首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The commercial production of chemicals and fuels from lignocellulosic residues by enzymatic means still requires considerable research on both the technical and economic aspects. Two technical problems that have been identified as requiring further research are the recycle of the enzymes used in hydrolysis and the reuse of the re calcitrant cellulose remaining after incomplete hydrolysis. Enzyme recycle is required to lower the cost of the enzymes, while the reuse of the spent cellulose will lower the feedstock cost. The conversion process studied was a combined enzymatic hydrolysis and fermentation (CHF) procedure that utilized the cellulolytic enzymes derived from the fungus Trichoderma harzianum E58 and the yeast Saccharomyces cerevisiae. The rate and extent of hydrolysis and ethanol production was monitored as was the activity and hydrolytic potential of the enzymes remaining in the filtrate after the hydrolysis period. When a commercial cellulose was used as the substrate for a routine 2-day CHF process, 60% of the original treated, water-extracted aspenwood was used as the substrate, only 13% of the original filter paper activity was detected after a similar procedure. The combination of 60% spent enzymes with 40% fresh enzymes resulted in the production of 30% less reducing sugars than the original enzyme mixture. Since 100% hydrolysis of the cellulose portion is seldom accomplished in an enzymatic hydrolysis pro cess, the residual cellulose was used as a substrate for the growth of T. harzianum E58 and production of celulolytic enzymes. The residue remaining after the CHF process was used as a substrate for the production of the cellulolytic enzymes. The production of enzymes from the residue of the Solka Floc hydrolysis was greater than the production of enzymes from the original Solka Floc.  相似文献   

2.
A major strategic goal in making ethanol from lignocellulosic biomass a cost-competitive liquid transport fuel is to reduce the cost of production of cellulolytic enzymes that hydrolyse lignocellulosic substrates to fermentable sugars. Current production systems for these enzymes, namely microbes, are not economic. One way to substantially reduce production costs is to express cellulolytic enzymes in plants at levels that are high enough to hydrolyse lignocellulosic biomass. Sugar cane fibre (bagasse) is the most promising lignocellulosic feedstock for conversion to ethanol in the tropics and subtropics. Cellulolytic enzyme production in sugar cane will have a substantial impact on the economics of lignocellulosic ethanol production from bagasse. We therefore generated transgenic sugar cane accumulating three cellulolytic enzymes, fungal cellobiohydrolase I (CBH I), CBH II and bacterial endoglucanase (EG), in leaves using the maize PepC promoter as an alternative to maize Ubi1 for controlling transgene expression. Different subcellular targeting signals were shown to have a substantial impact on the accumulation of these enzymes; the CBHs and EG accumulated to higher levels when fused to a vacuolar-sorting determinant than to an endoplasmic reticulum-retention signal, while EG was produced in the largest amounts when fused to a chloroplast-targeting signal. These results are the first demonstration of the expression and accumulation of recombinant CBH I, CBH II and EG in sugar cane and represent a significant first step towards the optimization of cellulolytic enzyme expression in sugar cane for the economic production of lignocellulosic ethanol.  相似文献   

3.
Plant cell wall-degrading enzymes produced by microorganisms possess important biotechnological applications, including biofuel production. Some anaerobic bacteria are able to produce multienzymatic complexes called cellulosomes while filamentous fungi normally secrete individual hydrolytic enzymes that act synergistically for polysaccharide degradation. Here, we present evidence that the fungus Trichoderma harzianum, cultivated in medium containing the agricultural residue sugarcane bagasse, is able to secrete multienzymatic complexes. The T. harzianum secretome was firstly analyzed by 1D-BN (blue native)-PAGE that revealed several putative complexes. The three most intense 1D-BN-PAGE bands, named complexes [I], [II], and [III], were subsequently subjected to tricine SDS-PAGE that demonstrated that they were composed of smaller subunits. Zymographic assays were performed using 1D-BN-PAGE and 2D-BN/BN-PAGE demonstrating that the complexes bore cellulolytic and xylanolytic activities. The complexes [I], [II], and [III] were then trypsin digested and analyzed separately by LC-MS/MS that revealed their protein composition. Since T. harzianum has an unsequenced genome, a homology-driven proteomics approach provided a higher number of identified proteins than a conventional peptide-spectrum matching strategy. The results indicate that the complexes are formed by cellulolytic and hemicellulolytic enzymes and other proteins such as chitinase, cutinase, and swollenin, which may act synergistically to degrade plant cell wall components.  相似文献   

4.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

5.
The bioconversion of cellulose and hemicellulose substrates to 2,3-butanediol by a sequential coculture approach was investigated with the cellulolytic fungus Trichoderma harzianum E58 and the fermentative bacterium Klebsiella pneumoniae. Vogel medium optimal for the production of the cellulolytic and xylanolytic enzymes of the fungus was found to be inhibitory to butanediol fermentation. This inhibition appeared to be due to a synergistic effect of various ingredients, particularly the salts, present in the fungal medium. The removal or replacement of such ingredients from Vogel medium led to the relief of fermentation inhibition, but the treatments also resulted in a significant decrease in fungal enzyme production. Resting cells of K. pneumoniae could be used for butanediol production in the fungal medium, indicating that the inhibitory effect on solvent production under such conditions was due to the indirect result of growth inhibition of the bacterial cells. The resting-cell approach could be combined with a fed-batch system for the direct conversion of 8 to 10% (wt/vol) of Solka-Floc or aspenwood xylan to butanediol at over 30% of the theoretical conversion efficiencies.  相似文献   

6.
Trichoderma harzianum is an effective biocontrol agent of several important plant pathogenic fungi. This Trichoderma species attacks other fungi by secreting lytic enzymes, including beta-1,3-glucanase and chitinolytic enzymes. Superior biocontrol potential may then be found in strains having a high capacity to produce these enzymes. We have therefore evaluated the capacity of six unidentified Trichoderma spp. isolates to produce chitinolytic enzymes and beta-1,3-glucanases in comparison with T. harzianum 39.1. All six isolates demonstrated substantial enzyme activity. However, while the isolates hereafter called T2, T3, T5, and T7 produced lower amounts of enzymes, the activity of isolates T4 and T6 were 2-3 fold higher than that produced by T. harzianum 39.1. A chitinase produced by the T6 isolate was purified by a single ion-exchange chromatography step and had a molecular mass of 46 kDa. The N-terminal amino-acid sequence showed very high homology with other fungal chitinases. Its true chitinase activity was demonstrated by its action on chitin and the failure to hydrolyze laminarin and p-nitrophenyl-beta-N-acetylglucosaminide. The hydrolytic action of the purified chitinase on the cell wall of Sclerotium rolfsii was convincingly shown by electron microscopy studies. However, the purified enzyme had no effect on the cell wall of Rhizoctonia solani.  相似文献   

7.
Type C-4 strain of Trichoderma harzianum was isolated as a microorganism with high cellulolytic activity. Beta-glucosidase is involved in the last step of cellulose saccharification by degrading cellobiose to glucose, and plays an important role in the cellulase enzyme system with a synergic action with endoglucanase and cellobiohydrolase for cellulose degradation. Beta-glucosidase from T. harzianum type C-4 was purified to homogeneity through Sephacryl S-300, DEAE-Sephadex A-50, and Mono P column chromatographies. It was a single polypeptide with the molecular mass of 75,000 by SDS-PAGE. The enzyme was very active at pH 5.0 and 45 degrees C. No significant inhibition was observed in the presence of metal ions, thiol reagents, or EDTA. The enzyme was stable in the presence of 5% ox gall and digestive enzymes. p-Nitrophenyl-beta-D-cellobioside worked as a substrate for the enzyme as much as p-nitrophenyl-beta-glucopyranoside. Glucose and gluconolactone showed competitive inhibition with a Ki of 1 mM and 1.8 microM, respectively, while galactose, mannose, and xylose did not inhibit the enzyme significantly.  相似文献   

8.
Culture filtrates of Trichoderma viride and Trichoderma harzianum were inhibitory of Fusarium moniliforme and, to a lesser extent, Aspergillus flavus. The degree of inhibition was, however, dependent on the carbon or nitrogen source incorporated into the medium. Scanning electron microscopy revealed the development of abnormal fruiting structures on exposure to some Trichoderma culture filtrate, while macroscopically, growth restriction and, in the case of A. flavus, altered colony colouration were observed. Based on the results of inverted colony culture, it would appear that some isolates of Trichoderma produce inhibitory volatile compounds. The production of possible antibiotics was also demonstrated. The aggressive behaviour (towards A. flavus and F. moniliforme) demonstrated by Trichoderma spp. may be partly explained by the liberation of extracellular enzymes by these fungi. An isolate of T. viride exhibited amylolytic, pectinolytic, proteolytic and cellulolytic activity. Based on the results of the present investigation, Trichoderma spp. are potential candidates for biocontrol of some mycotoxin-producing fungi, but there exists some doubt as to their osmotolerance within the air-dry seed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
In a previous study we showed that the fusion of the cellulose-binding domain (CBD2) fromTrichoderma reesei cellobiohydrolase II to a β-glucosidase (BGL1) enzyme fromSaccharomycopsis fibuligera significantly hindered its expression and secretion inSaccharomyces cerevisiae. This suggests that the possible low secretion of heterologous cellulolytic enzymes inS. cerevisiae could be attributed to the presence of a cellulose-binding domain (CBD) in these enzymes. The aim of this study was to increase the extracellular production of the chimeric CBD2-BGL1 enzyme (designated CBGL1) inS. cerevisiae. To achieve this, CBGL1 was used as a reporter enzyme for screening mutagenisedS. cerevisiae strains with increased ability to secrete CBD-associated enzymes such as cellulolytic enzymes. A mutant strain ofS. cerevisie, WM91-CBGL1, which exhibited up to 200 U L?1 of total activity, was isolated. Such activity was approximately threefold more than that of the parental host strain. Seventy-five per cent of the activity was detected in the extracellular medium. The mutant strain transformed with theT. resei CBH2 gene produced up to threefold more cellobiohydrolase enzyme than the parental strain, but with 50% of the total activity retained intracellularly. The cellobiohydrolase enzymes from the parent and mutant strains were partially purified and the characteristic properties analysed.  相似文献   

10.
Trichoderma harzianum secretes alpha-1,3-glucanases when it is grown on polysaccharides, fungal cell walls, or autoclaved mycelium as a carbon source (simulated antagonistic conditions). We have purified and characterized one of these enzymes, named AGN13.1. The enzyme was monomeric and slightly basic. AGN13.1 was an exo-type alpha-1,3-glucanase and showed lytic and antifungal activity against fungal plant pathogens. Northern and Western analyses indicated that AGN13.1 is induced by conditions that simulated antagonism. We propose that AGN13.1 contributes to the antagonistic response of T. harzianum.  相似文献   

11.
Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulaseproducing fungi were selected in a first screening step followed by a second step to isolate the best enzymeproducer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-beta-1,4 glucanase (EG), and endo-beta-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.  相似文献   

12.
The filamentous fungus Trichoderma reesei is a potent cellulase producer and the best-studied cellulolytic fungus. A lot of investigations not only on glycoside hydrolases produced by T. reesei, but also on the machinery controlling gene expression of these enzyme have made this fungus a model organism for cellulolytic fungi. We have investigated the T. reesei strain including mutants developed in Japan in detail to understand the molecular mechanisms that control the cellulase gene expression, the biochemical and morphological aspects that could favor this phenotype, and have attempted to generate novel strains that may be appropriate for industrial use. Subsequently, we developed recombinant strains by combination of these insights and the heterologous-efficient saccharifing enzymes. Resulting enzyme preparations were highly effective for saccharification of various biomass. In this review, we present some of the salient findings from the recent biochemical, morphological, and molecular analyses of this remarkable cellulase hyper-producing fungus.  相似文献   

13.
Cryptococcus sp. S-2 carboxymethyl cellulase (CSCMCase) is active in the acidic pH and lacks a binding domain. The absence of the binding domain makes the enzyme inefficient against insoluble cellulosic substrates. To enhance its binding affinity and its cellulolytic activity to insoluble cellulosic substrates, cellulose binding domain (CBD) of cellobiohydrolase I (CBHI) from Trichoderma reesei belonging to carbohydrate binding module (CBM) family 1 was fused at the C-terminus of CSCMCase. The constructed fusion enzymes (CSCMCase-CBD and CSCMCase-2CBD) were expressed in a newly recombinant expression system of Cryptococcus sp. S-2, purified to homogeneity, and then subject to detailed characterization. The recombinant fusion enzymes displayed optimal pH similar to those of the native enzyme. Compared with rCSCMCase, the recombinant fusion enzymes had acquired an increased binding affinity to insoluble cellulose and the cellulolytic activity toward insoluble cellulosic substrates (SIGMACELL® and Avicel) was higher than that of native enzyme, confirming the presence of CBDs improve the binding and the cellulolytic activity of CSCMCase on insoluble substrates. This attribute should make CSCMCase an attractive applicant for various application.  相似文献   

14.
A group I Bacillus strain, DLG, was isolated and characterized as being most closely related to Bacillus subtilis. When grown on any of a variety of sugars, the culture supernatant of this isolate was found to possess cellulolytic activity, as demonstrated by degradation of trinitrophenyl-carboxymethyl cellulose. Growth in medium containing cellobiose or glucose resulted in the greatest production of cellulolytic activity. The cellulolytic activity was not produced until the stationary phase of growth, and the addition of glucose or cellobiose to a culture in this phase had no apparent effect on enzyme production. Fractionation of the culture supernatant showed that the molecular weight of the enzymatic activity was less than 100,000. Maximum cellulolytic activity in assays was observed at pH 4.8 and at 58C, although maximum thermal stability of the activity. Kinetic experiments suggested that more than one enzyme was acting upon trinitrophenyl-carboxymethyl cellulose. Exocellular protein produced by this Bacillus isolate showed roughly one-fifth the cellulolytic activity displayed by Trichoderma reesei C30 on noncrystalline, cellulosic substrates. In contrast to T. reesei cellulase, the Bacillus enzymatic activity showed no ability to degrade crystalline forms of cellulose, nor was cellobiase activity detectable.  相似文献   

15.
A group I Bacillus strain, DLG, was isolated and characterized as being most closely related to Bacillus subtilis. When grown on any of a variety of sugars, the culture supernatant of this isolate was found to possess cellulolytic activity, as demonstrated by degradation of trinitrophenyl-carboxymethyl cellulose. Growth in medium containing cellobiose or glucose resulted in the greatest production of cellulolytic activity. The cellulolytic activity was not produced until the stationary phase of growth, and the addition of glucose or cellobiose to a culture in this phase had no apparent effect on enzyme production. Fractionation of the culture supernatant showed that the molecular weight of the enzymatic activity was less than 100,000. Maximum cellulolytic activity in assays was observed at pH 4.8 and at 58C, although maximum thermal stability of the activity. Kinetic experiments suggested that more than one enzyme was acting upon trinitrophenyl-carboxymethyl cellulose. Exocellular protein produced by this Bacillus isolate showed roughly one-fifth the cellulolytic activity displayed by Trichoderma reesei C30 on noncrystalline, cellulosic substrates. In contrast to T. reesei cellulase, the Bacillus enzymatic activity showed no ability to degrade crystalline forms of cellulose, nor was cellobiase activity detectable.  相似文献   

16.
Saratale GD  Oh SE 《Biodegradation》2011,22(5):905-919
A novel cellulolytic bacterium was isolated from the forest soil of KNU University campus. Through 16S rRNA sequence matching and morphological observation it was identified as Nocardiopsis sp. KNU. This strain can utilize a broad range of cellulosic substrates including: carboxymethyl cellulose (CMC), avicel, xylan, cellobiose, filter paper and rice straw by producing a large amount of thermoalkalotolerant endoglucanase, exoglucanase, xylanase and glucoamylase. Optimal culture conditions (Dubos medium, 37°C, pH 6.5 and static condition) for the maximal production of the cellulolytic enzymes were determined. The activity of cellulolytic and hemicelluloytic enzymes produced by this strain was mainly present extracellularly and the enzyme production was dependent on the cellulosic substrates used for the growth. Effect of physicochemical conditions and metal additives on the cellulolytic enzymes production were systematically investigated. The cellulases produced by Nocardiopsis sp. KNU have an optimal temperature of 40°C and pH of 5.0. These cellulases also have high thermotolerance as evidenced by retaining 55–70% activity at 80°C and pH of 5.0 and alkalotolerance by retaining >55% of the activity at pH 10 and 40°C after 1 h. The efficiency of fermentative conversion of the hydrolyzed rice straw by Saccharomyces cerevisiae (KCTC-7296) resulted in 64% of theoretical ethanol yield.  相似文献   

17.
The effect of different cellulosic growth substrates on the production of cellulolytic enzymes by Trichoderma reesei was investigated. It was observed that growth on Avicel, Solka Floc and wheat straw produced different pH/time profiles in cultures. Over a range of controlled pH it was demonstrated that the production of cellulolytic and xylanolytic activity by T. reesei is dependent on culture pH and the type of growth substrate. The effect of pH on enzyme production varies with the nature of the growth substrate. Furthermore, it was shown that the optimum culture pH and growth substrate for the production of enzyme preparations for the extensive saccharification of cellulosic materials depends on the type of material to be saccharified.  相似文献   

18.
Extracellular proteases secreted by the filamentous fungus Trichoderma harzianum have been identified. A proteinase active towards Z-Ala-Ala-Leu-pNa--the substrate of subtilisin-like proteases--dominated in the culture medium. This proteinase is synthesized de novo in response to addition of a protein substrate to the medium. Changing the carbohydrate in the culture medium changed the quantitative and qualitative spectrum of secreted enzymes. The most active extracellular proteinase of Trichoderma harzianum was purified 322-foldfrom the culture medium and obtained with a yield of 7.2%. The molecular mass of this proteinase is 73 kD and its pI is 5.35. The isolated enzyme has two distinct activity maxima, at pH 7.5 and 10.0, and is stable in the pH range 6.0-11.0. The temperature optimum for enzyme activity is 40 degrees C at pH 8. 0. The proteinase is stable up to 45-50 degrees C (depending on the substrate used). Calcium ions stabilized the enzyme at 55-60 degrees C. According to data on the study of functional groups of the active center and substrate specificity, the enzyme isolated from the culture medium of Trichoderma harzianum is a subtilisin-like serine proteinase.  相似文献   

19.
Overproduction of cellulolytic enzymes through conventional nucleartransformation approaches posed a major challenge as they can potentiallydegrade the cell wall components and thereby affect transgenic plant growth anddevelopment. In this study, we have tested the possibility to over produce analkali-thermostable xylanase gene from Bacillus sp. StrainNG-27 in tobacco plants through chloroplast expression. Our results showed thatthe xylanase expression can reach up to 6% of the total soluble protein, avaluecomparable to high level expression reported for several non-cellulolyticproteins in tobacco chloroplasts. The chloroplast-expressed xylanase retainedits activity even when the leaves were dried under sun or at 42°C, offering flexibility in the agricultural system intransport and storage. The recombinant enzyme was purified to homogeneity usingsingle step chromatography with more than 85% recovery. Most importantly,transgenic plants were indistinguishable from the control untransformed plantsin their morphology, growth and in seed setting. These results open up newavenues for large scale production of several other industrially usefulcellulolytic enzymes through chloroplast expression.  相似文献   

20.
A laboratory scale study to evaluate the potentiality of filamentous fungi for the production of cellulolytic enzymes using palm oil mill effluent (POME) as a basal medium was initiated. A total of 25 filamentous fungi in which 16 filamentous fungi were isolated and purified from oil palm industrial residues and 9 strains from laboratory stock were screened using POME with 1% total suspended solids. Trichoderma reesei RUT C-30 was identified as a potential strain for cellulolytic enzyme production as compared to other genera of Aspergillus, Penicillum, Rhizopus, Phanerochaete, Trichoderma and basidiomycete groups. The results showed that T. reesei RUT C-30 gave the highest filter paper cellulase and carboxy methyl cellulase activity of 0.917 and 2.51 U/ml respectively at day 5 of fermentation. Other parameters such as growth formation, pH, filterability and total biosolids were observed to evaluate the bioconversion process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号