首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In Saccharomyces cerevisiae, external high osmolarity activates the Hog1 mitogen-activated protein kinase (MAPK), which controls various aspects of osmoadaptation. Ssk1 is a homolog of bacterial two-component response regulators and activates the Ssk2 MAPK kinase kinase upstream of Hog1. It has been proposed that unphosphorylated Ssk1 (Ssk1-OH) is the active form and that Ssk1 phosphorylated (Ssk1~P) at Asp554 by the Sln1-Ypd1-Ssk1 multistep phosphorelay mechanism is the inactive form. In this study, we show that constitutive activation of Ssk2 occurs when Ssk1 phosphorylation is blocked by either an Ssk1 mutation at the phosphorylation site or an Ssk1 mutation that inhibits its interaction with Ypd1, the donor of phosphate to Ssk1. Thus, Ssk1-OH is indeed necessary for Ssk2 activation. However, overexpression of wild-type Ssk1 or of an Ssk1 mutant that cannot bind Ssk2 prevents constitutively active Ssk1 mutants from activating Ssk2. Therefore, Ssk1 has a dual function as both an activator of Ssk2 and an inhibitor of Ssk1 itself. We also found that Ssk1 exists mostly as a dimer within cells. From mutant phenotypes, we deduce that only the Ssk1-OH/Ssk1-OH dimer can activate Ssk2 efficiently. Hence, because Ssk1~P binds to and inhibits Ssk1-OH, moderate fluctuation of the level of Ssk1-OH does not lead to nonphysiological and detrimental activation of Hog1.  相似文献   

3.
4.
Genome sequencing analyses revealed that Aspergillus nidulans has orthologous genes to all those of the high-osmolarity glycerol (HOG) response mitogen-activated protein kinase (MAPK) pathway of Saccharomyces cerevisiae. A. nidulans mutant strains lacking sskA, sskB, pbsB, or hogA, encoding proteins orthologous to the yeast Ssk1p response regulator, Ssk2p/Ssk22p MAPKKKs, Pbs2p MAPKK and Hog1p MAPK, respectively, showed growth inhibition under high osmolarity, and HogA MAPK in these mutants was not phosphorylated under osmotic or oxidative stress. Thus, activation of the A. nidulans HOG (AnHOG) pathway depends solely on the two-component signalling system, and MAPKK activation mechanisms in the AnHOG pathway differ from those in the yeast HOG pathway, where Pbs2p is activated by two branches, Sln1p and Sho1p. Expression of pbsB complemented the high-osmolarity sensitivity of yeast pbs2Delta, and the complementation depended on Ssk2p/Ssk22p, but not on Sho1p. Pbs2p requires its Pro-rich motif for binding to the Src-homology3 (SH3) domain of Sho1p, but PbsB lacks a typical Pro-rich motif. However, a PbsB mutant (PbsB(Pro)) with the yeast Pro-rich motif was activated by the Sho1p branch in yeast. In contrast, HogA in sskADelta expressing PbsB(Pro) was not phosphorylated under osmotic stress, suggesting that A. nidulans ShoA, orthologous to yeast Sho1p, is not involved in osmoresponsive activation of the AnHOG pathway. We also found that besides HogA, PbsB can activate another Hog1p MAPK orthologue, MpkC, in A. nidulans, although mpkC is dispensable in osmoadaptation. In this study, we discuss the differences between the AnHOG and the yeast HOG pathways.  相似文献   

5.
The Hog1 stress-activated protein kinase regulates both stress responses and morphogenesis in Candida albicans and is essential for the virulence of this major human pathogen. Stress-induced Hog1 phosphorylation is regulated by the upstream MAPKK, Pbs2, which in turn is regulated by the MAPKKK, Ssk2. Here, we have investigated the role of phosphorylation of Hog1 and Pbs2 in Hog1-mediated processes in C. albicans. Mutation of the consensus regulatory phosphorylation sites of Hog1 (Thr-174/Tyr-176) and Pbs2 (Ser-355/Thr-359), to nonphosphorylatable residues, resulted in strains that phenocopied hog1Δ and pbs2Δ cells. Consistent with this, stress-induced phosphorylation of Hog1 was abolished in cells expressing nonphosphorylatable Pbs2 (Pbs2(AA)). However, mutation of the consensus sites of Pbs2 to phosphomimetic residues (Pbs2(DD)) failed to constitutively activate Hog1. Furthermore, Ssk2-independent stress-induced Hog1 activation was observed in Pbs2(DD) cells. Collectively, these data reveal a previously uncharacterized MAPKKK-independent mechanism of Hog1 activation in response to stress. Although Pbs2(DD) cells did not exhibit high basal levels of Hog1 phosphorylation, overexpression of an N-terminal truncated form of Ssk2 did result in constitutive Hog1 activation, which was further increased upon stress. Significantly, both Pbs2(AA) and Pbs2(DD) cells displayed impaired stress resistance and attenuated virulence in a mouse model of disease, whereas only Pbs2(AA) cells exhibited the morphological defects associated with loss of Hog1 function. This indicates that Hog1 mediates C. albicans virulence by conferring stress resistance rather than regulating morphogenesis.  相似文献   

6.
In the present study, we have investigated the role of SSK2, PBS2, and HOG1, encoding modules of the high-osmolarity-glycerol mitogen-activated protein kinase pathway in Candida lusitaniae. Functional analysis of mutants indicated that Ssk2p, Pbs2p, and Hog1p are involved in osmotolerance, drug sensitivity, and heavy metal tolerance but not in oxidant stress adaptation.  相似文献   

7.
The stress-activated p38/Hog1 mitogen-activated protein kinase (MAPK) pathway is structurally conserved in many diverse organisms, including fungi and mammals, and modulates myriad cellular functions. The Hog1 pathway is uniquely specialized to control differentiation and virulence factors in a majority of clinical Cryptococcus neoformans serotype A and D strains. Here, we identified and characterized the Ssk2 MAPKKK that functions upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for the difference in Hog1 phosphorylation between the serotype D f1 sibling strains B-3501 and B-3502 through comparative analysis of meiotic maps showing their meiotic segregation patterns of Hog1-dependent sensitivity to the antifungal drug fludioxonil. Ssk2 is the only component of the Hog1 MAPK cascade that is polymorphic between the two strains, and the B-3501 and B-3502 SSK2 alleles were distinguished by two coding sequence changes. Supporting this finding, SSK2 allele exchange completely interchanged the Hog1-controlled signaling patterns, related phenotypes, and virulence levels of strains B-3501 and JEC21. In the serotype A strain H99, disruption of the SSK2 gene enhanced capsule and melanin biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2Δ, pbs2Δ, and hog1Δ mutants were hypersensitive to a variety of stresses and resistant to fludioxonil. In agreement with these results, Hog1 phosphorylation was abolished in the ssk2Δ mutant, similar to what occurred in the pbs2Δ mutant. Taken together, these findings indicate that Ssk2 is a critical interface connecting the two-component system and the Pbs2-Hog1 MAPK pathway in C. neoformans.  相似文献   

8.
9.
Histidine kinase (HK) phosphorelay signaling is a major mechanism by which fungi sense their environment. The maize pathogen Cochliobolus heterostrophus has 21 HK genes, 4 candidate response regulator (RR) genes (SSK1, SKN7, RIM15, REC1), and 1 gene (HPT1) encoding a histidine phosphotransfer domain protein. Because most HKs are expected to signal through RRs, these were chosen for deletion. Except for pigment and slight growth alterations for rim15 mutants, no measurable altered phenotypes were detected in rim15 or rec1 mutants. Ssk1p is required for virulence and affects fertility and proper timing of sexual development of heterothallic C. heterostrophus. Pseudothecia from crosses involving ssk1 mutants ooze masses of single ascospores, and tetrads cannot be found. Wild-type pseudothecia do not ooze. Ssk1p represses asexual spore proliferation during the sexual phase, and lack of it dampens asexual spore proliferation during vegetative growth, compared to that of the wild type. ssk1 mutants are heavily pigmented. Mutants lacking Skn7p do not display any of the above phenotypes; however, both ssk1 and skn7 mutants are hypersensitive to oxidative and osmotic stresses and ssk1 skn7 mutants are more exaggerated in their spore-type balance phenotype and more sensitive to stress than single mutants. ssk1 mutant phenotypes largely overlap hog1 mutant phenotypes, and in both types of mutant, the Hog1 target gene, MST1, is not induced. ssk1 and hog1 mutants were examined in the homothallic cereal pathogen Gibberella zeae, and pathogenic and reproductive phases of development regulated by Ssk1 and Hog1 were found to mirror, but also vary from, those of C. heterostrophus.  相似文献   

10.
Cells usually cope with oxidative stress by activating signal transduction pathways. In the budding yeast Sacchromyces cerevisiae, the high osmolarity glycerol (HOG) pathway has long been implicated in transducing the oxidative stress‐induced signal, but the underlying mechanisms are not well defined. Based on phosphorylation of the mitogen‐activated protein kinase (MAPK) Hog1, we reveal that the signal from hydrogen peroxide (H2O2) flows through Ssk1, the response regulator of the two‐component system of the HOG pathway. Downstream signal transduction into the HOG MAPK cascade requires the MAP kinase kinase kinase (MAP3K) Ssk2 but not its paralog Ssk22 or another MAP3K Ste11 of the pathway, culminating in Hog1 phosphorylation via the MAP2K Pbs2. When overexpressed, Ssk2 is also activated in an Ssk1‐independent manner. Unlike in mammals, H2O2 does not cause endoplasmic reticulum stress, which can activate Hog1 through the conventional unfolded protein response. Hog1 activated by H2O2 is retained in the cytoplasm, but is still able to activate the cAMP‐ or stress‐responsive elements by unknown mechanisms.  相似文献   

11.
The Hog1 mitogen-activated protein kinase (MAPK) plays a central role in stress responses in the human pathogen Candida albicans. Here, we have investigated the MAPK kinase kinase (MAPKKK)-dependent regulation of the pathway. In contrast to the Hog1 pathway in Saccharomyces cerevisiae, which is regulated by three MAPKKKs (Ssk2, Ssk22, and Ste11), our results demonstrate that Hog1 in C. albicans is regulated by a single MAPKKK Ssk2. Deletion of SSK2 results in comparable stress and morphological phenotypes exhibited by hog1Delta cells, and Ssk2 is required for the stress-induced phosphorylation and nuclear accumulation of Hog1, and for Hog1-dependent gene expression. Furthermore, phenotypes associated with deletion of SSK2 can be circumvented by expression of a phosphomimetic mutant of the MAPKK Pbs2, indicating that Ssk2 regulates Hog1 via activation of Pbs2. In S. cerevisiae, the Hog1 pathway is also regulated by the MAPKKK Ste11. However, we can find no connection between Ste11 and the regulation of Hog1 in C. albicans. Furthermore, expression of a chimeric Pbs2 protein containing the Ste11-dependent regulatory region of S. cerevisiae Pbs2, fails to stimulate Ste11-dependent stress signaling in C. albicans. Collectively, our data show that Ssk2 is the sole MAPKKK to relay stress signals to Hog1 in C. albicans and that the MAPK signaling network in C. albicans has diverged significantly from the corresponding network in S. cerevisiae.  相似文献   

12.
Filamentous ascomycetous fungi possess many histidine kinases and two conserved response regulators, Ssk1p and Skn7p, in their two-component signaling systems. We previously reported that the fungus unique group III histidine kinase regulates high-osmolarity adaptation and iprodione/fludioxonil fungicide sensitivity by controlling the phosphorylation of Hog1-type mitogen-activated protein kinase (MAPK) in filamentous ascomycetes. Here, we have characterized the response regulator genes ChSsk1 and ChSkn7 in the southern corn leaf blight fungus Cochliobolus heterostrophus. Both ChSsk1- and ChSkn7-disrupted mutants showed little sensitivity to high-osmolarity stress and moderate resistance to the iprodione/fludioxonil fungicides. The phosphorylation of Hog1-type MAPK BmHog1p induced by high-osmolarity stress and fungicide treatments was only regulated by ChSsk1p, indicating that ChSkn7p has roles in high-osmolarity adaptation and fungicide sensitivity that are independent from the activation of BmHog1p. The Chssk1 Chskn7 double mutants clearly showed higher sensitivity to osmolar stress and higher resistance to fungicides than the single mutants. The dose responses of the double mutants fit well with those of the group III histidine kinase-deficient strain. These results suggest that in filamentous ascomycetes, the Ssk1- and Skn7-type response regulators control high-osmolarity adaptation and fungicide sensitivity additively with differential mechanisms under the regulation of the group III histidine kinase. This study provides evidence that filamentous fungi have a unique two-component signaling system that is different from that of yeast and is responsible for high-osmolarity adaptation and fungicide sensitivity.  相似文献   

13.
We previously reported that the group III histidine kinase Dic1p in the maize pathogen Cochliobolus heterostrophus is involved in resistance to dicarboximide and phenylpyrrole fungicides and in osmotic adaptation. In addition, exposure to the phenylpyrrole fungicide fludioxonil led to improper activation of Hog1-type mitogen-activated protein kinases (MAPKs) in some phytopathogenic fungi, including C. heterostrophus. Here we report, for the first time, the relationship between the group III histidine kinase and Hog1-related MAPK: group III histidine kinase is a positive regulator of Hog1-related MAPK in filamentous fungi. The phosphorylation pattern of C. heterostrophus BmHog1p (Hog1-type MAPK) was analyzed in wild-type and dic1-deficient strains by Western blotting. In the wild-type strain, phosphorylated BmHog1p was detected after exposure to both iprodione and fludioxonil at a concentration of 1 microg/ml. In the dic1-deficient strains, phosphorylated BmHog1p was not detected after exposure to 10 microg/ml of the fungicides. In response to osmotic stress (0.4 M KCl), a trace of phosphorylated BmHog1p was found in the dic1-deficient strains, whereas the band representing active BmHog1p was clearly detected in the wild-type strain. Similar results were obtained for Neurospora crassa Os-2p MAPK phosphorylation in the mutant of the group III histidine kinase gene os-1. These results indicate that group III histidine kinase positively regulates the activation of Hog1-type MAPKs in filamentous fungi. Notably, the Hog1-type MAPKs were activated at high fungicide (100 microg/ml) and osmotic stress (0.8 M KCl) levels in the histidine kinase mutants of both fungi, suggesting that another signaling pathway activates Hog1-type MAPKs in these conditions.  相似文献   

14.
In Saccharomyces cerevisiae, the Hog1 mitogen-activated protein kinase (MAPK) pathway coordinates the adaptation to osmotic stress and was recently reported to respond to acute changes in glucose levels. Similarly as in osmotic stress, glucose starvation leads to a transient accumulation of Hog1 in the nucleus. However, the kinetics and the mechanism of Hog1 activation are different for these stress conditions. During osmotic shock the activation of Hog1 can be transduced by either the Sho1 or the Sln1/Ypd1/Ssk1 branch. During glucose starvation the phosphorylation of Hog1 is slower and is completely dependent on Ssk1, but independent of Sho1. To characterize the mechanism of activation of Hog1 during carbon stress, we examined the turnover of Ssk1 protein levels upon glucose starvation in the presence of cycloheximide and monitored protein levels by western blotting. Our data demonstrate that unphosphorylated Ssk1 was quickly degraded during exponential growth and after osmotic stress but remained remarkably stable during glucose limitation. We conclude that glucose starvation induces a delay in the turnover of unphosphorylated Ssk1, which is sufficient to activate the Hog1 MAPK pathway. Although unphosphorylated Ssk1 is known to be degraded by the proteasome, its stabilization is apparently not due to changes in cellular localization or decrease in ubiquitination levels during glucose limitation.  相似文献   

15.
In Saccharomyces cerevisiae, a phosphorelay signal transduction pathway composed of Sln1p, Ypd1p, and Ssk1p, which are homologous to bacterial two-component signal transducers, is involved in the osmosensing mechanism. In response to high osmolarity, the phosphorelay system is inactivated and Ssk1p remains unphosphorylated. Unphosphorylated Ssk1p binds to and activates the Ssk2p mitogen-activated protein (MAP) kinase kinase kinase, which in turn activates the downstream components of the high-osmolarity glycerol response (HOG) MAP kinase cascade. Here, we report a novel inactivation mechanism for Ssk1p involving degradation by the ubiquitin-proteasome system. Degradation is regulated by the phosphotransfer from Ypd1p to Ssk1p, insofar as unphosphorylated Ssk1p is degraded more rapidly than phosphorylated Ssk1p. Ubc7p/Qri8p, an endoplasmic reticulum-associated ubiquitin-conjugating enzyme, is involved in the phosphorelay-regulated degradation of Ssk1p. In ubc7Delta cells in which the degradation is hampered, the dephosphorylation and/or inactivation process of the Hog1p MAP kinase is delayed compared with wild-type cells after the hyperosmotic treatment. Our results indicate that unphosphorylated Ssk1p is selectively degraded by the Ubc7p-dependent ubiquitin-proteasome system and that this mechanism downregulates the HOG pathway after the completion of the osmotic adaptation.  相似文献   

16.
17.
18.
The site of phosphorylation of the chemotaxis response regulator CheY is aspartate 57. When Asp-57 is replaced with an asparagine, the resultant protein can be phosphorylated at an alternative site. We report here that phosphorylation of this mutant protein, CheY D57N, at the alternative site affords the protein activity in vivo in the absence of CheZ. Using a direct phosphopeptide mapping approach, we identified the alternate phosphorylation site as serine 56. Introduction of a Ser-->Ala substitution at this position in wild-type CheY had no effect on function. However, replacement of Ser-56 with Ala in CheY D57N abrogated the activity seen in vivo for the CheY D57N single mutant protein, and no phosphorylation of the CheY S56A/D57N double mutant protein was observed in vitro. Construction and analysis of double mutants CheY D57N/T87A and CheY D57N/K109R, which were both inactive, suggested that phosphorylation at Ser-56 or Asp-57 may activate the protein by similar mechanisms. In contrast to CheY D57N, mutant CheY D57E displayed no activity in vivo, despite its ability to be phosphorylated in vitro. Acid-base stability analysis indicated that CheY D57E phosphorylates on an acidic residue, presumably Glu-57. These data suggest that a key determinant of the ability of a phosphoryl group to activate CheY is proximity to the hydrophobic core of the protein, with consequent opportunity to reposition key residues, irrespective of the chemical nature of the linkage attaching the phosphoryl group to CheY.  相似文献   

19.
20.
Phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 is the major regulatory step in the initiation of protein synthesis in mammals. P67, a cellular glycoprotein, protects phosphorylation of eIF2alpha from kinases. P67 has five conserved amino acid residues at the D251, D262, H331, E364, and E459 positions. To determine the roles of these conserved amino acid residues in eIF2alpha phosphorylation during serum-starved conditions, we constitutively expressed D251A, D262A, H331A, E364A, and E459A mutants in rat tumor hepatoma cells. We find that the point mutants D251A, H331A, and E364A lower the levels of eIF2alpha phosphorylation. These low levels of phosphorylation decrease when serum-starved cells are grown in medium containing serum. To understand the mechanism of action of the p67 mutants in eIF2alpha phosphorylation during serum-starvation, we performed detailed biochemical analyses with the D251A mutant. We find that neither the O-GlcNAc modification on the D251A mutant nor the binding of D251A mutant with eIF2gamma has significant effects on eIF2alpha phosphorylation during serum-starved conditions. However, the D251A mutant inhibits p67's activity to suppress the activity of ERK1/2. Our data suggest that both p67 and the D251A mutant bind to ERK1, thus strengthening the idea that p67 regulates the activity of ERK1. During serum-starvation conditions, both PKR and PERK are phosphorylated and the D251A mutant shows increased stability of PERK as well as a slight decrease in its activity. Altogether, our data provide evidence to suggest that p67 modulates the expression and activity of certain eIF2alpha-specific kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号