preserved faunal assemblage of ostracods (Darwinula sp. and possible members of the Subfamily Iliocypridinae) and some fragments of bivalves that are indicative of shallow water conditions. The facies association is a coarsening-upward sequence interpreted as the product of deposition in a shallow nearshore lacustrine environment, and a progressive infilling by pyroclastic subaereal flows.  相似文献   

4.
Summary This study documents the facies and fauna of Late Jurassic (Middle Oxfordian) coral reefs in England. Sedimentological and palaeoecological analysis of these reefs distinguishes three generic reef types: (1) small reef patches and thickets associated with siliciclastic deposits; (2) small reef patches and thickets associated with siliciclastic-free bioclastic grainstones and packstones; and (3) biostromal units associated with deep water facies. The depositional environments of these reef types are discussed. Two coral assemblages are identified: (1) the microsolenid assemblage; and (2) theThamnasteria, Isastraea, Fungiastraea andThecosmilia assemblage (Thamnasteria assemblage). TheThamnasteria assemblage developed in all shallow water environments in the study area, regardless of local environmental conditions. The fauna is very eurytopic,r-selected and can tolerate significant environmental fluctuations on short temporal scales (sub-seasonal). The main control on the development of the microsolenid assemblage was low light intensity, low background sedimentation rates and low hydrodynamic energy levels.  相似文献   

5.
The first δ18O and δ13C data from the Upper Jurassic of the Northern Calcareous Alps are presented. The interpretation of stable isotope ratios serves as an approach for paleoenvironmental and diagenetic studies of the Plassen carbonate platform, which cannot be obtained by paleontological methods and microfacies analyses alone. The studied part of the Plassen limestone is characterized by (1) lithoclast facies, also called ‘intraformational breccia’; the origin of lithoclasts was formerly unknown; (2) peloid facies; (3) bioclastic facies, composed of peloids, porostromate algae, green algae and red algae; and (4) oncoid facies. Two types of fracturing and four cement generations can be distinguished. Isotope ratios of the matrix, oncoids, three cement generations and whole rock samples revealed that (1) the studied section represents an open marine carbonate platform with high water circulation and high input of cool oceanic waters; (2) the platform was not affected by emersion and fresh water influence; normal marine conditions prevailed; (3) carbonate cements were precipitated in a closed diagenetic system, but burial diagenesis was absent; (4) both fabric-selective and non-fabric-selective fracturing occurred in a normal marine environment, affecting the formation of ‘intraformational breccias’.  相似文献   

6.
Summary The internal construction and biotic communities of the Uzunbulak reef of the northwestern Tarim Basin are studied for the first time. The reef was built during the Sakmarian, while the reef substrate and capping beds are of latest Asselian and earliest Artinskian ages, respectively. The reef substrate beds are composed of skeletal and oncoid grainstone. Those fusulinid-dominated skeletal shoals and oncoid banks indicate a high-energy environment and produced local topographic highs on which the reef grew. Reef framework consists mainly of calcisponge bafflestone, calcisponge-Thartharella framestone, and Tubiphytes, Archaeolithoporella and Girvanella boundstones. Calcisponges were the primary frameconstructors that baffled high-energy currents. Archaeolithoporella, Tubiphytes, Girvanella and possibly microbes acted as the primary binders for the boundstone framework. Fusulinids and brachiopods were common reef dwellers. The interreef facies sediments are composed of skeletal-crinoid wackestone-packstone. Most of bioclasts have thick, micritized envelopes. The back-reef facies deposits consist of alternating skeletal packstone to wackestone and black shale. Sea-level fluctuations were probably accountable for the reef growth and demise. Of the reefal dwellers, brachiopods are extraordinarily abundant in Uzunbulak. They are assignable to five distinctive associations, one each from the reef substrate, framework and inter-reef facies, respectively, and two from the reef capping facies. The brachiopods in the substrate beds were mostly attached to hard substrates by a pedicle, while a few species rested on soft substrates by support of halteroid spines. Cementation of the ventral valve on hard substrates characterizes attachment of the reef framework brachiopods. All inter-reef species were anchored into the substratum comprising hard material by a strong pedicle. Back-reef brachiopods dominantly rested on the soft substrates by support of halteroid spines. the framework brachiopods had the strongest wave-resistant capability;those from both substrate and inter-reef facies were moderately capable of withstanding agitation; and the backreef species preferred to live in calmwater, organic-rich muddy environments.  相似文献   

7.
Summary Factors controlling grain composition and depositional environments of upper Cenomanian—Santonian limestones of Sinai are discussed. The mainly shallow-water, inner-platform setting investigated is subdivided into five major facies belts, each represented by several microfacies types (MFTs). Their lateral distribution patterns and their composition underline aclear relation between depositional environment and platform position. The facies belts include sandstones and quartzose packstones of siliciclastic shorefaces, mudstones and bioclastic wackestones of restricted lagoons, shallow-subtidal packstones with diverse benthic foraminifera and calcareous algae, bioclastic and/or oolitic grainstones of inner-platform shoals, and wackestones of deep open-marine environments. The microfacies distribution patterns of the Cenomanian-Santonian strata are evaluated with respect to local and regional large-scale environmental changes. While protected shallow-subtidal environments with only subordinate ooids and oncoids prevail during the late Cenomanian, high-energy oolithic shoals and carbonate sands occur locally during the middle and late Turonian. They were probably related to a change of the platform morphology and a reorganisation of the platform after a late Cenomanian drowning. In the Coniacian-Santonian, the lack of ooids, oncoids, and the decrease of calcareous algae versus an increase in siliciclastics indicate a shift to lower water temperature and to a more humid climate. Especially in the Turonian, the interplay between sea-level changes, accommodation, hydrodynamics, and siliciclastic input is reflected by lithofacies and biofacies interrelation-ships that are elaborated within individual systems tracts. In particular, increasing accommodation intensified circulation and wave-agitation and controlled the distribution of high-energy environments of the middle and upper Turonian trans-gressive systems tracts. During highstands protected innerplatform environments prevailed.  相似文献   

8.
Along the Canning Basin's Lennard Shelf in Western Australia, the 80‐km‐long Oscar Range is composed of folded Palaeoproterozoic quartzite and phyllite and surrounded by limestones of the Great Devonian Barrier Reef including reef complex, related back‐reef and lagoonal deposits of the Frasnian Pillara Limestone. The range represents an exhumed cluster of palaeoislands. Near the east end of the Oscar Range, a palaeoislet is encircled by the Pillara Limestone showing outward dips that dramatically shallow to expose nearly horizontal bedding planes offshore. From shore and outward, the facies zones observed in the Pillara Limestone include unfossiliferous laminated sediments followed by biozones with abundant Amphipora and Stachyodes, and domal stromatoporoids. An additional outermost lagoonal facies with a diverse molluscan fauna preserved in fine limestone/dolostone is described in this study. High‐spired Murchisonia in a time‐averaged assemblage with other gastropods, bivalves, brachiopods and scaphopods dominate this zone. Uneven distribution of biozones is due to intermittent shoals controlled by the complex relief of basement rocks or recent erosion into underlying layers. The orientations of dendroid stromatoporoids and high‐spired gastropods were analysed to appraise the dynamics of prevailing shoal‐water settings on the inner, more sheltered side of the Oscar Range facing the Devonian mainland to the north. Oscillatory wave action is interpreted as the main agent of transport. Palaeocurrent data for the lighter dendroid stromatoporoids suggest that fair‐weather prevailing winds originated from the SE. Pebble clasts, oncoids, bivalves and gastropods indicate episodes of wave agitation and stronger wind from a SE and southerly direction.  相似文献   

9.
The Villaviciosa tufa building, on the banks of the Tajuña River, central Spain, is a recent perched springline tufa with four architectural elements: cascades, pools, channels, and barrages. The facies of the tufa building are LMC (low magnesium calcite) framestones of bryophytes, hanging stems, charophytes, phytoclastic rudstones, and rudstones of oncoids. Isotopic analyses give δ13C values ranging from ? 8.05 to ? 10.3‰ VPDB, and δ18O values from ? 6.9 to ? 7.45‰ VPDB. These values are in the range of most common tufa systems and such a short range of values is consistent with the Villaviciosa tufa building’s reduced dimensions. The mechanisms involved in precipitation vary within the building’s different environments, as reflected in the isotopic composition of the samples. Non-biogenic degassing values in cascade deposits (framestones of bryophytes) are the heaviest, whereas in pools, dominated by biogenic degassing, values for framestones of charophytes and phytoclasts are the lightest. Microbial bio-mediation is also strongly influenced by the development of oncoid, stromatolite, and bryophyte framestones. Temperature variation throughout the system of approximately 3 °C is not clearly reflected in the isotope signals. In short, in spite of the reduced dimensions of this tufa deposit, its notable environmental, facies, and geochemical variations may aid not only in the interpretation of detail of other tufa systems but also in the discussion of detailed facies analyses in paleoclimatic interpretations of this type of deposits.  相似文献   

10.
The internal facies and sequence architecture of a Late Jurassic (Late Kimmeridgian) shallow carbonate ramp was reconstructed after the analysis and correlation of 17 logs located south of Teruel (northeast Spain). The studied rocks are arranged in five high-frequency sequences A–E (5–26 m thick) bounded by discontinuities traceable across the entire study area (20 × 25 km). Facies analysis across these sequences resulted in the reconstruction of three sedimentary models showing the transition from interior ramp environments (i.e., lagoon, backshoal, and shoal) to the progressively deeper foreshoal and offshore areas. Coral-microbial reefs (meter-sized patch and pinnacle reefs) have a variable development throughout the sequences, mostly in the foreshoal and offshore-proximal environments. The preferential occurrence and down-dip gradation of non-skeletal carbonate grains has been evaluated across the three models: low-energy peloidal-dominated, intermittent high-energy oolitic-dominated and high-energy oolitic–oncolitic dominated. The predominance of these non-skeletal grains in the shoal facies was mainly controlled by the hydrodynamic conditions and spatial heterogeneity of terrigenous input. The models illustrate particular cases of down-dip size-decrease of the resedimented grains (ooids, peloids, oncoids) due to storm-induced density flows. Offshore coarsening of certain particles (intraclasts, oncoids) is locally observed in the mid-ramp areas favorable for microbial activity, involving coral-microbial reef and oncoid development. The observed facies variations can be applicable to carbonate platforms including similar non-skeletal components, where outcrop conditions make the recognition of their three-dimensional distribution difficult.  相似文献   

11.
Sea-level fluctuations and changes in sediment grain size are widely thought to be the main factors controlling carbonate platform slope geometries. Two successive clinoform bodies from the Upper Miocene Cariatiz carbonate platform (SE Spain) were selected to analyze geometry and facies distribution in relation to sea-level oscillations. Facies occurring in these clinoform bodies are from top to bottom reef-framework, reef-framework debris, Halimeda breccia, Halimeda rudstone, and bioclastic packstone, as well as siltstone and marl. Slope geometry and facies, composition, and distribution, are significantly different in each clinoform body. These differences are the result of the interaction of several factors such as coral growth, in situ slope carbonate production, rockfalls and sediment gravity flows, hemipelagic rain, reworking of reef-slope facies and siliciclastic input. Changes in accommodation were related to sea-level fluctuations and controlled the relative impact of these factors. A sea-level fall took place in the time between deposition of the selected clinoform bodies and changed the hydrographical conditions of the basin. These changes influenced the presence of Halimeda and the grain-size distribution, and consequently the slope geometries. Reef-slope geometry is not exclusively controlled by changes in grain size. The stabilization by organic binding is proposed to be a significant factor controlling the slope deposition.  相似文献   

12.
Two sequences (SFr, SFa), each 1-1.2 Myr in duration, are recognised in the strata across the Frasnian-Famennian (F-F) transition both in carbonate platform and interplatform basinal successions in South China. The sequence boundary between the two sequences is placed a little below the top of the Frasnian. The sequences are basically composed of coarsening-upward/bed-thickness increasing-upward cycles and shallowing-upward cycles (parasequences) in basinal and platform deposits respectively, which stack into cycle-sets (typically six to eight cycles). 10 and 12 cycle-sets are identified in sequences SFr and SFa respectively. These cycle-sets can be further grouped into larger-scale composite cycle-sets (herein termed mesocycle- and megacycle-sets with two and four cycle-sets respectively). This vertical cycle-stacking pattern and the hierarchy of cyclicity suggest a Milankovitch style of forcing such that the cycles and cycle-sets were formed in response to the orbital perturbations of precession (16-18 kyr) and eccentricity (∼100 kyr in duration), respectively. In the basinal cycles, smaller-scale rhythmic stratification beds (typically six to eight beds in a cycle) are extensive, and were likely caused by millennial-scale climatic forcing. In the lower sequence, SFr, the latest highstand deposits consist of calciturbidites and debrites in deep-water strata and fenestral limestones in shallow-water strata, representing a major (third-order) sea-level fall. Within these deposits, four cycle-sets are further identified in both coeval deep-water and platform successions. Succeeding deeper-water organic-rich facies, within which three cycles occur, are the transgressive deposits of the overlying Famennian sequence (SFa). These cycles represent three higher-frequency (16-18 kyr) sea-level fluctuations and accompanying anoxia, superimposed on a major third-order sea-level rise. The F-F boundary is placed at the top of the first cycle, based on conodont data. Thus, a major sea-level fall and then a rise occurred in the F-F transitional period. Faunal and sedimentological data reveal a massive biotic decline in concert with the major sea-level fall, and a further biotic demise coinciding with the major sea-level rise and its three superimposed higher-frequency sea-level fluctuations and accompanying anoxia. The F-F biotic crisis was therefore characterised by two episodes of step-down extinction. On the basis of Milankovitch orbital rhythms, the first major biotic extinction took place over ∼400 kyr, and the subsequent event was ∼50 kyr in duration, i.e. ∼450 kyr for the entire event. At the same time as the massive decline of normal-marine fossils during the latest Frasnian sea-level fall, there was widespread cyanobacterial growth and a thriving of planktonic calcispheres, suggesting eutrophic conditions. This situation could have caused a severe biotic loss, as a result of the deterioration of surface water clarity and formation of anoxic bottom waters due to over-consumption of oxygen through respiratory demands and decomposition by the cyanobacteria and phytoplankton. The subsequent rapid sea-level rise with superimposed higher-frequency sea-level fluctuations and accompanying anoxia could have caused rapid elevation of anoxic bottom waters and expansion of eutrophic surface waters over shallow-water platforms due to enhanced upwelling ocean currents and improved ocean circulation. This situation would have exerted further stresses upon the already-weakened biota, leading to a further biotic demise. However, a small number of organisms such as pelagic tentaculitids, small mud-adapted brachiopods and gastropods did survive into the Famennian, although with very low diversity.  相似文献   

13.
The compositional variation of Pleistocene carbonate gravity deposits from the Exuma Sound Basin, Bahamas, was determined. Two types of gravity deposit were present in the cores of ODP Leg 101, Site 632A, i.e., calciturbidites and calcidebrites. In analogy with earlier studies, the compositional variations in the calciturbidites could be linked to different sources on the carbonate margin, i.e., platform interior, platform edge, and platform slope. Calciturbidites deposited during interglacial, sea-level highstands show a dominance of non-skeletal grains, largely derived from the platform interior, while calciturbidites of glacial, sea-level lowstands, show a dominance of skeletal platform-edge to platform-slope-derived grains. Thus, the calciturbidite composition can be used to reconstruct the position of absolute sea level. In addition, the mud content of the calciturbidites increased after Marine Isotope Stage 11. In contrast, the composition of the calcidebrites remained unaltered through time and showed a clear dominance of platform-edge-derived sediments during varying sea-level positions. The Bahamian carbonate platform is located in a tectonically stable passive-margin setting and the gravity-flow deposits were laid down in an environment exclusively controlled by eustatic sea-level fluctuations. This study shows that all types of gravity-induced carbonate deposits, calciturbidites, and calcidebrites, were deposited in response to global eustatic sea-level variations. The sediment composition could be linked directly to sediment input from specific facies realms along the carbonate platform margin. Hence, sediment composition analysis is a strong tool that may be used to discriminate between gravity-induced deposition triggered by eustatic sea-level changes and that related to tectonic events, when analyzing resedimentation processes in sedimentary basins.  相似文献   

14.
Molinges was located on an Upper Jurassic ramp system of low-energy regime that developed at the southern margin of the French Jura platform. The sedimentary succession is characterized by the transition from a mixed siliciclastic-carbonate to a carbonate depositional setting that occurred during a long-term shallowing-upward trend. The disappearance of siliciclastics is explained by a climatic change, from humid and cold to drier and warmer conditions, previously identified in Late Oxfordian adjacent basins. The base of the section shows marl-limestone alternations of outer ramp. In its middle part, the section displays oncolitic marls, coral-microbialite beds and oncolitic limestones that deposited in a mid ramp position. Finally, the upper section part is made of oolitic limestones of inner ramp. In outer- to mid-ramp settings submitted to terrigenous inputs, the stacking pattern of deposits and facies evolution allow the identification of elementary, small-, medium-, and large-scale sequences. Small amplitudes of sea-level variations probably controlled rapid shifts of facies belts and reef window occurrences. In small-scale sequences, the coral beds developed during periods of sea-level rise. The decreasing rate of sea-level rise is marked by the downramp shift of the oncolitic limestone belt that led to the demise of coral-microbialite beds. These bioconstructions are mainly represented by thin biostromes in which corals never reach great sizes. The coral assemblages mainly include the genera Enallhelia, Dimorpharaea, Thamnasteria, and some solitary forms (Montlivaltia and Epistreptophyllum). They suggest relatively low-mesotrophic conditions in marine waters during the edification of the primary framework. Relatively cold water temperatures and periods of more elevated nutrient contents are probably responsible of the reduced coral development and the formation of a large amount of microbialites.  相似文献   

15.
Summary Benthic microbial crusts (microbialites or microbolites) are an important component of Middle to Upper Oxfordian shallow-water coral bioherms in the Swiss Jura. They display stromatolitic (laminated), thrombolitic (clotted), and leiolitic (structureless) fabrics, which are distributed heterogeneously throughout the studied sections. The bioherms can be subdivided into coral-microbialite facies, microbialite-dominated facies, and sediment matrix. Macroscopic and microscopic study reveals that microbialitic encrustations commonly occur in two layers. The first one is directly in contact with the substrate and composed of leiolite (locally stromatolite) and a well-diversified micro-encruster fauna; the second one fills the remaining porosity partly or completely with thrombolite and low-diversity micro-encrusters. The growth of the first layer accompanies the growth of the coral reef and thus formed under the same environmental conditions. The second layer is the result of a moving encrustation front filling the remaining porosity (micro- and macrocavities) inside the reef, below the living surface. Both layers play an important role in early cementation. Phototrophic cyanobacteria probably intervene in the formation of the first encrustation zone, whereas heterotrophic bacteria associated to acidic, Ca2+-binding macromolecules in biofilms are thought to contribute to the thrombolite inside the reef body. When coral growth cannot take pace with microbialite development, the thrombolite from reaches the surface of the construction and finally covers the reef. The result is a thick interval of thrombolite, which can be interpreted as being related to an ecological crisis in coral-reef evolution. A semi-quantitative analysis of the relative abundance of microbialite types and associated micro-encrusters permits to better constrain the processes leading to a reef crisis. Four micro-encruster associations can be distinguished, and each follows an evolutionary trend in the studied section:Terebella-Tubiphytes dominated,Serpula-Berenicea dominated,Litho-codium dominated, andBacinella dominated. These trends are interpreted to reflect changes in environmental conditions. Bioerosion generally is at its maximum before and after abundant growth of microbialite. According to microbialite-bioerosion relationships and shifts in micro-encruster associations, we propose that the evolution towards a coral-reef crisis involves four main phases: (1) An oligotrophic to low mesotrophic phase when low water turbidity and good oxygenation allow phototrophic metabolisms. This leads to a maximum of coral diversity and development of light-dependent micro-encrusters. (2) A low-mesotrophic phase when increased turbidity and slack water circulation reduce the photic zone and favor heterotrophic micro- and macrofauna. Bioerosion through bivalves increases. (3) A high-mesotrophic phase when environmental conditions are so bad that only microbiatite can be produced. (4) A eutrophic phase when carbonate production is inhibited by high nutrient input and clay flocculation as a result of increased terrestrial run-off. The observed evolutionary trends are not directly linked to changes in bathymetry, but sea-level fluctuations played an important role in opening and closing the depositional environments on the shallow platform. Climatic changes contributed in modulating the influx of siliciclastics and nutrients, and the alkalinity of the water. Demise of coral reefs generally coincides with low sea level and humid climate. Sea-level and climatic fluctuations and, consequently, the crises in reef growth are linked to orbital cycles in the Milandkovitch frequency band.  相似文献   

16.
Dr. Karl Krainer 《Facies》1995,33(1):195-214
Summary A heretofore undocumented example of skeletal mounds formed by the dasycladacean algaAnthracoporella spectabilis is described from mixed carbonate-clastic cycles (Auernig cyclothems) of the Late Carboniferous (Gzhelian) Auernig Group of the central Carnic Alps in southern Austria. The massive mound facies forms biostromal reef mounds that are up to several m thick and extend laterally over more than 100 m. The mound facies is developed in the middle of bedded limestones, which are up to 16 m thick. These limestones formed during relative sea-level highstands when clastic influx was near zero. The mound facies is characterized by well developed baffler and binder guilds and does not show any horizontal or vertical zonation. Within the massive mound faciesAnthracoporella is frequently found in growth position forming bafflestones and wackestones composed of abundantAnthracoporella skeletons which toppled in situ or drifted slightly.Anthracoporella grew in such profusion that it dominated the available sea bottom living space, forming ‘algal meadows’ which acted as efficient sediment producers and bafflers. BecauseAnthracoporella could not provide a substantial reef framework, and could not withstand high water turbulence, the biostromal skeletal mounds accumulated in shallow, quiet water below the active wave base in water depths less than 30 m. The massive mound facies is under- and overlain by, and laterally grades into bedded, fossiliferous limestones of the intermound facies, composed mainly of different types of wackestones and packstones. Individual beds containAnthracoporella andArchaeolithophyllum missouriense in growth position, forming “micromounds’. Two stages of mound formation are recognized: (1) the stabilization stage when bioclastic wackestones accumulated, and (2) the skeletal mound stage when the sea-bottom was colonized byAnthracoporella and other members of the baffler and binder guilds, formingAnthracoporella bafflestones and wackestones of the mound facies. A slight drop in sea-level led to the termination of the mound growth and accumulation of organic debris, particularly calcareous algae, fusulinids, crinoids and bryozoans, forming well bedded limestones, which overlie the mound facies  相似文献   

17.
This paper documents the facies change in response to the Holocene transgression within five sediment cores taken in the lagoon of Mayotte, which contain a Type-1 depositional sequence (lowstand, transgressive and highstand deposits underlain by an erosive sequence boundary). Quantitative compositional analysis and visual examination of the bioclasts were used to document the facies changes. The distribution of the skeletal and non-skeletal grains in the lagoon of Mayotte is clearly controlled by (1) the rate and amplitude of the Holocene sea-level rise, (2) the pre-Holocene basement topography and (3) the growth-potential of the barrier reef during sea-level rise, and the changes in bathymetry and continuity during this period. The sequence boundary consists of the glacial karst surface. The change-over from the glacial lowstand is marked by the occurrence of mangrove deposits. Terrigenous and/or mixed terrigenous-carbonate muds to sandy muds with a mollusc or mollusc-ostracod assemblage dominate the transgressive deposits. Mixed carbonate-siliciclastic or carbonate sand to gravel with a mollusc-foraminifer or mollusc-coral-foraminifer assemblage characterize the early highstand deposits on the inner lagoonal plains. The early highstand deposits in the outer lagoonal plains consist of carbonate muds with a mollusc-foraminifer assemblage. Late highstand deposits consist of terrigenous muds in the nearshore bays, mixed terrigenous-carbonate sandy muds to sands with a mollusc-foraminifer assemblage on the inner lagoonal plains and mixed muds with a mollusc-foraminifer assemblage on the outer deep lagoonal plains. The present development stage of the individual lagoons comprises semi-enclosed to open lagoons with fair or good water exchange with the open ocean.  相似文献   

18.
Summary The Belgian Frasnian carbonate mounds occur in three stratigraphic levels in an overall backstepping succession. Petit-Mont and Arche Members form the famous red and grey “marble” exploited for ornamental stone since Roman times. The evolution and distribution of the facies in the mounds is thought to be associated with ecologic evolution and relative sea-level fluctuations. Iron oxides exist in five forms in the Frasnian mounds; four are undoubtedly endobiotic organized structures: (1) microstromatolites and associated forms (blisters, veils...), possibly organized in “endostromatolites”; (2) hematitic coccoids and (3) non dichotomic filaments. The filaments resemble iron bacteria of theSphaerotilus-Leptothrix “group”; (4) networks of dichotomic filaments ascribable to fungi; (5) a red ferruginous pigment dispersed in the calcareous matrix whose distribution is related to the mound facies type. The endobiotic forms developed during the edification of the mounds, before cementation by fibrous calcite. The microbial precipitation of iron took place as long as the developing mounds were bathed by water impoverished in oxygen.  相似文献   

19.
Carbonate deposits from Zrin in the Mt. Zrinska Gora were deposited in the SW part of the Central Paratethys Sea during the Middle Badenian (Middle Miocene). The studied section contains a rich fossil community of non-geniculate coralline red algae (Subfamily Melobesioideae), bryozoans, benthic and planktonic foraminifera, echinoderms, ostracods, molluscs, and calcareous nannoplankton. Based on lithological variations and changes in the biogenic components, four facies associations (FA) are distinguished. Their distribution points to skeletal production and sedimentation on a middle to proximal outer carbonate ramp. The main lithological feature of the section is an alternation of two lithofacies: fully lithified grainstone–rudstone and packstone, and semi-lithified rudstone–floatstone with a carbonate sandy matrix. Depositional environments on the ramp were periodically influenced by minor high-frequency sea-level changes and/or changes of hydrodynamic conditions, which are suggested as the driving mechanisms causing the alternation of the two lithofacies. Vertically in the succession, the two lithofacies alternate to give three thinning- and fining-upward units. The lower part of each unit is formed of a rhodolith and coralline algal FA, which passes upwards into a bryozoan-coralline algal FA and/or FA of bioclastic packstone-grainstone. Based on the vertical upward change in FAs, each unit can be interpreted as a deepening-upward sequence. Patterns in the relative abundance of bryozoan colony growth form (vinculariiform, cellariiform, adeoniform, membraniporiform, celleporiform, and reteporiform), size and abundance of rhodoliths and coralline branches, and benthic foraminifera are interpreted by comparison with data from modern and fossil environments. Based on these data, a water depth range for each FA is interpreted, providing evidence of low-frequency relative sea-level changes. It is hypothesized that relative sea-level fluctuated in the water depth range from 30 to 80 m, and in the uppermost part of the section, rich in planktonic foraminifera and calcareous nannoplankton, possibly deeper. Causes of the low-frequency relative sea-level fluctuations and the general deepening trend observed within the succession cannot be interpreted based on one section; however, they may be related to the subsidence of the depositional basin. The benthic biotic communities are a vertical alternation of rhodalgal and bryorhodalgal associations, and this is attributed to relative sea-level fluctuations. These biotic associations gave rise to warm-temperate carbonates of the Middle Badenian N9 planktonic Zone (Orbulina suturalis, O. universa) and NN4–NN5 nannoplankton Zones (Sphenolithus heteromorphus).  相似文献   

20.
Well‐developed oncoids and centimetre‐sized stromatolites are reported for the first time from the Darriwilian (Middle Ordovician) cool‐water ‘orthoceratite limestone’ at Kinnekulle, Västergötland, Sweden. The characteristics and stratigraphical distribution of these microbialites show an apparent relationship to fluctuations in relative sea level. The most abundant and well‐developed oncoids occur in stratigraphical intervals that are characterized by notable sea‐level lowstands. Stromatolites, which share many compositional characteristics with the oncoids, are essentially confined to a single bed associated with an especially prominent lowstand. Stromatolite‐like lamination also occurs in the uppermost part of the studied succession, but this feature may be of abiogenic origin. The microbialites appear to be originally calcareous, but synsedimentary iron‐ and/or phosphate‐enriched laminae are conspicuous, and secondary substitution by coarse calcite and barite is common. Iron staining is most prominent in poorly preserved specimens. Diagenesis has occluded the identity of the producers of these microbialites, but characteristics of associated endolithic borings suggest that they were formed in photic waters. The laminated fabrics of the documented microbialites record a depositional environment sensitive to high‐frequency environmental change. Most significantly, the microbialites have provided important information about the depositional environment of their enigmatic host limestone, and the collective observations challenge the notion that the studied strata were deposited in a deep shelf to basinal environment – rather, it appears that they are to a large extent, shallow‐water deposits, formed in waters only a few tens of metres deep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号