首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interest in silk fibroin morphology and structure have increased due to its attractiveness for bio-related applications. Silk fibers have been used as sutures for a long time in the surgical field, due to the biocompatibility of silk fibroin fibers with human living tissue. In addition, it has been demonstrated that silk can be used as a substrate for enzyme immobilization in biosensors. A more complete understanding of silk structure would provide the possibility to further exploit silk fibroin for a wide range of new uses, such as the production of oxygen-permeable membranes and biocompatible materials. Silk fibroin-based membranes could be utilized as soft tissue compatible polymers. Baculovirus-mediated transgenesis of the silkworm allows specific alterations in a target sequence. Homologous recombination of a foreign gene downstream from a powerful promoter, such as the fibroin promoter, would allow the constitutive production of a useful protein in the silkworm and the modification of the character of silk protein. A chimeric protein consisted of fibroin and green fluorescent protein was expressed under the control of fibroin in the posterior silk gland and the gene product was spun into the cocoon layer. This technique, gene targeting, will lead to the modification and enhancement of physicochemical properties of silk protein.  相似文献   

2.
The interest in silk fibroin morphology and structure have increased due to its attractiveness for bio-related applications. Silk fibers have been used as sutures for a long time in the surgical field, due to the biocompatibility of silk fibroin fibers with human living tissue. In addition, it has been demonstrated that silk can be used as a substrate for enzyme immobilization in biosensors. A more complete understanding of silk structure would provide the possibility to further exploit silk fibroin for a wide range of new uses, such as the production of oxygen-permeable membranes and biocompatible materials. Silk fibroin-based membranes could be utilized as soft tissue compatible polymers. Baculovirus-mediated transgenesis of the silkworm allows specific alterations in a target sequence. Homologous recombination of a foreign gene downstream from a powerful promoter, such as the fibroin promoter, would allow the constitutive production of a useful protein in the silkworm and the modification of the character of silk protein. A chimeric protein consisted of fibroin and green fluorescent protein was expressed under the control of fibroin in the posterior silk gland and the gene product was spun into the cocoon layer. This technique, gene targeting, will lead to the modification and enhancement of physicochemical properties of silk protein.  相似文献   

3.
Degradation mechanism and control of silk fibroin   总被引:1,自引:0,他引:1  
Lu Q  Zhang B  Li M  Zuo B  Kaplan DL  Huang Y  Zhu H 《Biomacromolecules》2011,12(4):1080-1086
Controlling the degradation process of silk is an important and interesting subject in the field of biomaterials. In the present study, silk fibroin films with different secondary conformations and nanostructures were used to study degradation behavior in buffered protease XIV solution. Different from previous studies, silk fibroin films with highest β-sheet content achieved the highest degradation rate in our research. A new degradation mechanism revealed that degradation behavior of silk fibroin was related to not only crystal content but also hydrophilic interaction and then crystal-noncrystal alternate nanostructures. First, hydrophilic blocks of silk fibroin were degraded. Then, hydrophobic crystal blocks that were formerly surrounded and immobilized by hydrophilic blocks became free particles and moved into solution. Therefore, on the basis of the mechanism, which enables the process to be more controllable and flexible, controlling the degradation behavior of silk fibroin without affecting other performances such as its mechanical or hydrophilic properties becomes feasible, and this would greatly expand the applications of silk as a biomedical material.  相似文献   

4.
Novel chitin–silk fibroin fibres and chitin fibres were prepared by an environmental friendly wet-spinning method. Each aqueous solution of sodium chitin (N-acetylchitosan) salt and its blends of silk fibroin in aqueous 14% sodium hydroxide was spun through a viscose-type spinneret into an aqueous 10% sulfuric acid solution saturated with ammonium sulfate (about 43%), and the corresponding white filament was obtained. The tenacity and elongation values of the chitin–silk fibroin filament decreased with an increase of fibroin content up to 33% by weight. A scanning electron microscopy analysis revealed that both the chitin filament and the chitin–silk fibroin (67:33, w/w) filament had vertical strips with faint scale structures on their surfaces. Some applications of these staple fibres were also reported.  相似文献   

5.
Antheraea pernyi silk fibroin fibers were dissolved by aqueous lithium thiocyanate to obtain regenerated A. pernyi silk fibroin solution. By means of circular dichroism, 13C NMR and Raman spectroscopy, the molecular conformation of regenerated A. pernyi silk fibroin in aqueous solution was investigated. The relationship of environmental factors and sol–gel transformation behavior of regenerated A. pernyi silk fibroin was also studied. The molecular conformations of regenerated A. pernyi silk fibroin mainly were -helix and random coil in solution. There also existed a little β-sheet conformation. It was obviously different with Bombyx mori silk fibroin, whose molecular conformation in solution was only random coil but no -helix existence. With the increase of temperature and solution concentration and with the decrease of solution pH value, the gelation velocity of regenerated A. pernyi silk fibroin solution increased. Especially, it showed that A. pernyi silk fibroin was more sensitive to temperature than B. mori silk fibroin during the sol–gel transformation. The velocity increased obviously when the temperature was above 30 °C. During the sol–gel transformation, the molecular conformation of regenerated A. pernyi silk fibroin changed from random coil to β-sheet structure. The results of these studies provided important insight into the preparation of new biomaterials by silk fibroin protein.  相似文献   

6.
目的:磷酸钙骨水泥(Calcium phosphate cement,CPC)以其诸多优点正得到了越来越多的应用,但其较差的力学性能表现也限制了它的使用范围。本研究目的在于改善磷酸钙骨水泥的力学性能,同时评估改性后的磷酸钙骨水泥的其他性能。方法:通过丝素蛋白(Silk fibroin,SF)的矿化自组装方法制备丝素蛋白/羟基磷灰石复合物(silk fibroin/hydroxyapitite composite, SF/HA)。按照1%、2%、3%、4%的质量分数加入磷酸钙骨水泥中,与磷酸钙骨水泥组对比。比较内容包括力学强度、抗渍散性能及细胞毒性。结果:以丝素蛋白溶液为液相组的磷酸钙骨水泥强度大约为35MPa。随后随着添加丝素蛋白/羟基磷灰石复合物的质量分数从1%增至3%,磷酸钙骨水泥的强度逐渐增加(P〈0.05),最高约至45MPa。而当丝素蛋白/羟基磷灰石的质量分数达到4%时,磷酸钙骨水泥的强度较质量分数3%组小幅度下降至43MPa(P〈0.05)。以丝素蛋白溶液作为液相时,磷酸钙骨水泥的抗溃散能力也得到了加强。在MTT法测定细胞活力的对照实验中,无论是加入丝素蛋白溶液或丝素蛋白/羟基磷灰石复合物,都未观察到细胞毒性。结论:在磷酸钙骨水泥中加入3%质量分数的丝素蛋白/羟基磷灰石复合物,能显著提高磷酸钙骨水泥的抗压强度。而丝素蛋白溶液作为液相可改善磷酸钙骨水泥的抗溃散能力。同时,丝素蛋白和丝素蛋白/羟基磷灰石复合物都不表现出细胞毒性。更理想的力学强度和更强的抗溃散能力,大大扩展了磷酸钙骨水泥的应用范围。  相似文献   

7.
以小鼠胚胎干细胞(ES)为种子细胞,使用改良的4-/4+ RA方案,诱导小鼠ES细胞在丝素材料上向神经细胞分化,探讨丝素材料对其生长、黏附、分化等情况的影响。将小鼠ES细胞悬浮培养4 d得到的拟胚体(EBs)分别接种到经丝素膜和明胶包被的培养皿上进行诱导,比较不同材料上EBs的贴壁率及向神经元分化的比率。结果表明EBs在明胶和柞蚕丝素蛋白膜(TSF)上贴壁较快,平均贴壁率为90.3%和84.4%,在桑蚕丝素蛋白膜(SF)上贴壁较慢,贴壁率低,仅为38.5%,同时三者神经元的分化比率均能达到40%以上,无明显差异。通过以上实验,我们得出,TSF有望成为小鼠ES细胞向神经细胞分化的支架材料。  相似文献   

8.
Embiopterans (webspinning insects) are renowned for their prolific use of silk. These organisms spin silk to construct elaborate networks of tubes in which they live, forage, and reproduce. The silken galleries are essential for protecting these soft-bodied insects from predators and other environmental hazards. Despite the ecological importance of embiopteran silk, very little is known about its constituent proteins. Here, we characterize the silk protein cDNAs from four embiopteran species to better understand the function and evolution of these adaptive molecules. We show that webspinner fibroins (silk proteins) are highly repetitive in sequence and possess several conserved characteristics, despite differences in habitat preferences across species. The most striking similarities are in the codon usage biases of the fibroin genes, particularly in the repetitive regions, as well as sequence conservation of the carboxyl-terminal regions of the fibroins. Based on analyses of the silk genes, we propose hypotheses regarding codon bias and its effect on the translation and replication of these unusual genes. Furthermore, we discuss the significance of specific fibroin motifs to the mechanical and structural characteristics of silk fibers. Lastly, we report that the conservation of webspinner fibroin carboxyl-terminal regions suggests that fiber formation may occur through a mechanism analogous to that found in Lepidoptera. From these results, insight is gained into the tempo and mode of evolution that has shaped embiopteran fibroins.  相似文献   

9.
蜘蛛丝的分子结构与力学性能研究   总被引:2,自引:0,他引:2  
蜘蛛丝尤其是蜘蛛大囊状腺产生的拖丝,具有独特的机械性能,是自然界颇具应用潜力的生物材料。现代分子生物学技术使蜘蛛丝蛋白基因得以克隆,通过高分子物理化学手段方法的利用,有利于揭示蜘蛛丝蛋白质序列、分子结构、以及分子结构和力学性能之间的关系。对不同种类蜘蛛丝蛋白的深入研究,将为基因工程方法人工合成并改造蜘蛛丝成为可能。  相似文献   

10.
Amyloid aggregation has been associated with numerous human pathological diseases. A recent study has demonstrated that silk fibroin intermittently endorses amyloidogenesis in vivo. In the current study, we explored the propensity of silk fibroin to undergo amyloid-like aggregation and its prevention using an optimized concoction of curcumin with β-cyclodextrin. Aggregation of silk fibroin resulted in the formation of fibrils with a diameter of ~3.2 nm. However, addition of the optimized concentration of curcumin and β-cyclodextrin to silk fibroin inhibited aggregation and preserved the random coil conformation even under aggregation inducing conditions, as demonstrated by CD and FTIR spectroscopy. Benzene rings of curcumin interact with the aromatic residues of fibroin via hydrophobic interactions. However, β-cyclodextrin preferentially interacts with the non-polar residues, which are the core components for nucleation dependent protein aggregation. The present study demonstrates the ability of the concoction of curcumin and β-cyclodextrin in tuning the self assembly process of fibroin. It also provides a platform to explore the assembly process of nano-fibril and hierarchical structures in vitro along with a novel insight for designing clinically relevant silk-based functional biomaterials.  相似文献   

11.
Zhang C  Song D  Lu Q  Hu X  Kaplan DL  Zhu H 《Biomacromolecules》2012,13(7):2148-2153
Although natural silk fibers have excellent strength and flexibility, the regenerated silk materials generally become brittle in the dry state. How to reconstruct the flexibility for silk fibroin has bewildered scientists for many years. In the present study, the flexible regenerated silk fibroin films were achieved by simulating the natural forming and spinning process. Silk fibroin films composed of silk I structure were first prepared by slow drying process. Then, the silk fibroin films were stretched in the wet state, following the structural transition from silk I to silk II. The difference between the flexible film and different brittle regenerated films was investigated to reveal the critical factors in regulating the flexibility of regenerated silk materials. Compared with the methanol-treated silk films, although having similar silk II structure and water content, the flexible silk films contained more bound water rather than free water, implying the great influence of bound water on the flexibility. Then, further studies revealed that the distribution of bound water was also a critical factor in improving silk flexibility in the dry state, which could be regulated by the nanoassembly of silk fibroin. Importantly, the results further elucidate the relation between mechanical properties and silk fibroin structures, pointing to a new mode of generating new types of silk materials with enhanced mechanical properties in the dry state, which would facilitate the fabrication and application of regenerated silk fibroin materials in different fields.  相似文献   

12.
目的:研究蚕丝蛋白-明胶三维材料支架对人永生化肝细胞系QZG贴附及增殖的影响。方法:采用四氮唑盐比色法(MTT)、细胞计数法检测QZG细胞在纯蚕丝生物材料上与在蚕丝蛋白-明胶复合材料上的增殖情况,用扫描电镜观察QZG细胞在两种三维生物材料上的贴附与增殖情况。结果:QZG细胞可以在蚕丝蛋白生物材料贴附及增殖,在引入明胶的蚕丝蛋白材料上细胞贴附更紧密,增殖更明显。结论:蚕丝蛋白与明胶复合材料支架具有良好的细胞贴附性能,通过改进在肝组织工程应用方面将具有一定应用前景。  相似文献   

13.
Bombyx mori (silkworm) silk proteins are being utilized as unique biomaterials for medical applications. Chemical modification or post-conjugation of bioactive ligands expand the applicability of silk proteins; however, the processes are elaborate and costly. In this study, we used transgenic silkworm technology to develop single-chain variable fragment (scFv)-conjugated silk fibroin. The cocoons of the transgenic silkworm contain fibroin L-chain linked with scFv as a fusion protein. After dissolving the cocoons in lithium bromide, the silk solution was dialyzed, concentrated, freeze-dried, and crushed into powder. Immunoprecipitation analyses demonstrate that the scFv domain retains its specific binding activity to the target molecule after multiple processing steps. These results strongly suggest the promise of scFv-conjugated silk fibroin as an alternative affinity reagent, which can be manufactured using transgenic silkworm technology at lower cost than traditional affinity carriers.  相似文献   

14.
Bombyx mori silk fibroin molecule is known to exist in two distinct structural forms: silk I (unprocessed silk fibroin) and silk II (processed silk fibroin). Using synthetic peptides, we attempt to explore the structural role played by Ser and Tyr residues on the appearance of silk I structural form of the fibroin. Twelve selected peptides (1-12) incorporating Ser and Tyr residues in the (Ala-Gly)(n) copolypeptide, that is, the sequences mimicking the primary structure of B. mori silk fibroin molecule, have been investigated under the silk I state, employing high-resolution (13)C cross-polarization/magic-angle spinning (CP/MAS) NMR spectroscopy. To acquire the silk I structural form, all the peptides were dissolved in 9 M LiBr and then dialyzed extensively against water, as established previously for the synthetic (Ala-Gly)(15) copolypeptide and B. mori silk fibroin. The diagnostic line shape of the Ala C(beta) peaks and the conformation-dependent (13)C chemical shifts of Ala and Gly resonances are presented to analyze and characterize the structural features. The results indicate that the incorporation of one Ser and/or one Tyr residue(s) at selected position in the basic (Ala-Gly)(15) sequence tend to retain predominantly the silk I structure. Conversely, the repeat pentameric and octameric Ala-Gly-Ser-Gly-Ala-Gly sequences, for example, (Ala-Gly-Ser-Gly-Ala-Gly)(5) or (Ala-Gly-Ser-Gly-Ala-Gly)(8), preferred predominantly the silk II form. The peptide sequences incorporating Ser and Tyr residue(s) into repeat Ala-Gly-Ser-Gly-Ala-Gly sequences, however, adopted the silk II structure with certain content structural heterogeneity or randomness, more pronounced for specific peptides studied. Interestingly, the crystalline Cp fraction of B. mori silk fibroin, when mixed with (Ala-Gly-Ser-Gly-Ala-Gly)(5) sequence in a 5:1 molar ratio, dissolved in 9 M LiBr, and dialyzed against distilled water, favor the silk I form. The finding tends to suggest that the less stable silk I form in (Ala-Gly-Ser-Gly-Ala-Gly)(n) sequences is likely to be induced and facilitated via intermolecular interactions with the Cp fraction, which predominantly prefers the silk I form under similar conditions; however, the hydrogen-bond formation involving O(gamma)H groups of the Ser residues may have some implications.  相似文献   

15.
摘要:丝素蛋白是一种天然的高分子纤维蛋白,其结构的特殊性决定了较好的机械性能,再因其优良的生物相容性、降解产物无毒等特点,被广泛用于各种材料的研究。通过各种化学修饰和负载生长因子等,使丝素蛋白在体内外具有促进成纤维细胞增殖分化的作用,拥有诱导创面愈合的功能,同时其可部分降解,具有缓释性能好,柔韧性强,透气以及透水等较好的理化性质不但在皮肤组织工程学中的广泛的应用,并且在敷料领域的研究也显示了其治疗烧烫伤、创伤达到抑制疤痕、促进伤口快速愈合的治疗效果。总之,通过改良丝素蛋白材料的加工方法,通过化学修饰、其他物质复合等手段得到适合于皮肤修复的具有优良性能的各种材料,是具有很大潜力的极具临床价值的皮肤修复材料。本文旨在综述国内及国外学者的各种关于丝素蛋白生物材料治疗皮肤损伤的研究最新进展。  相似文献   

16.
Oxidized polyvinyl alcohol (PVA) hydrolase (OPH) is a key enzyme in the degradation of PVA, suggesting that OPH has a great potential for application in textile desizing processes. In this study, the OPH gene from Sphingopyxis sp. 113P3 was modified, by artificial synthesis, for overexpression in Escherichia coli. The OPH gene, lacking the sequence encoding the original signal peptide, was inserted into pET-20b (+) expression vector, which was then used to transform E. coli BL21 (DE3). OPH expression was detected in culture medium in which the transformed E. coli BL21 (DE3) was grown. Nutritional and environmental conditions were investigated for improved production of OPH protein by the recombinant strain. The highest OPH activity measured was 47.54 U/mL and was reached after 84 h under optimal fermentation conditions; this level is 2.64-fold higher that obtained under sub-optimal conditions. The productivity of recombinant OPH reached 565.95 U/L/h. The effect of glycine on the secretion of recombinant OPH was examined by adding glycine to the culture medium to a final concentration of 200 mM. This concentration of glycine reduced the fermentation time by 24 h and increased the productivity of recombinant OPH to 733.17 U/L/h. Our results suggest that the recombinant strain reported here has great potential for use in industrial applications.  相似文献   

17.
We have previously reported that organophosphorus hydrolase (OPH) can be spontaneously entrapped in functionalized mesoporous silica (FMS) with HOOC- as the functional groups and the entrapped OPH in HOOC-FMS showed enhanced enzyme specific activity. This work is to study the mechanisms that why OPH entrapped in FMS displayed the enhanced activity in views of OPH-FMS interactions using spectroscopic methods. The circular dichroism (CD) spectra show that, comparing to the secondary structure of OPH free in solution, OPH in HOOC-FMS displayed increased α-helix/β-strand transition of OPH with increased OPH loading density. The fluorescence emission spectra of Trp residues were used to assess the tertiary structural changes of the enzyme. There was a 42% increase in fluorescence. This is in agreement with the fact that the fluorescence intensity of OPH was increased accompanying with the increased OPH activity when decreasing urea concentrations in solution. The steady-state anisotropy was increased after OPH entrapping in HOOC-FMS comparing to the free OPH in solution, indicating that protein mobility was reduced upon entrapment. The solvent accessibility of Trp residues of OPH was probed by using acrylamide as a collisional quencher. Trp residues of OPH-FMS had less solvent exposure comparing with free OPH in solution due to its electrostatical binding to HOOC-FMS thereby displaying the increased fluorescence intensity. These results suggest the interactions of OPH with HOOC-FMS resulted in the protein immobilization and a favorable conformational change for OPH in the crowded confinement space and accordingly the enhanced activity.  相似文献   

18.
Insects produce silk for a range of purposes. In the Lepidoptera, silk is utilized as a material for cocoon production and serves to protect larvae from adverse environmental conditions or predators. Species in the Saturniidae family produce an especially wide variety of cocoons, for example, large, golden colored cocoons and those with many small holes. Although gene expression in the silk gland of the domestic silkworm (Bombyx mori L.) has been extensively studied, considerably fewer investigations have focused on members of the saturniid family. Here, we established expression sequence tags from the silk gland of the eri silkworm (Samia ricini), a saturniid species, and used these to analyze gene expression. Although we identified the fibroin heavy chain gene in the established library, genes for other major silk proteins, such as fibroin light chain and fibrohexamerin, were absent. This finding is consistent with previous reports that these latter proteins are lacking in saturniid silk. Recently, a series of fibrohexamerin‐like genes were identified in the Bombyx genome. We used this information to conduct a detailed analysis of the library established here. This analysis identified putative homologues of these genes. We also found several genes encoding small silk protein molecules that are also present in the silk of other Lepidoptera. Gene expression patterns were compared between eri and domestic silkworm, and both conserved and nonconserved expression patterns were identified for the tested genes. Such differential gene expression might be one of the major causes of the differences in silk properties between these species. We believe that our study can be of value as a basic catalogue for silk gland gene expression, which will yield to the further understanding of silk evolution.  相似文献   

19.
Silk-based medical products have a long history of use as a material for surgical sutures because of their desirable mechanical properties. However, silk fibroin fabric has been reported to be haemolytic when in direct contact with blood. The layer-by-layer self-assembly technique provides a method for surface modification to improve the biocompatibility of silk fibroin fabrics. Regenerated silk fibroin and alginate, which have excellent biocompatibility and low immunogenicity, are outstanding candidates for polyelectrolyte deposition. In this study, silk fabric was degummed and positively charged to create a silk fibroin fabric that could undergo self-assembly. The multilayer self-assembly of the silk fibroin fabric was achieved by alternating the polyelectrolyte deposition of a negatively charged alginate solution (pH = 8) and a positively charged regenerated silk fibroin solution (pH = 2). Finally, the negatively charged regenerated silk fibroin solution (pH = 8) was used to assemble the outermost layer of the fabric so that the surface would be negatively charged. A stable structural transition was induced using 75% ethanol. The thickness and morphology were characterised using atomic force microscopy. The properties of the self-assembled silk fibroin fabric, such as the bursting strength, thermal stability and flushing stability, indicated that the fabric was stable. In addition, the cytocompatibility and haemocompatibility of the self-assembled silk fibroin fabrics were evaluated. The results indicated that the biocompatibility of the self-assembled multilayers was acceptable and that it improved markedly. In particular, after the self-assembly, the fabric was able to prevent platelet adhesion. Furthermore, other non-haemolytic biomaterials can be created through self-assembly of more than 1.5 bilayers, and we propose that self-assembled silk fibroin fabric may be an attractive candidate for anticoagulation applications and for promoting endothelial cell adhesion for vascular prostheses.  相似文献   

20.
Yang Y  Shao Z  Chen X  Zhou P 《Biomacromolecules》2004,5(3):773-779
Fluorescence and circular dichroism spectroscopy were used to monitor the conformational transition of regenerated Bombyx mori silk fibroin (RSF) in aqueous solutions under different conditions. According to the analysis of fluorescence spectra using anilinonaphthalene-8-sulfonic acid magnesium salt (ANS) as an external probe, the destruction of the hydrophobic core prior to the secondary structure change suggests that this collapse may initiate the conformational transition from random coil to beta-sheet for RSF. The temperature dependence of the structural changes of RSF, detected by both fluorescence spectroscopy and circular dichroism, shows a reversible process upon heating and recooling, with the midpoint around 45 degrees C. The results also indicate that most of the tryptophan (Trp) residues contained in silk fibroin are concentrated on the surface of the unfolded protein. However, they will change their location in the highly ordered structure (e.g., becoming more homogeneous) with the conformational transition of silk fibroin. Moreover, our studies also suggest that the presence of water plays a crucial role during the structure changes of fibroin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号