首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reversible protein phosphorylation is a key mediator for intracellular signal transduction. Here we report an innovative method for accurate, site-specific protein phosphorylation degree determination by nanoLC-ESI-MS/MS. A stable isotope-labeled pair of peptide/phosphopeptide standards with volumetrically defined molar ratio is used as reference, providing an internal standard for both the analyte peptide and the phosphopeptide. For the preparation of one-source peptide/phosphopeptide standards, an aliquot of the labeled phosphopeptide standard is quantitatively dephosphorylated, yielding an equimolar solution of the peptide standard. Subsequently, the two solutions are mixed at a 1:1 or other volumetric ratio, which equals the molar ratio. This procedure assures a defined concentration ratio of both components that is independent from their absolute concentration. We demonstrate the applicability of the one-source peptide/phosphopeptide standard method by determining the phosphorylation degree of the signalling proteins STAT5A/B and STAT6.  相似文献   

2.
Stable isotope labeling is at present one of the most powerful methods in quantitative proteomics. Stable isotope labeling has been performed at both the protein as well as the peptide level using either metabolic or chemical labeling. Here, we present a straightforward and cost-effective triplex quantification method that is based on stable isotope dimethyl labeling at the peptide level. Herein, all proteolytic peptides are chemically labeled at their alpha- and epsilon-amino groups. We use three different isotopomers of formaldehyde to enable the parallel analysis of three different samples. These labels provide a minimum of 4 Da mass difference between peaks in the generated peptide triplets. The method was evaluated based on the quantitative analysis of a cell lysate, using a typical "shotgun" proteomics experiment. While peptide complexity was increased by introducing three labels, still more than 1300 proteins could be identified using 60 microg of starting material, whereby more than 600 proteins could be quantified using at least four peptides per protein. The triplex labeling was further utilized to distinguish specific from aspecific cAMP binding proteins in a chemical proteomics experiment using immobilized cAMP. Thereby, differences in abundance ratio of more than two orders of magnitude could be quantified.  相似文献   

3.
Recent advances in MS instrumentation and progresses in phosphopeptide enrichment, in conjunction with more powerful data analysis tools, have facilitated unbiased characterization of thousands of site‐specific phosphorylation events. Combined with stable isotope labeling by amino acids in cell culture metabolic labeling, these techniques have made it possible to quantitatively evaluate phosphorylation changes in various physiological states in stable cell lines. However, quantitative phosphoproteomics in primary cells and tissues remains a major technical challenge due to the lack of adequate techniques for accurate quantification. Here, we describe an integrated strategy allowing for large scale quantitative profiling of phosphopeptides in complex biological mixtures. In this technique, the mixture of proteolytic peptides was subjected to phosphopeptide enrichment using a titania affinity column, and the purified phosphopeptides were subsequently labeled with iTRAQ reagents. After further fractionation by strong‐cation exchange, the peptides were analyzed by LC‐MS/MS on an Orbitrap mass spectrometer, which collects CID and high‐energy collisional dissociation (HCD) spectra sequentially for peptide identification and quantitation. We demonstrate that direct phosphopeptide enrichment of protein digests by titania affinity chromatography substantially improves the efficiency and reproducibility of phosphopeptide proteomic analysis and is compatible with downstream iTRAQ labeling. Conditions were optimized for HCD normalized collision energy to balance the overall peptide identification and quantitation using the relative abundances of iTRAQ reporter ions. Using this approach, we were able to identify 3557 distinct phosphopeptides from HeLa cell lysates, of which 2709 were also quantified from HCD scans.  相似文献   

4.
E Durban  M Goodenough  J Mills    H Busch 《The EMBO journal》1985,4(11):2921-2926
Changes in phosphorylation modulate the activity of topoisomerase I in vitro. Specifically, enzymatic activity is stimulated by phosphorylation with a purified protein kinase (casein kinase type II). The purpose of this study was to compare the sites that are phosphorylated in vitro by casein kinase type II with the site(s) phosphorylated in vivo in rapidly growing Novikoff hepatoma cells. Topoisomerase I labeled in vitro was characterized by three major tryptic phosphopeptides (I-III). Separation of these peptides by a C18-reverse phase h.p.l.c. column resulted in their elution at fractions 18 (I), 27 (II) and 44 (III) with 17%, 22.5% and 33% acetonitrile, respectively. In contrast, only one major phosphopeptide was identified by h.p.l.c. in topoisomerase I labeled in vivo. This phosphopeptide eluted at fraction 18 corresponding to the elution properties of phosphopeptide I labeled in vitro. It also co-migrated with tryptic phosphopeptide I when subjected to high-voltage electrophoresis on thin-layer cellulose plates. Preliminary experiments suggest that phosphorylation occurs at a serine residue six amino acids from the N-terminus of the peptide. These data indicate that topoisomerase I is phosphorylated in vivo and in vitro within the same tryptic peptide and suggest that topoisomerase I is phosphorylated in vivo by casein kinase II.  相似文献   

5.
A systematic approach to the analysis of protein phosphorylation   总被引:29,自引:0,他引:29  
Reversible protein phosphorylation has been known for some time to control a wide range of biological functions and activities. Thus determination of the site(s) of protein phosphorylation has been an essential step in the analysis of the control of many biological systems. However, direct determination of individual phosphorylation sites occurring on phosphoproteins in vivo has been difficult to date, typically requiring the purification to homogeneity of the phosphoprotein of interest before analysis. Thus, there has been a substantial need for a more rapid and general method for the analysis of protein phosphorylation in complex protein mixtures. Here we describe such an approach to protein phosphorylation analysis. It consists of three steps: (1) selective phosphopeptide isolation from a peptide mixture via a sequence of chemical reactions, (2) phosphopeptide analysis by automated liquid chromatography-tandem mass spectrometry (LC-MS/MS), and (3) identification of the phosphoprotein and the phosphorylated residue(s) by correlation of tandem mass spectrometric data with sequence databases. By utilizing various phosphoprotein standards and a whole yeast cell lysate, we demonstrate that the method is equally applicable to serine-, threonine- and tyrosine-phosphorylated proteins, and is capable of selectively isolating and identifying phosphopeptides present in a highly complex peptide mixture.  相似文献   

6.
R E Lewis  L Cao  D Perregaux  M P Czech 《Biochemistry》1990,29(7):1807-1813
The ability of tumor-promoting phorbol diesters to inhibit both insulin receptor tyrosine kinase activity and its intracellular signaling correlates with the phosphorylation of the insulin receptor beta subunit on serine and threonine residues. In the present studies, mouse 3T3 fibroblasts transfected with a human insulin receptor cDNA and expressing greater than one million of these receptors per cell were labeled with [32P]phosphate and treated with or without 100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA). Phosphorylated insulin receptors were immunoprecipitated and digested with trypsin. Alternatively, insulin receptors affinity purified from human term placenta were phosphorylated by protein kinase C prior to trypsin digestion of the 32P-labeled beta subunit. Analysis of the tryptic phosphopeptides from both the in vivo and in vitro labeled receptors by reversed-phase HPLC and two-dimensional thin-layer separation revealed that PMA and protein kinase C enhanced the phosphorylation of a peptide with identical chromatographic properties. Partial hydrolysis and radiosequence analysis of the phosphopeptide derived from insulin receptor phosphorylated by protein kinase C indicated that the phosphorylation of this tryptic peptide occurred specifically on a threonine, three amino acids from the amino terminus of the tryptic fragment. Comparison of these data with the known, deduced receptor sequence suggested that the receptor-derived tryptic phosphopeptide might be Ile-Leu-Thr(P)-Leu-Pro-Arg. Comigration of a phosphorylated synthetic peptide containing this sequence with the receptor-derived phosphopeptide confirmed the identity of the tryptic fragment. The phosphorylation site corresponds to threonine 1336 in the human insulin receptor beta subunit.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The high-throughput identification and accurate quantification of proteins are essential components of proteomic strategies for studying cellular functions and processes. Techniques that are largely based on stable isotope protein or peptide labeling and automated tandem mass spectrometry are increasingly being applied in quantitative proteomic studies. Over the past year, significant progress has been made toward improving and diversifying these technologies with respect to the methods for stable isotope labeling, process automation and data processing and analysis. Advances in stable isotope protein labeling and recent biological studies that used stable isotope based quantitative proteomics techniques are reviewed.  相似文献   

8.
In these studies we demonstrate that insulin stimulates both tyrosine and serine phosphorylation of the insulin receptor after its partial purification on wheat germ-agarose, and after affinity purification on insulin-agarose. Analysis of the serine phosphate incorporated into partially purified or highly purified insulin receptor suggests that an insulin-sensitive serine kinase (IRSK) copurifies with the insulin receptor. Following trypsin digestion, reversed-phase high pressure liquid chromatography (HPLC) analysis of the phosphorylated, affinity-purified insulin receptor preparation reveals phosphopeptide profiles similar to those of trypsin-digested receptors immunoprecipitated from 32P-labeled fibroblasts overexpressing the human insulin receptor. The major insulin-stimulated HPLC phosphopeptide peak from insulin receptors labeled in intact cells contains a hydrophilic phosphoserine-containing peptide which rapidly elutes from a C18 column. HPLC and two-dimensional separation indicate that the same phosphopeptide is obtained when affinity-purified insulin receptors are phosphorylated by IRSK. The serine containing tryptic peptide within the cytoplasmic domain of the human insulin receptor predicted to elute most rapidly upon HPLC had the sequence SSHCQR corresponding to residues 1293-1298. A synthetic peptide containing this sequence is phosphorylated by the insulin receptor/IRSK preparation. After alkylation and trypsin digestion, the synthetic phosphopeptide comigrates with the alkylated, tryptic phosphopeptide derived from insulin receptor phosphorylated in vitro by IRSK. We propose that serine 1293 or 1294 of the human insulin receptor is a major site(s) phosphorylated on the insulin receptor in intact cells and is phosphorylated by IRSK. Furthermore, insulin added directly to affinity-purified insulin receptor/IRSK preparations stimulates the phosphorylation of synthetic peptides corresponding to this receptor phosphorylation site and another containing threonine 1336. Kemptide phosphorylation is not stimulated by insulin under these conditions. No phosphorylation of peptide substrates for Ca2+/calmodulin-dependent protein kinase, protein kinase C, casein kinase II, or cGMP-dependent protein kinase by IRSK is detected. These data indicate that IRSK exhibits specificity for the insulin receptor and may be activated by the insulin receptor tyrosine kinase in an insulin-dependent manner.  相似文献   

9.
10.
Aberrant epidermal growth factor receptor (EGFR, ErbB1) signaling is implicated in cell transformation, motility, and invasion in a variety of cell types, and EGFR is the target of several anticancer drugs. However, the kinetics of EGFR signaling and the individual contributions of site-specific phosphorylation events remain largely unknown. A peptide-based, multiplex immunoassay approach was developed to simultaneously measure both total and phosphorylated protein in a single sample. The approach involves the proteolytic digestion of proteins prior to the isolation and quantitation of site-specific phosphorylation events within an individual protein. Quantitation of phosphorylated and total proteins, in picomolar to nanomolar concentrations, were interpolated from standard curves generated with synthetic peptides that correspond to the peptide targets used in the immunoassays. In this study, a bead-based, nine-plex immunoassay measuring total and phosphorylated protein was constructed to measure temporal, site-specific phosphorylation of key members of the EGFR pathway (ErbB1 receptor, MEK1, MEK2, ERK1, and ERK2) in A431 cells stimulated with epidermal growth factor. The effect of MEK inhibition on this pathway was determined using a known MEK kinase inhibitor, SL327. The results reported herein are the first quantitative measurements of site-specific phosphorylation events and total proteins in a single sample, at the same time representing a new paradigm for standardized protein and phosphorylation analysis using multiplexed, peptide-based, sandwich immunoassays.  相似文献   

11.
We present an approach for quantitative analysis of changes in the composition and phosphorylation of protein complexes by MS. It is based on a new class of stable isotope-labeling reagent, the amine-reactive isotope tag (N-isotag), for specific and quantitative labeling of peptides following proteolytic digestion of proteins. Application of the N-isotag method to the analysis of Rad53, a DNA damage checkpoint kinase in Saccharomyces cerevisiae, led to the identification of dynamic associations between Rad53 and the nuclear transport machinery, histones, and chromatin assembly proteins in response to DNA damage. Over 30 phosphorylation sites of Rad53 and its associated proteins were identified and quantified, and they showed different changes in phosphorylation in response to DNA damage. Interestingly, Ser789 of Rad53 was found to be a major initial phosphorylation site, and its phosphorylation regulates the Rad53 abundance in response to DNA damage. Collectively, these results demonstrate that N-isotag-based quantitative MS is generally applicable to study dynamic changes in the composition of protein complexes and their phosphorylation patterns in a site-specific manner in response to different cell stimuli.  相似文献   

12.
The removal of N-terminal methionine from proteins produced by recombinant DNA techniques is often far from quantitative. Furthermore, a proportion of the methionylated product may be N alpha-blocked and thus not easily accessible to conventional (Edman) techniques of protein characterization. In this paper, a method for overcoming the resulting analytical problems is described. The technique is based on perdeuteroacetylation (performed only if unblocked methionine is to be determined), cleavage with cyanogen bromide, extraction of any acylhomoserine lactone into ethyl acetate, formation of a chemical derivative, and analysis by combined gas-liquid chromatography/mass spectrometry (GC/MS). The remaining cyanogen bromide fragments, insoluble in ethyl acetate, are available for further analysis by mass spectrometric or other methods if required. Using an acylhomoserine lactone labeled with a stable isotope as internal standard, the method is semiquantitative. It should be possible to develop a quantitative method if appropriate polypeptide standards are prepared. N-Terminal processing of eight recombinant-derived proteins is discussed.  相似文献   

13.
C D Weaver  D M Roberts 《Biochemistry》1992,31(37):8954-8959
Nodulin 26 is a nodule-specific protein that is associated with the symbiosome membrane of soybean root nodules. Nodulin 26 is an endogenous substrate for a novel calcium-dependent protein kinase (CDPK) of soybean root nodules. By phosphopeptide mapping of endoproteinase Lys-C-digested nodulin 26 and automated and manual peptide sequence analyses, we have identified the site on nodulin 26 phosphorylated by CDPK. We have also established that the phosphorylation site of nodulin 26 is identical to the phosphorylation site of CK-15, a synthetic peptide with the carboxyl-terminal sequence of nodulin 26. The phosphorylation of nodulin 26 occurs at position Ser262, and the phosphorylation of CK-15 occurs at the analogous position, Ser,6 in vitro. Thus, the CK-15 sequence apparently contains sufficient structural features of the phosphorylation site of nodulin 26 to be recognized by CDPK. On the basis of peptide mapping analysis of nodulin 26 from nodules that are metabolically labeled with [32P]phosphate, it appears that the site of nodulin 26 that is phosphorylated in vitro is also labeled in vivo. The data indicate that the carboxyl terminus of nodulin 26 is phosphorylated by CDPK and provide initial sequence data for the phosphorylation site of an endogenous substrate for a plant CDPK.  相似文献   

14.
This review focuses on techniques for quantification and identification in proteomics by stable isotope coding. Methods are examined for analyzing expression, post-translational modifications, protein:protein interactions, single amino acid polymorphism, and absolute quantification. The bulk of the quantification literature in proteomics focuses on expression analysis, where a wide variety of methods targeting different features of proteins are described. Methods for the analysis of post-translational modification (PTM) focus primarily on phosphorylation and glycosylation, where quantification is achieved in two ways, either by substitution or tagging of the PTM with an isotopically coded derivatizing agent in a single process or by coding and selecting PTM modified peptides in separate operations. Absolute quantification has been achieved by age-old internal standard methods, in which an isotopically labeled isoform of an analyte is synthesized and added to a mixture at a known concentration. One of the surprises is that isotope coding can be a valuable aid in the examination of intermolecular association of proteins through stimulus:response studies. Preliminary efforts to recognize single amino acid polymorphism are also described. The review ends with the conclusion that (1) isotope ratio analysis of protein concentration between samples does not necessarily relate directly to protein expression and rate of PTM and (2) that multiple new methods must be developed and applied simultaneously to make existing stable isotope quantification methods more meaningful. Although stable isotope coding is a powerful, wonderful new technique, multiple analytical issues must be solved for the technique to reach its full potential as a tool to study biological systems.  相似文献   

15.
Protein phosphorylation is the most important type of reversible post-translational modification involved in the regulation of cellular signal-transduction processes. In addition to controlling normal cellular physiology on the molecular level, perturbations of phosphorylation-based signaling networks and cascades have been implicated in the onset and progression of various human diseases. Recent advances in mass spectrometry-based proteomics helped to overcome many of the previous limitations in protein phosphorylation analysis. Improved isotope labeling and phosphopeptide enrichment strategies in conjunction with more powerful mass spectrometers and advances in data analysis have been integrated in highly efficient phosphoproteomics workflows, which are capable of monitoring up to several thousands of site-specific phosphorylation events within one large-scale analysis. Combined with ongoing efforts to define kinase-substrate relationships in intact cells, these major achievements have considerable potential to assess phosphorylation-based signaling networks on a system-wide scale. Here, we provide an overview of these exciting developments and their potential to transform signal-transduction research into a technology-driven, high-throughput science.  相似文献   

16.
An important challenge for proteomics is to be able to compare absolute protein levels across biological samples. Here we introduce an approach based on the use of culture-derived isotope tags (CDITs) for quantitative tissue proteome analysis. We cultured Neuro2A cells in a stable isotope-enriched medium and mixed them with mouse brain samples to serve as internal standards. Using CDITs, we identified and quantified a total of 1,000 proteins, 97-98% of which were expressed in both mouse whole brain and Neuro2A cells. CDITs also allow comprehensive and absolute protein quantification. Synthetic unlabeled peptides were used to quantify the corresponding proteins labeled with stable isotopes in Neuro2A cells, and the results were used to obtain the absolute amounts of 103 proteins in mouse whole brain. The expression levels correlated well with those in Neuro2A cells. Thus, the use of CDITs allows both relative and absolute quantitative proteome studies.  相似文献   

17.
In an effort to characterize the signal transduction mechanisms that operate to regulate homeodomain protein function, we have analyzed the phosphorylation state of two homeodomain proteins, Hoxb-6 and Hoxc-8, in vitro and in vivo. The baculovirus expression system was employed to demonstrate that Hoxb-6 is phosphorylated in Sf9 cells while Hoxc-8 is not. Using two-dimensional tryptic phosphopeptide mapping and purified protein kinases, we demonstrate that Hoxb-6 is phosphorylated in vitro by casein kinase II and cAMP-dependent protein kinase. The casein kinase II phosphorylation site was mapped to serine-214. Two-dimensional tryptic phosphopeptide mapping of immunoprecipitated Hoxb-6 from mouse embryonic spinal cords demonstrates that the same peptide phosphorylated in vitro and in Sf9 cells by casein kinase II is also phosphorylated in vivo. The conservation of this site in several homeodomain proteins from various species is discussed.  相似文献   

18.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

19.
Reversible protein phosphorylation is a central cellular regulatory mechanism in modulating protein activity and propagating signals within cellular pathways and networks. Development of more effective methods for the simultaneous identification of phosphorylation sites and quantification of temporal changes in protein phosphorylation could provide important insights into molecular signaling mechanisms in various cellular processes. Here we present an integrated quantitative phosphoproteomics approach and its application for comparative analysis of Cos-7 cells in response to lysophosphatidic acid (LPA) gradient stimulation. The approach combines trypsin-catalyzed (16)O/ (18)O labeling plus (16)O/ (18)O-methanol esterification for quantitation, a macro-immobilized metal-ion affinity chromatography trap for phosphopeptide enrichment, and LC-MS/MS analysis. LC separation and MS/MS are followed by neutral loss-dependent MS/MS/MS for phosphopeptide identification using a linear ion trap (LTQ)-FT mass spectrometer. A variety of phosphorylated proteins were identified and quantified including receptors, kinases, proteins associated with small GTPases, and cytoskeleton proteins. A number of hypothetical proteins were also identified as differentially expressed followed by LPA stimulation, and we have shown evidence of pseudopodia subcellular localization of one of these candidate proteins. These results demonstrate the efficiency of this quantitative phosphoproteomics approach and its application for rapid discovery of phosphorylation events associated with LPA gradient sensing and cell chemotaxis.  相似文献   

20.
定量蛋白质组学中的同位素标记技术   总被引:2,自引:0,他引:2  
定量蛋白质组学的目的是对复杂的混合体系中所有的蛋白质进行鉴定,并对蛋白质的量及量的变化进行准确的测定,是当前系统生物科学研究的重要内容。近年来,由于质谱技术和生物信息学的进步,定量蛋白质组学在分析蛋白质组或亚蛋白质组方面已取得了令人瞩目的成就,但其最显著的成就应该归功于稳定同位素标记技术的应用。该技术使用针对某一类蛋白具有特异性的化学探针来标记目的蛋白质或肽段,同时化学探针要求含有用以精确定量的稳定同位素信号。在此基础上,实现了对表达的蛋白质差异和翻译后修饰的蛋白质差异进行精确定量分析。综述了在定量蛋白质组学中使用的各种同位素标记技术及其应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号