首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
酿酒酵母表面展示表达系统及应用   总被引:3,自引:0,他引:3  
酵母细胞表面展示表达系统是一种固定化表达异源蛋白质的真核展示系统,即把异源靶蛋白基因序列与特定的载体基因序列融合后导入酵母细胞,利用酿酒酵母细胞内蛋白转运到膜表面的机制(GPI锚定)使靶蛋白定位于酵母细胞表面并进行表达。它利用细胞表面展示技术使外源蛋白固定化于细胞表面,从而生产微生物细胞表面蛋白,可应用于生物催化剂、细胞吸附剂、活疫苗、环境治理、蛋白质文库筛选、高亲和抗体、生物传感器、抗原/抗体库构建、免疫检测及亲和纯化、癌症诊断等领域。国内对这一方面研究较少,本文主要介绍了该技术的基本原理、研究现状、应用及其发展前景。  相似文献   

2.
纤维素是来源广泛且储量较大的低成本可再生资源,但其结构致密难以利用。目前降解纤维素需要多种纤维素酶协作,而游离纤维素酶成本高、难以重复利用等问题限制了其广泛应用。利用酵母表面展示技术,可以将多个纤维素酶分别与锚定蛋白融合后共展示在细胞表面,从而构建酵母表面展示纤维素酶体系。这一体系可高效降解纤维素,一方面可以充分发挥表面展示的优点,如易回收、稳定性好、操作简单、成本低;另一方面可以将纤维素有效地降解为葡萄糖,并具有代谢产生物乙醇的潜力。阐述了酵母表面展示体系的构建原则,总结了影响展示体系效率的因素,介绍了这一技术在降解纤维素中的应用,为构建高效酵母表面展示纤维素酶体系及其他多酶体系提供参考。  相似文献   

3.
The expression of recombinant proteins incorporated into the cell wall of Saccharomyces cerevisiae (yeast surface display) is an important tool for protein engineering and library screening applications. In this review, we discuss the state-of-the-art yeast display techniques used for stability engineering of proteins including antibody fragments and immunoglobulin-like molecules. The paper discusses assets and drawbacks of stability engineering using the correlation between expression density on the yeast surface and thermal stability with respect to the quality control system in yeast. Additionally, strategies based on heat incubation of surface displayed protein libraries for selection of stabilized variants are reported including a recently developed method that allows stabilization of proteins of already high intrinsic thermal stability like IgG1-Fc.  相似文献   

4.
The technology of the yeast cell surface display, which appeared 20 years ago and was based on the displaying of target proteins on the cell surface via fusion to an abundant cell wall protein finds broad application in basic and applied research. The main advantage of the cell surface display on the basis of eukaryotic microorganisms—yeast—is the opportunity for correct modification of mammalian proteins. The cell surface display is an important tool for the analysis and understanding of protein function and protein–protein interactions and for the screening of novel clones from peptide and protein libraries. This technology makes it possible to obtain cells with novel abilities, such as catalytic functions and affinity binding to valuable ligands, including rare and heavy metals. It provides the chance to use yeast in biotechnology and in bioremediation and biomonitoring of the environment. The review considers the methods of obtaining a cell surface display on the basis of the yeasts Saccharomyces cerevisiae, Pichia pastoris, and Yarrowia lipolytica, the properties of anchor proteins, and the main fields of yeast display technology.  相似文献   

5.
Bacterial display in combinatorial protein engineering   总被引:1,自引:0,他引:1  
Technologies for display of recombinant protein libraries are today essential tools in many research-intensive fields, such as in the drug discovery processes of biopharmaceutical development. Phage display is still the most widely used method, but alternative systems are available and are becoming increasingly popular. The most rapidly expanding of the alternative systems are the cell display-based technologies, offering innovative strategies for selection and characterization of affinity proteins. Most investigations have focused on eukaryotic yeast for display of protein libraries, but similar systems are also being developed using prokaryotic hosts. This review summarizes the field of bacterial surface display with a strong emphasis on library applications for generation of new affinity proteins. The main focus will be on the most recent progress of the work on primarily Escherichia coli, but also on studies using a recently developed system for display on Gram-positive Staphylococcus carnosus. In addition, general strategies for combinatorial protein engineering using cell display are discussed along with the latest developments of new methodologies with comparisons to mainly phage display technology.  相似文献   

6.
In this study, a new surface display plasmid (pINA1317-YlCWP110) was constructed in Yarrowia lipolytica using C-terminal anchor domain of YlCWP1 from Y. lipolytica based on plasmid pINA1317, a pre-existing auto-cloning system for heterologous protein production in Y. lipolytica. When the genes encoding enhanced green fluorescent protein (EGFP) and haemolysin derived from the bacterium Vibrio harveyi were cloned into the newly constructed surface display plasmid, respectively, and expressed in cells of Y. lipolytica, we found that the target proteins were successfully displayed on the yeast cells and 100% of the yeast cell had anchoring target proteins. It was also shown that the yeast cells displaying haemolysin had haemolytic activity towards erythrocytes from flounder, indicating that the fusion protein remained functional. Therefore, the newly constructed surface display plasmid will have many applications in different fields such as in immobilized biocatalyst, bioconversion, bioremediation, live vaccine development and ultra-high-throughput screening for the identification of novel biocatalysts because it has many unique characteristics. To our knowledge, this work constitutes the first report of a surface display expression system in Y. lipolytica.  相似文献   

7.
We investigated the influence of anchor length on the reactivity to polymer substrate of enzyme displayed on yeast cell surfaces. Using various lengths [42, 102, 146, 318, 428, and 1,326 amino acids (aa)] of the C-terminal region of the Saccharomyces cerevisiae Flo1 protein (Flo1p), which plays a major role in yeast flocculation, six display systems with various anchor lengths were constructed. In these systems, the target protein was displayed on the yeast cell surface under the control of the 5'-upstream region of the isocitrate lyase gene of Candida tropicalis ( UPR-ICL). Cell-surface display of Rhizopus oryzae glucoamylase by these systems was induced and confirmed in all systems by immunofluorescence microscopy and immunoblotting. Flow-cytometer measurement of the fluorescence intensity of immunofluorescence-labeled yeast cells displaying glucoamylase indicated that glucoamylase displayed with longer anchors, especially those of 428 and 1,326 aa in length, had higher reactivity to antibodies. The reactivity of starch to displayed glucoamylase, which was evaluated by plate assay, increased with anchor length, as did the cell growth-rate in starch-containing medium. These results indicate that cell-surface display systems using 428- and 1,326-aa length anchors of Flo1p are effective for the display of enzymes on the outer surface of yeast cells.  相似文献   

8.
Molecular display systems using yeast have been developed for industrial, medical, pharmaceutical, and biological studies. Although several host cells are available to construct a molecular display system, the yeast Saccharomyces cerevisiae is a well-established and convenient organism in eukaryotes. A wide variety of prokaryotic and eukaryotic proteins have been displayed on yeast cell surfaces. In addition, functional analyses and applications to bioconversion have been performed on the cell surface, and cells are conveniently engineered by molecular display systems. In this review, we focus on the yeast molecular display system with regard to therapeutic proteins, several enzymes, and food ingredients. In addition, recent patents on molecular display using yeast cell for production of those compounds, screening technology and related techniques are introduced. Development of devices for functional analysis of created and modified proteins in the yeast display system is also described.  相似文献   

9.
为了获得高效的脂肪酶毕赤酵母表面展示系统,利用来自酿酒酵母絮凝素蛋白Flo1的N端874个氨基酸残基(FS)和C端的1101个氨基酸残基(FL)作为锚定蛋白分别构建了2套载体系统.带有前肽的米黑根毛霉脂肪酶(ProRML)克隆到构建的2套展示载体中,使米黑根毛霉脂肪酶(RML)分别以N端锚定或C端锚定的方式实现在毕赤酵母细胞表面的展示.利用RMLC端的Flag标签,通过流式细胞术和激光扫描共聚焦显微镜检测2套系统中RML在酵母表面的展示情况.研究发现,N端锚定于酵母表面的展示酶FSR以pNPC为底物时,水解活力达到了105.3U/g,大约为C端锚定的展示酶FLR活力的2倍.同时FSR比FLR具有更宽的温度、pH作用范围和更好的热稳定性.与游离酶和固定化酶相比,展示酶FSR也表现出更为优良的热稳定性.结果提示,基于Flo1N端锚定的展示系统更适合展示活性中心近C端的脂肪酶,推动了展示酶的进一步研究和开发.  相似文献   

10.
Proteins with internal repeats (Pir) in the Baker’s yeast are located on the cell wall and include four highly homologous members. Recently, Pir proteins have become increasingly used as anchor proteins in yeast cell surface display systems. These display systems are classified into three types: N-terminal fusion, C-terminal fusion, and inserted fusion. In addition to the GPI (glycosylphosphatidyl inositol) and the FL/FS anchor proteins, these three Pir-based systems significantly increase the choices for target proteins to be displayed. Furthermore, Pir proteins can also be used as a fusion partner for target proteins to be effectively secreted into culture medium. Here, we summarize the development and application of Pir proteins as anchor proteins.  相似文献   

11.
The yeast Saccharomyces cerevisiae was genetically modified to assemble a minicellulosome on its cell surface by heterologous expression of a chimeric scaffoldin protein from Clostridium cellulolyticum under the regulation of the phosphoglycerate kinase 1 ( PGK1 ) promoter and terminator regulatory elements, together with the β-xylanase 2 secretion signal of Trichoderma reesei and cell wall protein 2 (Cwp2) of S. cerevisiae . Fluorescent microscopy and Far Western blot analysis confirmed that the Scaf3p is targeted to the yeast cell surface and that the Clostridium thermocellum cohesin domain is functional in yeast. Similarly, functionality of the C. thermocellum dockerin domain in yeast is shown by binding to the Scaf3 protein in Far Western blot analysis. Phenotypic evidence for cohesin–dockerin interaction was also established with the detection of a twofold increase in tethered endoglucanase enzyme activity in S. cerevisiae cells expressing the Scaf3 protein compared with the parent strain. This study highlights the feasibility to future design of enhanced cellulolytic strains of S. cerevisiae through emulation of the cellulosome concept. Potentially, Scaf3p-armed yeast could also be developed into an alternative cell surface display strategy with various tailor-made applications.  相似文献   

12.
Yeast surface display allows heterologously expressed proteins to be targeted to the exterior of the cell wall and thus has a potential as a biotechnology platform. In this study, we report the successful display of functional streptavidin on the yeast surface. Streptavidin binds the small molecule biotin with high affinity (K(d) ≈ 10(-14)M) and is used widely in applications that require stable noncovalent interaction, including immobilization of biotinylated compounds on a solid surface. As such, engineering functional streptavidin on the yeast surface may find novel uses in future biotechnology applications. Although the molecule does not require any post-translational modification, streptavidin is difficult to fold in bacteria. We show that Saccharomyces cerevisiae can fold the protein correctly if induced at 20°C. Contrary to a previous report, coexpression of anchored and soluble streptavidin subunits is not necessary, as expressing the anchored subunit alone is sufficient to form a functional complex. For unstable monomer mutants, however, addition of free biotin during protein induction is necessary to display a functional molecule, suggesting that biotin helps the monomer fold. To show that surface displayed streptavidin can be used to immobilize other biomolecules, we used it to capture biotinylated antibody, which is then used to immunoprecipitate a protein target.  相似文献   

13.
In this study, a molecular self-assembly strategy to develop a novel protein scaffold for amplifying the extent and variety of proteins displayed on the surface of Saccharomyces cerevisiae is presented. The cellulosomal scaffolding protein cohesin and its upstream hydrophilic domain (HD) were genetically fused with the yeast Ure2p N-terminal fibrillogenic domain consisting of residues 1 to 80 (Ure2p(1-80)). The resulting Ure2p(1-80)-HD-cohesin fusion protein was successfully expressed in Escherichia coli to produce self-assembled supramolecular nanofibrils that serve as a novel protein scaffold displaying multiple copies of functional cohesin domains. The amyloid-like property of the nanofibrils was confirmed via thioflavin T staining and atomic force microscopy. These cohesin nanofibrils attached themselves, via a green fluorescent protein (GFP)-dockerin fusion protein, to the cell surface of S. cerevisiae engineered to display a GFP-nanobody. The excess cohesin units on the nanofibrils provide ample sites for binding to dockerin fusion proteins, as exemplified using an mCherry-dockerin fusion protein as well as the Clostridium cellulolyticum CelA endoglucanase. More than a 24-fold increase in mCherry fluorescence and an 8-fold increase in CelA activity were noted when the cohesin nanofibril scaffold-mediated yeast display was used, compared to using yeast display with GFP-cohesin that contains only a single copy of cohesin. Self-assembled supramolecular cohesin nanofibrils created by fusion with the yeast Ure2p fibrillogenic domain provide a versatile protein scaffold that expands the utility of yeast cell surface display.  相似文献   

14.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

15.
甲醇酵母由于独特优点被认为是绿色生物制造的潜在宿主。特别是其天然甲醇利用性能有望建立甲醇生物转化路线,拓展生物炼制底物,具有重要经济价值和环保意义。文中综述了代谢工程改造甲醇酵母合成蛋白质和化学品的最新研究进展,并比较了其与模式生物酿酒酵母作为细胞工厂的优缺点。随后,分析了甲醇酵母代谢工程改造面临的挑战,并展望了潜在解决方案。随着基因操作工具开发和细胞代谢阐释,甲醇酵母将在未来绿色生物制造发挥越来越重要的作用。  相似文献   

16.
以His标签检测蛋白的表达, 利用酿酒酵母表面展示系统, 成功地将HIV-1 gp41片段锚定在酵母表面, 并检测到gp41的活性。以pMD18T-gp41为模板, 通过PCR技术克隆了gp41基因, 将gp41基因通过双酶切连接到载体pICAS-His上,构建了gp41酵母表面展示载体, 并将其转化至酿酒酵母(Saccharomyces cerevisiae)MT8-1中。重组菌经培养, 利用免疫荧光染色方法进行染色, 显微镜观察发现重组酵母细胞表面有绿色荧光, 流式细胞仪结果进一步证实gp41正确折叠展示于酵母细胞表面。采用不同浓度的葡萄糖培养基进行表达优化。当葡萄糖浓度为1%时, 82.46%的酵母细胞表达了gp41抗原; 随着葡萄糖浓度升高, 蛋白表达受到抑制。  相似文献   

17.
Glycosylphosphatidylinositol (GPI) anchoring of cell surface proteins is the most complex and metabolically expensive of the lipid posttranslational modifications described to date. The GPI anchor is synthesized via a membrane-bound multistep pathway in the endoplasmic reticulum (ER) requiring >20 gene products. The pathway is initiated on the cytoplasmic side of the ER and completed in the ER lumen, necessitating flipping of a glycolipid intermediate across the membrane. The completed GPI anchor is attached to proteins that have been translocated across the ER membrane and that display a GPI signal anchor sequence at the C terminus. GPI proteins transit the secretory pathway to the cell surface; in yeast, many become covalently attached to the cell wall. Genes encoding proteins involved in all but one of the predicted steps in the assembly of the GPI precursor glycolipid and its transfer to protein in mammals and yeast have now been identified. Most of these genes encode polytopic membrane proteins, some of which are organized in complexes. The steps in GPI assembly, and the enzymes that carry them out, are highly conserved. GPI biosynthesis is essential for viability in yeast and for embryonic development in mammals. In this review, we describe the biosynthesis of mammalian and yeast GPIs, their transfer to protein, and their subsequent processing.  相似文献   

18.
Yeast cell surface display is a powerful tool for expression and immobilization of biocatalytically active proteins on a unicellular eukaryote. Here bacterial carboxylesterase EstA from Burkholderia gladioli was covalently anchored into the cell wall of Saccharomyces cerevisiae by in-frame fusion to the endogenous yeast proteins Kre1p, Cwp2p, and Flo1p. When p-nitrophenyl acetate was used as a substrate, the esterase specific activities of yeast expressing the protein fusions were 103 mU mg(-1) protein for Kre1/EstA/Cwp2p and 72 mU mg(-1) protein for Kre1/EstA/Flo1p. In vivo cell wall targeting was confirmed by esterase solubilization after laminarinase treatment and immunofluorescence microscopy. EstA expression resulted in cell wall-associated esterase activities of 2.72 U mg(-1) protein for Kre1/EstA/Cwp2p and 1.27 U mg(-1) protein for Kre1/EstA/Flo1p. Furthermore, esterase display on the yeast cell surface enabled the cells to effectively grow on the esterase-dependent carbon source glycerol triacetate (Triacetin). In the case of Kre1/EstA/Flo1p, in vivo maturation within the yeast secretory pathway and final incorporation into the wall were further enhanced when there was constitutive activation of the unfolded protein response pathway. Our results demonstrate that esterase cell surface display in yeast, which, as shown here, is remarkably more effective than EstA surface display in Escherichia coli, can be further optimized by activating the protein folding machinery in the eukaryotic secretion pathway.  相似文献   

19.
The yeast cell surface provides space to display functional proteins. Heterologous proteins can be covalently anchored to the yeast cell wall by fusing them with the anchoring domain of glycosylphosphatidylinositol (GPI)-anchored cell wall proteins (GPI-CWPs). In the yeast cell-surface display system, the anchorage position of the target protein in the cell wall is an important factor that maximizes the capabilities of engineered yeast cells because the yeast cell wall consists of a 100- to 200-nm-thick microfibrillar array of glucan chains. However, knowledge is limited regarding the anchorage position of GPI-attached proteins in the yeast cell wall. Here, we report a comparative study on the effect of GPI-anchoring domain–heterologous protein fusions on yeast cell wall localization. GPI-anchoring domains derived from well-characterized GPI-CWPs, namely Sed1p and Sag1p, were used for the cell-surface display of heterologous proteins in the yeast Saccharomyces cerevisiae. Immunoelectron-microscopic analysis of enhanced green fluorescent protein (eGFP)-displaying cells revealed that the anchorage position of the GPI-attached protein in the cell wall could be controlled by changing the fused anchoring domain. eGFP fused with the Sed1-anchoring domain predominantly localized to the external surface of the cell wall, whereas the anchorage position of eGFP fused with the Sag1-anchoring domain was mainly inside the cell wall. We also demonstrate the application of the anchorage position control technique to improve the cellulolytic ability of cellulase-displaying yeast. The ethanol titer during the simultaneous saccharification and fermentation of hydrothermally-processed rice straw was improved by 30% after repositioning the exo- and endo-cellulases using Sed1- and Sag1-anchor domains. This novel anchorage position control strategy will enable the efficient utilization of the cell wall space in various fields of yeast cell-surface display technology.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号