首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AR (androgen receptor) and PSA (prostate-specific antigen) are involved in the pathogenesis of breast cancer, but their role is not clearly defined. The purpose of this study was to analyze by immunohistochemistry the AR and PSA (prostate-specific antigen) expression in 156 female breast carcinomas and to correlate the results with some histopathological parameters, like ER (estrogen receptor), PR (progesterone receptor), HER2/neu, nodal and metastasis status, histological type and grade. ARs and PSA were expressed in 112/156 (72%) and respectively in 61/156 (39%) of cases and we found a positive correlation between AR and PSA expression in breast carcinomas (p<0.0002). We also found an association between the histological type of the tumor and AR (p<0.001), respectively PSA (p=0.01) and between AR and the grade of differentiation (p=0.007) and the nodal status (p=0.02). No correlations were found between the metastasis status and AR or PSA. 47.3% (53/112) of AR-positive cases and 46% (28/61) of PSA-positive cases were ER-negative. High frequency of AR (87.5%) and PSA (75%) expression was found in medullary carcinomas and 53% of lobular invasive carcinomas co-expressed AR and PSA. We found an inverse correlation between HER2/neu and PSA (p=0.05). Although most of the PSA-positive carcinomas were lymph node-negative, well and moderately differentiated, we did not find any statistically significant correlations between these parameters and PSA expression. Our study confirms that ARs are commonly expressed in breast cancer and the expression of PSA and AR are highly correlated. Moreover, all the lobular carcinomas and the majority of medullary carcinomas co-expressed AR and PSA, the majority of AR-positive carcinomas were lymph node-negative, well and moderately differentiated, and large number of ER-negative carcinomas expressed AR and PSA.  相似文献   

2.
Androgen receptor (AR) has long been hypothesized to play an important role in prostate cancer etiology. Two trinucleotide repeat polymorphisms (CAG and GGC repeats in exon 1 of the AR gene) have been investigated as risk factors for prostate cancer in several studies. However, the results are inconclusive, probably because of the variations of study designs, characteristics of study samples, and choices of analytical methods. In this study, we evaluated evidence for linkage and association between the two AR repeats and prostate cancer by using the following comprehensive approaches: (1) a combination of linkage and association studies, (2) a test for linkage by parametric analysis and the male-limited X-linked transmission/disequilibrium test (XLRC-TDT), (3) a test for association by using both population-based and family-based tests, and (4) a study of both hereditary and sporadic cases. A positive but weak linkage score (HLOD=0.49, P=0.12) was identified in the AR region by parametric analysis; however, stronger evidence for linkage in the region, especially at the GGC locus, was observed in the subset of families whose proband had < or = 16 GGC repeats (HLOD=0.70, P=0.07) or by using XLRC-TDT ( z'=2.65, P=0.008). Significantly increased frequencies of the < or = 16 GGC repeat alleles in 159 independent hereditary cases (71%) and 245 sporadic cases (68%) cases compared with 211 controls (59%) suggested that GGC repeats were associated with prostate cancer ( P=0.02). Evidence for the association between the < or = 16 GGC repeats and prostate cancer risk was stronger with XLRC-TDT ( z'=2.66, P=0.007). No evidence for association between the CAG repeats and prostate cancer risk was observed. The consistent results from both linkage and association studies strongly implicate the GGC repeats in the AR as a prostate cancer susceptibility gene. Further studies on this polymorphism in other independent data sets and functional analysis of the GGC repeat length on AR activity are warranted.  相似文献   

3.
4.
Androgens regulate the expression of both human prostatic acid phosphatase (PAcP) and prostate-specific antigen (PSA), two major prostate epithelium-specific differentiation antigens. Due to the important role of these two enzymes as prostate epithelium differentiation markers, we investigated their regulation of expression at the mRNA level in LNCaP human prostate carcinoma cells. Interestingly, phenol red, a pH indicator in the culture medium, promoted cell growth. To eliminate this non-specific effect, a phenol red-free, steroid-reduced medium was utilized. When high-density cells were grown in that medium, 5alpha-dihydrotestosterone (DHT) suppressed PAcP but stimulated PSA. However, tumor promoter phorbol ester 12-o-tetradecanoyl phorbol-13-acetate (TPA) functioned as a potent inhibitor of both PAcP and PSA expression. Prolonged treatment with DHT as well as TPA resulted in a similar down-regulation of protein kinase C and cellular PAcP activities. Thus, the levels of PAcP and PSA mRNA are differentially regulated by androgens in LNCaP cells.  相似文献   

5.
The androgen receptor (AR) is expressed in a subset of prostate stromal cells and functional stromal cell AR is required for normal prostate developmental and influences the growth of prostate tumors. Although we are broadly aware of the specifics of the genomic actions of AR in prostate cancer cells, relatively little is known regarding the gene targets of functional AR in prostate stromal cells. Here, we describe a novel human prostate stromal cell model that enabled us to study the effects of AR on gene expression in these cells. The model involves a genetically manipulated variant of immortalized human WPMY-1 prostate stromal cells that overexpresses wildtype AR (WPMY-AR) at a level comparable to LNCaP cells and is responsive to dihydrotestosterone (DHT) stimulation. Use of WPMY-AR cells for gene expression profiling showed that the presence of AR, even in the absence of DHT, significantly altered the gene expression pattern of the cells compared to control (WPMY-Vec) cells. Treatment of WPMY-AR cells, but not WPMY-Vec control cells, with DHT resulted in further changes that affected the expression of 141 genes by 2-fold or greater compared to vehicle treated WPMY-AR cells. Remarkably, DHT significantly downregulated more genes than were upregulated but many of these changes reversed the initial effects of AR overexpression alone on individual genes. The genes most highly effected by DHT treatment were categorized based upon their role in cancer pathways or in cell signaling pathways (transforming growth factor-β, Wnt, Hedgehog and MAP Kinase) thought to be involved in stromal-epithelial crosstalk during prostate or prostate cancer development. DHT treatment of WPMY-AR cells was also sufficient to alter their paracrine potential for prostate cancer cells as conditioned medium from DHT-treated WPMY-AR significantly increased growth of LNCaP cells compared to DHT-treated WPMY-Vec cell conditioned medium.  相似文献   

6.
7.
8.
While studies have implicated alleles at the CAG and GGC trinucleotide repeats of the androgen receptor gene with high-grade, aggressive prostate cancer disease, little is known about the normal range of variation for these two loci, which are separated by about 1.1 kb. More importantly, few data exist on the extent of linkage disequilibrium (LD) between the two loci in different human populations. Here we present data on CAG and GGC allelic variation and LD in six diverse populations. Alleles at the CAG and GGC repeat loci of the androgen receptor were typed in over 1000 chromosomes from Africa, Asia, and North America. Levels of linkage disequilibrium between the two loci were compared between populations. Haplotype variation and diversity were estimated for each population. Our results reveal that populations of African descent possess significantly shorter alleles for the two loci than non-African populations (P<0.0001). Allelic diversity for both markers was higher among African Americans than any other population, including indigenous Africans from Sierra Leone and Nigeria. Analysis of molecular variance revealed that approx. 20% of CAG and GGC repeat variance could be attributed to differences between the populations. All non-African populations possessed the same common haplotype while the three populations of African descent possessed three divergent common haplotypes. Significant LD was observed in our sample of healthy African Americans. The LD observed in the African American population may be due to several reasons; recent migration of African Americans from diverse rural communities following urbanization, recurrent gene flow from diverse West African populations, and admixture with European Americans. This study represents the largest genotyping effort to be performed on the two androgen receptor trinucleotide repeat loci in diverse human populations.  相似文献   

9.
10.
Alterations of androgen receptor in prostate cancer   总被引:5,自引:0,他引:5  
The significance of androgens in the development of prostate cancer has been known for more than half century. During the last decade, a lot of effort has been put to study the significance of the specific nuclear receptor of the hormone, androgen receptor (AR). It has been suggested that polymorphisms, especially the length of CAG repeat in exon 1 of the gene, are associated with the risk of prostate cancer. However, not all studies have confirmed the association. Most surprisingly, it has now become clear that prostate carcinomas emerging during the androgen withdrawal therapy (i.e. hormone-refractory tumors) are capable of reactivating the AR-mediated signalling despite of the low levels of androgens. In addition, it has been shown that AR gene itself is genetically targeted. One-third of the hormone-refractory prostate carcinomas contains amplification of the gene. In addition, 10-30% of prostate carcinomas treated by antiandrogens acquire point mutation in the AR gene. The genetic alterations in AR indicate that receptor should be considered as putative treatment target. Evidently, the currently available antiandrogens are not capable to abolish the AR-mediated signalling efficiently enough.  相似文献   

11.
已经证明,前列腺特异性抗原(PSA)是一种有价值的前列腺癌(PCa)肿瘤标记物,血清PSA的广泛使用提高了前列腺癌的检出率,使晚期癌患得明显减少。然而,PSA对PCa的检测缺乏特异性,由于其高的假阳性率,引起许多不必要的活检。为了提高PSA对PCa诊断的特异性,降低不必要的活检,众多学正在探讨与PSA相关的几项参数的临床应用价值,本就此作一综述。  相似文献   

12.
13.
14.
15.
16.
The effects of Clostridium perfringens enterotoxin (CPE) and prostate stem cell antigen (PSCA) on cancer prevention or treatment have been previously studied separately. For the first time, here we have elaborated a recombinant vector to co-express and study the cumulative effects of both of these factors on prostate cancer (PCa) in an animal model. The recombinant pBudCE4.1-cpe-PSCA vector was constructed in large scale. Rats were vaccinated by vector or vector plus chitosan nanoparticles before or after induction of PCa (preventive or therapeutic studies) by N-methyl N-nitrosurea and testosterone. Prostate tumors were weighed and histologically examined. Tumors and infusion site tissues as well as blood samples of all rats were collected and assessed by serological and molecular tests. We showed that vaccination with vector (along with or without nanoparticles) led to lower PCa incidence and tumor weight. The L-1β, IL6, and TNF-α serum levels and their gene expression accompanied by C-CAM1 gene expression in vaccinated groups were significantly higher than controls while no difference was seen in CK20 expression among all groups. Our findings showed that vector could effectively stimulate the immune system of rats to either prevent or suppress the PCa tumors. Adding chitosan nanoparticles did not affect the results significantly.  相似文献   

17.
The association between the polymorphic CAG repeat in androgen receptor gene (AR) and prostate cancer susceptibility has been studied extensively. However, the results are contradictory. The purpose of our meta-analysis was to investigate whether CAG repeat related to prostate cancer risk and had genetic heterogeneity across different geographic regions and study designs. Random-effects model was performed irrespective of between-study heterogeneity. Data and study quality were assessed in duplicate. Publication bias was assessed by the fail-safe number and Egger’s test. There were 16 (patients/controls: 2972/3792), 19 (3835/4908) and 12 (3372/2631) study groups for comparisons of ≥20, 22 and 23 repeats of CAG sequence, respectively. Compared with CAG repeat <20, 22 or 23, carriers of ≥20, 22 or 23 repeats had 21% (95% CI: 0.61–1.02; P = 0.076), 5% (95% CI: 0.81–1.11; P = 0.508) and 5% (95% CI: 0.76–1.20; P = 0.681) decreased risk of prostate cancer. After classifying studies by geographic areas, carriers of ≥20 repeats had 11% decreased risk in populations from USA, 53% from Europe, and 20% from Asia (P > 0.05), whereas comparison of ≥23 repeats with others generated a significant prediction in European populations (OR = 1.17; P = 0.039). Stratification by study designs revealed no material changes in risk estimation. Meta-regression analysis found no significant sources of between-study heterogeneity for age, study design and geographic region for all comparisons. There was no identified publication bias. Taken together, our results demonstrated that AR CAG repeat polymorphism with ≥20 repeats might confer a protective effect among the prostate cancer patients with 45 years older but not all the prostate cancer patients.  相似文献   

18.
19.
20.
Polymorphism of the CAG repeat of exon 1 of the androgen receptor (AR) gene was analyzed in the Tomsk population. In total, 12 alleles varying in size from 285 to 318 bp (21-32 CAG units) were revealed. The allele frequency distribution did not differ from the normal one. No difference in allele frequencies was detected between men and women of the same generation. The observed heterozygosity was equal to the expected one (0.88 +/- 0.03). Compared with other populations, the Tomsk population displayed a narrower allele spectrum and a bias of the most common allele to a greater repeat number. The results obtained may reflect specific population genetic processes characteristic of young developing populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号