首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungal endophytes are micro-organisms that colonize healthy plant tissues without causing disease symptoms. They are described as plant growth and disease resistance promoters and have shown antimicrobial activity. The spatial-temporal distribution of endophytic communities in olive cultivars has been poorly explored. This study aims to investigate the richness and diversity of endophytic fungi in different seasons and sites, within the Alentejo region, Portugal. Additionally, and because the impact of some pathogenic fungi (e.g. Colletotrichum spp.) varies according to olive cultivars; three cultivars, Galega vulgar, Cobrançosa and Azeiteira, were sampled. 1868 fungal isolates were identified as belonging to 26 OTUs; 13 OTUs were identified to the genera level and 13 to species level. Cultivar Galega vulgar and season autumn showed significant higher values in terms of endophytic richness and diversity. At site level, Elvas showed the lowest fungal richness and diversity of fungal endophytes. This study reinforces the importance of exploring the combined spatio-temporal distribution of the endophytic biodiversity in different olive cultivars. Knowledge about endophytic communities may help to better understand their functions in plants hosts, such as their ecological dynamics with pathogenic fungi, which can be explored for their use as biocontrol agents.  相似文献   

2.
Various types of organisms, mainly fungi and bacteria, live within vegetal organs and tissues, without causing damage to the plant. These microorganisms, which are called endophytes, can be useful for biological control and plant growth promotion; bioactive compounds from these organisms may have medical and pharmaceutical applications. Trichilia elegans (Meliaceae) is a native tree that grows abundantly in several regions of Brazil. Preparations using the leaves, seeds, bark, and roots of many species of the Meliaceae family have been widely used in traditional medicine, and some members of the Trichilia genus are used in Brazilian popular medicine. We assessed the diversity of endophytic fungi from two wild specimens of T. elegans, collected from a forest remnant, by sequencing ITS1-5.8S-ITS2 of rDNA of the isolates. The fungi were isolated and purified; 97 endophytic fungi were found; they were separated into 17 morpho-groups. Of the 97 endophytic fungi, four genera (Phomopsis, Diaporthe, Dothideomycete, and Cordyceps) with 11 morpho-groups were identified. Phomopsis was the most frequent genus among the identified endophytes. Phylogenetic analysis showed two major clades: Sordariomycetes, which includes three genera, Phomopsis, Diaporthe, and Cordyceps, and the clade Dothideomycetes, which was represented by the order Pleosporales.  相似文献   

3.
《Phytomedicine》2014,21(4):534-540
Many endophytic fungi have been reported with the biosynthetic potential to produce same or similar metabolites present in host plants. The adaptations that might have acquired by these fungi as a result of the long-term association with their host plants can be the possible basis of their biosynthetic potential. The bioactive compounds originated from endophytes are currently explored for their potential applications in pharmaceutical, agriculture and food industries. Piper nigrum, a plant of the Piperaceae is very remarkable because of the presence of the alkaloid piperine. Piperine has been reported to have broad bioactive properties ranging from antimicrobial, antidepressant, anti-inflammatory, antioxidative to anticancer activities. Interestingly, piperine also plays a vital role in increasing the bioavailability of many drugs which again is a promising property. The current study was carried out to identify piperine producing endophytic fungus from Piper nigrum L. By screening various endophytic fungi, the isolate which was identified as member of Colletotrichum gloeosporioides was found to have the ability to form piperine and was confirmed by HPLC and LCMS. Considering the broad bioactive potential of piperine, the piperine producing fungi identified in the study can expect to have much industrial potential.  相似文献   

4.
为研究北柴胡种子内生菌的群落结构与多样性.采用Illumina Miseq高通量测序技术,分别对山西(BC_1)、黑龙江(BC_2)、河北(BC_3)和内蒙古(BC_4)的四个产地(4份)北柴胡种子的16S RNA V3-V4区和ITS1区扩增片段进行测序,并对内生细菌和内生真菌群落结构和多样性进行分析.结果表明,BC...  相似文献   

5.
Most studies of endophytic symbionts have focused on terrestrial plants, neglecting the ecologically and economically important plants present in aquatic ecosystems. We evaluated the diversity, composition, host and tissue affiliations, and geographic structure of fungal endophytes associated with common aquatic plants in lentic waters in northern Arizona, USA. Endophytes were isolated in culture from roots and photosynthetic tissues during two growing seasons. A total of 226 isolates representing 60 putative species was recovered from 9,600 plant tissue segments. Although isolation frequency was low, endophytes were phylogenetically diverse and species-rich. Comparisons among the most thoroughly sampled species and reservoirs revealed that isolation frequency and diversity did not differ significantly between collection periods, among species, among reservoirs, or as a function of depth. However, community structure differed significantly among reservoirs and tissue types. Phylogenetic analyses of a focal genus (Penicillium) corroborated estimates of species boundaries and informed community analyses, highlighting clade- and genotype-level affiliations of aquatic endophytes with both sediment- and waterborne fungi, and endophytes of proximate terrestrial plants. Together these analyses provide a first quantitative examination of endophytic associations in roots and foliage of aquatic plants and can be used to optimize survey strategies for efficiently capturing fungal biodiversity at local and regional scales.  相似文献   

6.
毛黎娟  冯佳威  章初龙 《菌物学报》2021,40(10):2854-2862
根据ITS、LSU、rpb2tef1tub2多基因系统发育分析,将云南禾本科植物格孢腔菌目的7株内生真菌鉴定归属于格孢腔菌目Pleosporales四绺孢球腔菌科Tetraplosphaeriaceae的四绺孢属Tetraploa和假四绺孢属Pseudotetraploa以及该目下的一个未定属genera incertae sedis。羧甲基纤维素钠培养基和愈创木酚培养基筛选发现四绺孢球腔菌科的2个菌株具有较强的纤维素酶和漆酶活性,而这个未定属的菌株仅具有较弱的纤维素酶活性、无漆酶活性,表明格孢腔菌目的2个内生真菌类群的纤维素和木质素降解能力不同。多重对应分析发现四绺孢球腔菌科真菌的属与寄主、分离来源和地理位置有关联,其中四绺孢属和假四绺孢属可在活的健康植物作为内生真菌存活,并在植物凋落物和土壤中分离得到,推测四绺孢属和假四绺孢属两属为内生和腐生双生态位真菌。因此,进一步深入探究四绺孢球腔菌科内生真菌参与的禾本科植物凋落物的分解将深化我们对禾本科植物内生真菌多样性和生态学功能的认识。  相似文献   

7.
Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.  相似文献   

8.
A potential antioxidant resource: Endophytic fungi from medicinal plants   总被引:3,自引:0,他引:3  
Medicinal plants and their endophytes are important resources for discovery of natural products. Several previous studies have found a positive correlation between total antioxidant capacity (TAC) and total phenolic content (TPC) of many medicinal plant extracts. However, no information is available on whether such a relationship also exists in their endophytic fungal metabolites. We investigated the relationship between TAC and TPC for 292 morphologically distinct endophytic fungi isolated from 29 traditional Chinese medicinal plants. The antioxidant capacities of the endophytic fungal cultures were significantly correlated with their total phenolic contents, suggesting that phenolics were also the major antioxidant constituents of the endophytes. Some of the endophytes were found to produce metabolites possessing strong antioxidant activities. Several bioactive constituents from the fungal cultures and host plant extracts were identified. This investigation reveals that the metabolites produced by a wide diversity of endophytic fungi in culture can be a potential source of novel natural antioxidants.  相似文献   

9.
湖北烟草内生真菌生物多样性和种群结构分析   总被引:1,自引:0,他引:1  
【目的】研究传统药用植物烟草(Nicotiana tabacum L.)内生真菌的丰富度,揭示其种群多样性和群落结构,为烟草内生真菌资源的有效利用奠定基础。【方法】采用组织分离法进行烟草内生真菌的分离,通过形态学和分子生物学相结合的方法进行菌株分类鉴定,以香农多样性指数及相对分离频率反映内生真菌物种多样性及分布规律。【结果】从不同组织部位、不同生长时期、不同海拔样地的健康烟草中共分离获得539株内生真菌,根据r DNA-ITS系统发育分析鉴定为31属73种,香农多样性指数为2.78,曲霉属Aspergillus和镰孢属Fusarium为优势菌群,其相对分离频率分别为22.63%和12.99%。其分布规律表现为茎部内生真菌的多样性高于叶部和根部;随着生育期的延长,内生真菌多样性逐步增多;随着海拔高度升高,内生真菌的种类和数量呈现降低的趋势。【结论】烟草内生真菌具有丰富的生物多样性,其分布表现出组织、生长时期、海拔高度专化性。阐明内生真菌在烟草中的分布规律,可以为烟草内生真菌在农业生产领域的开发应用提供科学依据。  相似文献   

10.
We collected various plant species along an altitudinal gradient ranging from 400 to 2900 m in tropical wet forests of Costa Rica, isolated the associated endophytic fungi, and performed bioinformatic analyses to determine whether changes in altitude are related to changes in their richness and community structure. We showed that the richness of endophytic fungi varied along the altitudinal gradient, being higher in the lowest stratum and decreasing as elevation increases. Each stratum presented a particular composition and diversity of endophytes, although the whole population was characterized by the presence of a few dominant and apparently ubiquitous species, coexisting with a number of less abundant species that presented a more limited host range. These results have important implications for better understanding the role of altitude on the distribution and composition of endophytic fungal populations in tropical forests, but also for maximizing the number and diversity of endophytic isolates in bioprospecting campaigns.  相似文献   

11.
Little is known about the composition and diversity of the bacterial community associated with plant roots. The purpose of this study was to investigate the diversity of bacteria associated with the roots of canola plants grown at three field locations in Saskatchewan, Canada. Over 300 rhizoplane and 220 endophytic bacteria were randomly selected from agar-solidified trypticase soy broth, and identified using fatty acid methyl ester (FAME) profiles. Based on FAME profiles, 18 bacterial genera were identified with a similarity index >0.3, but 73% of the identified isolates belonged to four genera: Bacillus (29%), Flavobacterium (12%), Micrococcus (20%) and Rathayibacter (12%). The endophytic community had a lower Shannon-Weaver diversity index (1.35) compared to the rhizoplane (2.15), and a higher proportion of Bacillus, Flavobacterium, Micrococcus and Rathayibacter genera compared to rhizoplane populations. Genera identified in the endophytic isolates were also found in the rhizoplane isolates. Furthermore, principal component analysis indicated three clusters of bacteria regardless of their site of origin, i.e., rhizoplane or endophytic. In addition, the rhizoplane communities of canola and wheat grown at the same site differed significantly. These results indicate that diverse groups of bacteria are associated with field-grown plants and that endophytes are a subset of the rhizoplane community.  相似文献   

12.
Heavy metal (HM) tolerance, effects on maize growth, heavy metal absorption and accumulation by endophytic Peyronellaea from HM-contaminated and uncontaminated sites were studied to evaluate the hypothesis that endophytes from HM-contaminated sites would enhance HM-tolerance in hosts. Although we found that certain endophytes improved tolerance of plants to heavy metals, isolates from the HM-contaminated site were not more tolerant to heavy metals than those from the uncontaminated site. Pot experiments indicated that growth and heavy metal absorption and accumulation by host plants in HM-polluted environments could be affected by inoculation with HM-tolerant endophytic fungi, and isolates showed a high intraspecific variability. However, there was no significant difference in growth between the maize inoculated with the endophytes from the HM-contaminated site and uncontaminated site under lead stress. Similarly, the HM content in the shoots and roots of maize inoculated with the isolates from the HM-contaminated site was not always higher than that in maize inoculated with endophytes from the uncontaminated site. Therefore, based on our experiments it is suggested that HM-tolerance due to endophytes and their effects on host plant growth and heavy metal absorption and accumulation were not correlated with origin of the endophytes.  相似文献   

13.
Endophytic fungi are ubiquitously distributed in orchids and have a great impact on the host plant. The diversity of endophytic fungi in the medicinal orchid Dendrobium loddigesii Rolfe was investigated and their bioactivities in microbe and plant growth were explored here. Endophytic fungi were identified by using morphological and molecular biological methods. Antimicrobial activity was determined by a standard disk assay. Activity in promoting plant growth was confirmed by root inoculation of endophytic fungi in seedling tray and pot experiments. Overall, 48 isolates were isolated from D. loddigesii and identified to belong to 18 genera, with Fusarium and Acremonium being the most dominant populations. A total of 17 isolates belonging to 9 genera were screened for their antimicrobial activity, and Fusarium spp., 8 of the 17 isolates, was also the dominant population. In the seedling tray experiment, two isolates, one of Fusarium named DL26 and the other of Pyrenochaeta named DL351, were shown to enhance plant growth in alder bark–humus medium, and the latter displayed weak activity against Bacillus subtilis (As 1.308) and Aspergillus fumigatus (As 3.2910). In the pot experiment, after inoculation of DL26 and DL351, five out of seven media were fit for plant-endophyte symbionts. Medium #1 of red brick fragments and sphagna was optimal in accelerating plant growth. In conclusion, a great diversity of endophytic fungi in D. loddigesii was first confirmed in a considerable proportion of antimicrobial isolates. Furthermore, two endophytes exhibited the ability to enhance plant growth although their activities were influenced by the growth media.  相似文献   

14.
Rubia plants are one of the most important plant resources possessing significant commercial and medicinal values. Plant endophytes could benefit their host plants in different ways. Rubiaceae-type cyclopeptides (RAs), mainly isolated from Rubia plants, have attracted considerable attentions for their distinctive bicyclic structures and significant antitumor activities, but their contents in plants are low. The aim of this study is to investigate the diversity of endophytic fungi in Rubia plants and their potential for production of RAs. In this work, 143 endophytic fungi isolates were obtained from two Rubia plants. Phylogenetic analysis was performed based on the ITS rDNA sequences, and the isolates were classified into 29 genera. Among them, four endophytic fungal strains were found to produce anti-tumour RAs by LC-MS/MS analysis. This work successfully provides valuable knowledges of endophytic fungi microbiome in Rubia plants for agricultural and industrial applications, and exploits a new environmental-friendly resource of RAs.  相似文献   

15.
The diversity of endophytic filamentous fungi from leaves of transgenic imidazolinone-tolerant sugarcane plants and its isoline was evaluated by cultivation followed by amplified rDNA restriction analysis (ARDRA) of randomly selected strains. Transgenic and non-transgenic cultivars and their crop management (herbicide application or manual weed control) were used to assess the possible non-target effects of genetically modified sugarcane on the fungal endophytic community. A total of 14 ARDRA haplotypes were identified in the endophytic community of sugarcane. Internal transcribed spacer (ITS) sequencing revealed a rich community represented by 12 different families from the Ascomycota phylum. Some isolates had a high sequence similarity with genera that are common endophytes in tropical climates, such as Cladosporium, Epicoccum, Fusarium, Guignardia, Pestalotiopsis and Xylaria. Analysis of molecular variance indicated that fluctuations in fungal population were related to both transgenic plants and herbicide application. While herbicide applications quickly induced transient changes in the fungal community, transgenic plants induced slower changes that were maintained over time. These results represent the first draft on composition of endophytic filamentous fungi associated with sugarcane plants. They are an important step in understanding the possible effects of transgenic plants and their crop management on the fungal endophytic community.  相似文献   

16.
Although the terrestrial and temperate orchids–fungal biology have been largely explored, knowledge of tropical epiphytic orchids–fungus relationships, especially on the ecological roles imparted by non-mycorrhizal fungal endophytes, is less known. Exploitation of the endophytic fungal mycobiota residing in epiphytic orchid plants may be of great importance to further elucidate the fungal ecology in this special habitat as well as developing new approaches for orchid conversations. The composition of fungal endophytes associated with leaves, stems and roots of an epiphytic orchid (Dendrobium nobile), a famous Chinese traditional medicinal plant, was investigated. Microscopic imaging, culture-dependant method and molecular phylogeny were used to estimate their entity and diversity. Totally, there were 172 isolates, at least 14 fungal genera and 33 different morphospecies recovered from 288 samples. Ascomycetes, coelomycetes and hyphomycetes were three major fungal groups. There were higher overall colonization and isolation rates of endophytic fungi from leaves than from other tissues. Guignardia mangiferae was the dominant fungal species within leaves; while the endophytic Xylariaceae were frequently observed in all plant tissues; Colletotrichum, Phomopsis and Fusarium were also frequently observed. Phylogenetic analysis based on ITS gene revealed the high diversity of Xylariacea fungi and relatively diverse of non-Xylariacea fungi. Some potentially promising beneficial fungi such as Clonostachys rosea and Trichoderma chlorosporum were found in roots. This is the first report concerning above-ground and below-ground endophytic fungi community of an epiphytic medicinal orchid, suggesting the ubiquitous distribution of non-mycorrhizal fungal endophytes in orchid plants together with heterogeneity and tissue specificity of the endophyte assemblage. Possible physiological functions played by these fungal endophytes and their potential applications are also discussed briefly. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Symbiotic associations can be disrupted by disturbance or by changing environmental conditions. Endophytes are fungal and bacterial symbionts of plants that can affect performance. As in more widely known symbioses, acute or chronic stressor exposure might trigger disassociation of endophytes from host plants. We tested this hypothesis by examining the effects of oil exposure following the Deepwater Horizon (DWH) oil spill on endophyte diversity and abundance in Spartina alterniflora – the foundational plant in northern Gulf coast salt marshes affected by the spill. We compared bacterial and fungal endophytes isolated from plants in reference areas to isolates from plants collected in areas with residual oil that has persisted for more than three years after the DWH spill. DNA sequence-based estimates showed that oil exposure shifted endophyte diversity and community structure. Plants from oiled areas exhibited near total loss of leaf fungal endophytes. Root fungal endophytes exhibited a more modest decline and little change was observed in endophytic bacterial diversity or abundance, though a shift towards hydrocarbon metabolizers was found in plants from oiled sites. These results show that plant-endophyte symbioses can be disrupted by stressor exposure, and indicate that symbiont community disassembly in marsh plants is an enduring outcome of the DWH spill.  相似文献   

18.
Many plants support symbiotic microbes, such as endophytic fungi, that can alter interactions with herbivores. Most endophyte research has focused on agronomically important species, with less known about the ecological roles of native endophytes in native plants. In particular, whether genetic variation among endophyte symbionts affects herbivores of plant hosts remains unresolved for most native endophytes. Here, we investigate the importance of native isolates of the endophyte Epichlo? elymi in affecting herbivory of the native grass host, Elymus hystrix. Experimental fungal isolate-plant genotype combinations and endophyte-free control plants were grown in a common garden and exposed to natural arthropod herbivory. Fungal isolates differed in their effects on two types of herbivory, chewing and scraping. Isolates exhibiting greater sexual reproduction were associated with greater herbivore damage than primarily asexual isolates. Endophyte infection also altered patterns of herbivory within plants, with stroma-bearing tillers experiencing up to 30% greater damage than nonstroma-bearing tillers. Results suggest that intraspecific genetic variation in endophytes, like plant genetic variation, can have important 'bottom-up' effects on herbivores in native systems.  相似文献   

19.
Ploch S  Thines M 《Molecular ecology》2011,20(17):3692-3699
Mutualistic interactions of plants with true fungi are a well‐known and widespread phenomenon, which includes mycorrhiza and non‐mycorrhizal endophytes like species of Epichloë. Despite the fact that these organisms intrude into plants, neither strong defence reactions nor the onset of symptoms of disease can be observed in most or even all infested plants, in contrast to endophytic pathogens. Oomycetes are fungal‐like organisms belonging to the kingdom Straminipila, which includes diatoms and seaweeds. Although having evolved many convergent traits with true fungi and occupying similar evolutionary niches, widespread oomycete endophytes are not known to date, although more than 500 endophytic pathogens, including species of the obligate biotrophic genus Albugo, have been described. Here, we report that oomycetes of the genus Albugo are widespread in siliques of natural host populations. A total of 759 plants, encompassing four genera with rare reports of white blister incidents and one with common incidents, were collected from 25 sites in Germany. Nested PCR with species‐specific primers revealed that 5–27% of the hosts with rare disease incidence carried asymptomatic Albugo in their siliques, although only on a single plant of 583 individuals, an isolated pustule on a single leaf could be observed. Control experiments confirmed that these results were not because of attached spores, but because of endophytic mycelium. Vertical inheritance of oomycete infections has been reported for several plant pathogens, and it seems likely that in nature this way of transmission plays an important role in the persistence of asymptomatic endophytic Albugo species.  相似文献   

20.
Trans‐generational adaptation is important to respond rapidly to environmental challenges and increase overall plant fitness. Besides well‐known mechanisms such as epigenetic modifications, vertically transmitted endophytic bacteria might contribute to this process. The cultivable and total endophytic communities of several generations of Arabidopsis thaliana seeds harvested from plants exposed to cadmium (Cd) or not exposed were investigated. The diversity and richness of the seed endophytic community decreased with an increasing number of generations. Aeromicrobium and Pseudonocardia were identified as indicator species in seeds from Cd‐exposed plants, while Rhizobium was abundantly present in both seed types. Remarkably, Rhizobium was the only genus that was consistently detected in seeds of all generations, which suggests that the phenotypic characteristics were more important as selection criteria for which bacteria are transferred to the next plant generation than the actual genera. Production of IAA was an important trait for endophytes from both seed types, while ACC deaminase activity and Cd tolerance were mainly associated with seed endophytes from Cd‐exposed plants. Understanding how different factors influence the seed endophytic community can help us to improve seed quality and plant growth through different biotechnological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号