首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modified macrocyclic glycopeptide‐based chiral stationary phase (CSP), prepared via Edman degradation of vancomycin, was evaluated as a chiral selector for the first time. Its applicability was compared with other macrocyclic glycopeptide‐based CSPs: TeicoShell and VancoShell. In addition, another modified macrocyclic glycopeptide‐based CSP, NicoShell, was further examined. Initial evaluation was focused on the complementary behavior with these glycopeptides. A screening procedure was used based on previous work for the enantiomeric separation of 50 chiral compounds including amino acids, pesticides, stimulants, and a variety of pharmaceuticals. Fast and efficient chiral separations resulted by using superficially porous (core‐shell) particle supports. Overall, the vancomycin Edman degradation product (EDP) resembled TeicoShell with high enantioselectivity for acidic compounds in the polar ionic mode. The simultaneous enantiomeric separation of 5 racemic profens using liquid chromatography‐mass spectrometry with EDP was performed in approximately 3 minutes. Other highlights include simultaneous liquid chromatography separations of rac‐amphetamine and rac‐methamphetamine with VancoShell, rac‐pseudoephedrine and rac‐ephedrine with NicoShell, and rac‐dichlorprop and rac‐haloxyfop with TeicoShell.  相似文献   

2.
Racemic N-methylamphetamine (rac-MA) was resolved with 2R,3R-tartaric acid (TA) and its derivatives (O,O'-dibenzoyl-(2R,3R)-tartaric acid monohydrate (DBTA) and O,O'-di-p-toluoyl-(2R,3R)-tartaric acid (DPTTA)), individually and using them in different combinations. After partial diastereomeric salt formation, the free enantiomers were extracted by supercritical fluid extraction using carbon dioxide as solvent. DBTA and DPTTA are efficient resolving agents for rac-MA, the best chiral separation being obtained at a molar ratio of 0.25 resolving agent to racemic compound for both resolving agents (ee(E) = 82.5% and ee(E) = 57.9%, respectively). Compared with the two other acids, TA is practically unsuitable for enantiomer separation (ee(E) < 5%). Applying a mixture of one individually active and one ineffective acid in half the equivalent molar ratio, when the acids are in 1:1 ratio in the mixture, the resolution efficiency values obtained exceeded those obtained by using the components individually. Decreasing the molar ratio of resolving agent mixture to 0.25, at which the individual resolving agents give the best chiral separation, the obtained resolution efficiency values did not differ significantly from those expected. The outcome of the resolution process depended only on the amount of the individually active resolving agents in the mixture.  相似文献   

3.
Capillary electrophoresis (CE) coupled to tandem mass spectrometry was applied to the chiral separation of baclofen using sulfobutylether-beta-cyclodextrin chiral selector in partial filling counter current mode. On-line UV detection was simultaneously used. Method optimization was performed by studying the effect of cyclodextrin and BGE concentration as well as sheath liquid composition on analyte migration time and enantiomeric resolution. The cyclodextrin showed stereoselective complexation towards baclofen enantiomers, allowing chiral resolution at low concentration. The CE capillary protrusion from the ESI needle relevantly affected the chiral resolution and the analyte migration time. Complete enantiomeric separation was obtained by using 0.25 M formic acid BGE containing 1.75 mM of chiral selector and water/methanol (30:70, v/v) 3% formic acid as sheath liquid. The method exhibited a LOD of 0.1 microg/mL (racemic concentration) in MS3 product ion scan mode of detection and was applied to the analysis of racemic baclofen in pharmaceutical formulations.  相似文献   

4.
This study presents the chiral resolution of flurbiprofen enantiomers by preparative liquid chromatography using the simulated moving bed (SMB) technology. Flurbiprofen enantiomers are widely used as nonsteroidal anti‐inflammatory drugs, and although demonstrate different therapeutic actions, they are still marketed as a racemic mixture. The results presented here clearly show the importance of the selection of the proper solvent composition for the preparative separation of flurbiprofen enantiomers. Chiral SMB separation is carried out using a laboratory‐scale unit (the FlexSMB‐LSRE®) with six columns, packed with the Chiralpak AD® stationary phase (20 μm). Results presented include the experimental measurement of equilibrium and kinetic data for two very different solvent compositions, a traditional high hydrocarbon content [10%ethanol/90%n‐hexane/0.01% trifluoroacetic acid (TFA)] and a strong polar organic composition (100%ethanol/0.01%TFA). Experimental data, obtained using the two mobile phase compositions, are used to predict and optimize the SMB operation. After selecting 10%ethanol/90%n‐hexane/0.01%TFA as the most appropriate solvent composition, three feed concentrations of racemic flurbiprofen were considered. Using 40 g/l of racemic flurbiprofen feed solution, the purities for both outlet streams were above 99.4%, the productivity was 13.1 gfeed/(Lbed h), and a solvent consumption of 0.41 Lsolvent/gfeed was achieved. Chirality, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
A liquid emulsion membrane process for the separation of amino acids   总被引:3,自引:0,他引:3  
The method of using liquid emulsion membranes featuring the cation carrier D2EHPA [di-(2-ethylhexyl) phosphoric acid] for the separation of L-phenylalanine is examined. Results from experiments performed under various conditions are discussed and an optimal condition for separation is determined. The selectivity of the liquid emulsion membrane system is discussed. The effects of impurities such as sodium chloride, glucose, lactic acid, and L-tryptophan on the transport of L-phenylalanine are evaluated. It is shown that the liquid emulsion membrane system is a potential operation not only to separate L-phenylalanine but also concentrate it with great efficiency.  相似文献   

6.
Praziquantel (PZQ) composes a regular medicine available in a tablet form to fight schistosomiasis and just half of its mass is composed by the active principle (L‐PZQ), the other half, D‐PZQ, is frequently associated to a strong bitter taste. Moreover, optically pure L‐PZQ derivatives could be used in studies about adult and juvenile worms' resistance. Nowadays, these studies use racemic PZQ (rac‐PZQ) as starting point. The D‐PZQ, which would be discarded, could be racemized, coming back as feed concentration in the process. The present work aims to get L‐PZQ and D‐PZQ with high optical purities (more than 97%) and productivity (more than 253 g kgads?1 day?1) towards semipreparative scale for researches involving L‐PZQ, L‐PZQ derivatives, and D‐PZQ racemization. In order to achieve this goal, a built‐in‐house simulated moving bed chromatographic unit with the cellulose tris (3‐chloro‐4‐methylphenylcarbamate) (Chiralcel OZ) as chiral stationary phase (CSP) was used to investigate different scenarios of separation according to a well‐known design method called triangle theory. In all scenarios investigated, at least one of the outlet streams presented high optically purity for one of the enantiomers. Comparison with literature showed superior performance of our unit even at racemic mixture concentrations that were 10 times lower than the racemic concentrations found in literature.  相似文献   

7.
Kosaka M  Watanabe M  Harada N 《Chirality》2000,12(5-6):362-365
Substituted benzylic alcohols were enantioresolved by the chiral phthalic acid method as follows; 1) esterification of racemic alcohols with chiral phthalic acid, 2) separation of a diastereomeric mixture of the esters formed by HPLC on silica gel, and 3) recovery of enantiopure alcohols from the separated esters. The absolute configurations of chiral phthalic acid esters of benzylic alcohols were unambiguously determined by the X-ray crystallography using the campharsultam moiety as the internal standard of absolute configuration.  相似文献   

8.
The preparative‐scale separation of chiral compounds is vitally important for the pharmaceutical industry and related fields. Herein we report a simple approach for rapid preparative separation of enantiomers using functional nucleic acids modified gold nanoparticles (AuNPs). The separation of DL‐tryptophan (DL‐Trp) is demonstrated as an example to show the feasibility of the approach. AuNPs modified with enantioselective aptamers were added into a racemic mixture of DL‐Trp. The aptamer‐specific enantiomer (L‐Trp) binds to the AuNPs surface through aptamer‐L‐Trp interaction. The separation of DL‐Trp is then simply accomplished by centrifugation: the precipitate containing L‐Trp bounded AuNPs is separated from the solution, while the D‐Trp remains in the supernatant. The precipitate is then redispersed in water. The aptamer is denatured under 95 °C and a second centrifugation is then performed, resulting in the separation of AuNPs and L‐Trp. The supernatant is finally collected to obtain pure L‐Trp in water. The results show that the racemic mixture of DL‐Trp is completely separated into D‐Trp and L‐Trp, respectively, after 5 rounds of repeated addition of fresh aptamer‐modified AuNPs to the DL‐Trp mixture solution. Additionally, the aptamer‐modified AuNPs can be repeatedly used for at least eight times without significant loss of its binding ability because the aptamer can be easily denatured and renatured in relatively mild conditions. The proposed approach could be scaled up and extended to the separation of other enantiomers by the adoption of other enantioselective aptamers. Chirality 25:751–756, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
A Micelle-enhanced ultrafiltration (MEUF) separation process was investigated that can potentially be used for large-scale enantioseparations. Copper(II)-amino acid derivatives dissolved in nonionic surfactant micelles were used as chiral selectors for the separation of dilute racemic amino acids solutions. For the alpha-amino acids phenylalanine, phenylglycine, O-methyltyrosine, isoleucine, and leucine good separation was obtained using cholesteryl L-glutamate and Cu(II) ions as chiral selector with an operational enantioselectivity (alpha(op)) up to 14.5 for phenylglycine. From a wide set of substrates, including four beta-amino acids, it was concluded that the performance of this system is determined by two factors: the hydrophobicity of the racemic amino acid, which results in a partitioning of the racemic amino acid over micelle and aqueous solution, and the stability of the diastereomeric complex formed upon binding of the amino acid with the chiral selector. The chiral hydrophobic cholesteryl anchor of the chiral selector also plays an active role in the recognition process, since inversion of the chirality of the glutamate does not yield the reciprocal enantioselectivities. However, if the cholesteryl group is replaced by a nonchiral alkyl chain, reciprocal operational enantioselectivities are found with enantiomeric glutamate selectors.  相似文献   

10.
This work aimed to develop a chiral separation method of ketoconazole enantiomers using electrokinetic chromatography. The separation was achieved using heptakis (2, 3, 6‐tri‐O‐methyl)‐β‐cyclodextrin (TMβCD), a commonly used chiral selector (CS), as it is relatively inexpensive and has a low UV absorbance in addition to an anionic surfactant, sodium dodecyl sulfate (SDS). The influence of TMβCD concentration, phosphate buffer concentration, SDS concentration, buffer pH, and applied voltage were investigated. The optimum conditions for chiral separation of ketoconazole was achieved using 10 mM phosphate buffer at pH 2.5 containing 20 mM TMβCD, 5 mM SDS, and 1.0% (v/v) methanol with an applied voltage of 25 kV at 25 °C with a 5‐s injection time (hydrodynamic injection). The four ketoconazole stereoisomers were successfully resolved for the first time within 17 min (total analysis time was 28 min including capillary conditioning). The migration time precision of this method was examined to give repeatability and reproducibility with RSDs ≤5.80% (n =3) and RSDs ≤8.88% (n =9), respectively. Chirality 27:223–227, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
Zhang P  Polavarapu PL  Huang J  Li T 《Chirality》2007,19(2):99-105
A chiral column, with decaproline as the chiral selector, has broad chiral selectivity. To understand the separation mechanism of this chiral column, multiple spectroscopic techniques, including optical rotation, electronic circular dichroism, infrared absorption and vibrational circular dichroism, have been used here to study the conformation of the decaproline oligomer in isopropanol(IPA)/dichloromethane(DCM) mixtures. These studies indicate that decaproline oligomer adopts polyproline II conformation in IPA/DCM solvent system (0% IPA approximately 100% IPA). Hydrogen bonding interactions between C=O groups of decaproline and IPA molecules increase as the content of IPA in the solvent mixture increases up to 60% and become less significant from then onwards. These spectroscopic observations are found to have a good correlation with the enantiomeric separation of racemic 2,2,2-trifluoro-1-[10-(2,2,2-trifluoro-1-hydroxy-ethyl-anthracen-9-yl]-ethanol by the decaproline column.  相似文献   

12.
5,6- and 6,7-Dihydroxy-2-aminotetralin (ADTN), racemic dopamine receptor agonists, were resolved into their enantiomers by a new chiral HPLC assay. The separation was performed on a Crownpack CR column, which contains an 18-crown-6-type chiral crown ether as a chiral selector. The chiral recognition is based on the compiexation of the protonated primary amino group and the oxygen atoms inside the cavity of the crown ether. The amino group is attached to the chiral centre and therefore these compounds could be resolved. Mobile phase was perchloric acid pH 2.0 and the detection was UV at 200 nm. Resolution factors were 3.1 for 5,6-ADTN and 1.1 for 6,7-ADTN resulting in very low limits of quantitation (<0.1%) of the enantiomer present as impurity. Data on the validation of the assay and on the stability of the column are also reported. © 1993 Wiley-Liss, Inc.  相似文献   

13.
A selective chiral high performance liquid chromatographic (HPLC) method coupled with achiral column was developed and validated to separate and quantify tetrahydropalmatine (THP) enantiomers in dog plasma. Chromatography was accomplished by two steps: (1) racemic THP was separated from biological matrix and collected on a Kromasil C18 column (150 mmx4.6 mm, 5 microm) with the mobile phase acetonitrile-0.1% phosphoric acid solution, adjusted with triethylamine to pH 6.15 (47:53); (2) enantiomeric separation was performed on a Chiralcel OJ-H column (250 mmx4.6 mm, 5 microm) with the mobile phase anhydrous ethanol. The detection wavelength was set at 230 nm. (+)-THP and (-)-THP were separated with a resolution factor (Rs) of at least 1.6 and a separation factor (alpha) greater than 1.29. Linear calibration curves were obtained over the range of 0.025-4 microg/ml in plasma for each of (+)-THP and (-)-THP (R2>0.999) with a limit of detection (LOD) of 0.005 microg/ml and the recovery was greater than 88% for each enantiomer. The relative standard deviation (R.S.D.) and relative error values were less than 10% at upper and lower concentrations. The method was used to determine the pharmacokinetics of THP enantiomers after oral administration of racemic THP. The results presented herein showed the stereoselective disposition kinetics of THP in dogs and were a further contribution to the understanding of the kinetic behavior of THP analogues.  相似文献   

14.
In this study, R(+)‐α‐methylbenzylamine‐modified magnetic chiral sorbent was synthesized and assessed as a new enantioselective solid phase sorbent for separation of mandelic acid enantiomers from aqueous solutions. The chemical structures and magnetic properties of the new sorbent were characterized by vibrating sample magnetometry, transmission electron microscopy, Fourier transform infrared spectroscopy, and dynamic light scattering. The effects of different variables such as the initial concentration of racemic mandelic acid, dosage of sorbent, and contact time upon sorption characteristics of mandelic acid enantiomers on magnetic chiral sorbent were investigated. The sorption of mandelic acid enantiomers followed a pseudo‐second‐order reaction and equilibrium experiments were well fitted to a Langmuir isotherm model. The maximum adsorption capacity of racemic mandelic acid on to the magnetic chiral sorbent was found to be 405 mg g?1. The magnetic chiral sorbent has a greater affinity for (S)‐(+)‐mandelic acid compared to (R)‐(?)‐mandelic acid. The optimum resolution was achieved with 10 mL 30 mM of racemic mandelic acid and 110 mg of magnetic chiral sorbent. The best percent enantiomeric excess values (up to 64%) were obtained by use of a chiralpak AD‐H column. Chirality 27:835–842, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

15.
A novel method for chiral separation of flurbiprofen enantiomers was developed using aqueous two‐phase extraction (ATPE) coupled with biphasic recognition chiral extraction (BRCE). An aqueous two‐phase system (ATPS) was used as an extracting solvent which was composed of ethanol (35.0% w/w) and ammonium sulfate (18.0% w/w). The chiral selectors in ATPS for BRCE consideration were L‐dioctyl tartrate and L‐tryptophan, which were screened from amino acids, β‐cyclodextrin derivatives, and L‐tartrate esters. Factors such as the amounts of L‐dioctyl tartrate and L‐tryptophan, pH, flurbiprofen concentration, and the operation temperature were investigated in terms of chiral separation of flurbiprofen enantiomers. The optimum conditions were as follows: L‐dioctyl tartrate, 80 mg; L‐tryptophan, 40 mg; pH, 4.0; flurbiprofen concentration, 0.10 mmol/L; and temperature, 25 °C. The maximum separation factor α for flurbiprofen enantiomers could reach 2.34. The mechanism of chiral separation of flurbiprofen enantiomers is discussed and studied. The results showed that synergistic extraction has been established by L‐dioctyl tartrate and L‐tryptophan, which enantioselectively recognized R‐ and S‐enantiomers in top and bottom phases, respectively. Compared to conventional liquid–liquid extraction, ATPE coupled with BRCE possessed higher separation efficiency and enantioselectivity without the use of any other organic solvents. The proposed method is a potential and powerful alternative to conventional extraction for separation of various enantiomers. Chirality 27:650–657, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

16.
Preparative enantioseparation of four β‐substituted‐2‐phenylpropionic acids was performed by countercurrent chromatography with substituted β‐cyclodextrin as chiral selectors. The two‐phase solvent system was composed of n‐hexane‐ethyl acetate‐0.10 mol L‐1 of phosphate buffer solution at pH 2.67 containing 0.10 mol L‐1 of hydroxypropyl‐β‐cyclodextrin (HP‐β‐CD) or sulfobutylether‐β‐cyclodextrin (SBE‐β‐CD). The influence factors, including the type of substituted β‐cyclodextrin, composition of organic phase, concentration of chiral selector, pH value of the aqueous phase, and equilibrium temperature were optimized by enantioselective liquid–liquid extraction. Under the optimum separation conditions, 100 mg of 2‐phenylbutyric acid, 100 mg of tropic acid, and 50 mg of 2,3‐diphenylpropionic acid were successfully enantioseparated by high‐speed countercurrent chromatography, and the recovery of the (±)‐enantiomers was in the range of 90–91% for (±)‐2‐phenylbutyric acid, 91–92% for (±)‐tropic acid, 85–87% for (±)‐2,3‐diphenylpropionic acid with purity of over 97%, 96%, and 98%, respectively. The formation of 1:1 stoichiometric inclusion complex of β‐substituted‐2‐phenylpropionic acids with HP‐β‐CD was determined by UV spectrophotometry and the inclusion constants were calculated by a modified Benesi‐Hildebrand equation. The results showed that different enantioselectivities among different racemates were mainly caused by different enantiorecognition between each enantiomer and HP‐β‐CD, while it might be partially caused by different inclusion capacity between racemic solutes and HP‐β‐CD. Chirality 27:795–801, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Two methods for the separation of a new racemic quinolone compound, temafloxacin (TMFX), in biological fluids by high-performance liquid chromatography (HPLC) were studied. The first method was coupling of TMFX to S-(−)-N-1-(2-naphthyl sulfonyl)-2-pyrrolidine carbonylchloride (L-NSPC). The diastereomeric derivatives were separated on a silica gel column. The second method was separation on a chiral stationary phase with an ovomucoid conjugated to aminopropyl silica gel. Two enantiospecific methods gave a satisfactory result concerning both accuracy and precision, and the second method was superior to the first one for chromatographic separation. Furthermore, the pharmacokinetics of the enantiomers after oral administration of racemic TMFX to healthy volunteers was investigated by the second method.  相似文献   

18.
Ghanem A  Al-Humaidi E 《Chirality》2007,19(6):477-484
The chiral recognition ability and solvent versatility of a new chiral stationary phase containing amylose 3,5-dimethylphenylcarabamate immobilized onto silica gel (CHIRALPAK IA) is investigated. Thus, the direct enantioselective separation of a set of racemic N-alkylated barbiturates and 3-alkylated analogs of thalidomide was conducted using different nonstandard solvents as eluent and diluent, respectively in high-performance liquid chromatography (HPLC). The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted as the bonded phase (Chiralpak IA) was superior in chiral recognition and possesses a higher resolving power in most of the reported cases than the coated one (Chiralpak AD). A few racemates were not or poorly resolved on the immobilized Chiralpak IA or the coated Chiralpak AD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IA upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents such as dichloromethane, ethyl acetate, tetrahydrofuran, methyl-tert-butyl ether, and others when used as eluents or as a dissolving agent for the analyte itself. The direct analysis of a real sample extracted from plasma using DCM on Chiralpak IA is also shown.  相似文献   

19.
To facilitate clinical investigation of metabolic acidosis, a high-performance liquid chromatographic method was adapted and validated for the chiral separation of D-(-) and L-(+)-lactic acid in calf feces, rumen fluid and urine. A non-chiral method was also adapted and validated for the separation of pyruvic, acetic and DL-(+/-)-lactic acids in calf feces and DL-(+/-)-lactic and pyruvic acids in rumen fluid. Separation and quantification were achieved using a reversed phase sulphonated polystyrenedivinylbenzene analytical column for pyruvic, acetic and racemic lactic acids and by a 3 microm octadecylsilane (ODS) packed analytical column coated with N,N-dioctyl-L-alanine as the chiral selector for the separation of lactic acid enantiomers with Cu(II)-containing eluents by stereoselective ligand exchange chromatography. Endogenous analytes were present in validation samples over a range of concentrations (0.2-14.8 mmol/l). For the stereoselective assay, mean intra-day accuracy ranged from 90.6 to 108.4% and intra-day precision from 0.3 to 13.8%. For the non-stereoselective assay, mean intra-day accuracy ranged from 90.4 to 108.8% and intra-day precision from 1.5 to 11.1%. The limit of quantitation was 1.0 mmol/l for D- and L-lactic acid, 0.06125 mmol/l for pyruvic acid, 1.0 mmol/l for DL-lactic acid and 1 mmol/l for acetic acid. These assays can be used to study the role of the gastrointestinal tract and kidney in metabolic acidosis.  相似文献   

20.
The method of reactive extraction with di-(2-ethylhexyl)phosphoric acid (D2EHPA) for the separation of a range of amino acids is studied. The results obtained on the individual reactive extraction indicated the possibility of the amino acids selective separation as a function of the pH value of aqueous solution and the acidic or basic character of each amino acid. Thus, using multistage extraction, the total separation of the following amino acids groups has been performed: neutral amino acids (l-glycine, l-alanine, l-tryptophan) at pH 5–5.5 (nine extraction stages), basic amino acids (l-lysine, l-arginine) and l-cysteine at pH 4–4.5 (ten extraction stages), l-histidine at pH 3–3.5 (five extraction stages), and acidic amino acids (l-aspartic acid, l-glutamic acid) at pH 2–2.5 (three extraction stages).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号