首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate airway structure-function relations in elastase-induced emphysema in rats. Sprague-Dawley rats were treated intratracheally with 50 IU porcine pancreatic elastase (PPE, n = 8) or saline (controls, n = 6). Six weeks later, lung volumes [functional residual capacity (FRC), residual volume (RV), and total lung capacity (TLC)] and low-frequency impedance parameters (Newtonian resistance, R(N); tissue damping; tissue elastance, H) were measured, and tracheal sounds were recorded during slow inflation to TLC following in vivo degassing. The lungs were fixed and stained for standard morphometry, elastin, and collagen. In the PPE group, FRC and RV were higher [4.53 ± 0.7 (SD) vs. 3.28 ± 0.45 ml; P = 0.003 and 1.06 ± 0.35 vs. 0.69 ± 0.18 ml; P = 0.036, respectively], and H was smaller in the PPE-treated rats than in the controls (1,344 ± 216 vs. 2,178 ± 305 cmH(2)O/l; P < 0.001), whereas there was no difference in R(N). The average number of crackles per inflation was similar in the two groups; however, the crackle size distributions were different and the lower knee of the pressure-volume curves was higher in the PPE group. Microscopic images revealed different alveolar size distributions but similar bronchial diameters in the two groups. The treatment caused a slight but significant decrease in the numbers of alveolar attachments, no difference in elastin and slightly increased mean level and heterogeneity of collagen in the bronchial walls. These results suggest that tissue destruction did not affect the conventionally assessed airway resistance in this emphysema model, whereas the alterations in the recruitment dynamics can be an early manifestation of impaired airway function.  相似文献   

2.
This paper examines potential physiological mechanisms responsible for improvement after lung volume reduction surgery (LVRS). In 25 patients (63 +/- 9 yr; 11 men, 14 women), spirometry [forced expiratory volume in 1 s (FEV(1)) and forced vital capacity (FVC)], lung volumes [residual volume (RV) and total lung capacity (TLC)], small airway resistance, recoil pressures, and respiratory muscle contractility (RMC) were measured before and 4-6 mo after LVRS. Data were interpreted to assess how changes in each component of lung mechanics affect overall function. Among responders (DeltaFEV(1) > or = 12%; 150 ml), improvement was primarily due to an increase in FVC, not to FEV(1)-to-FVC ratio. Among nonresponders, FEV(1), FVC, and RV/TLC did not change after surgery, although recoil pressure increased in both groups. Both groups experienced a reduction in RMC after LVRS. In conclusion, LVRS improves function in emphysema by resizing the lung relative to the chest wall by reducing RV. LVRS does not change airway resistance but decreases RMC, which attenuates the potential benefits of LVRS that are generated by reducing RV/TLC. Among nonresponders, recoil pressure increased out of proportion to reduced volume, such that no increase in vital capacity or improvement in FEV(1) occurred.  相似文献   

3.
To examine the effect of hyperinflation on the volume displaced by diaphragm motion (DeltaVdi), we compared nine subjects with emphysema and severe hyperinflation [residual volume (RV)/total lung capacity (TLC) 0.65 +/- 0.08; mean +/- SD] with 10 healthy controls. Posteroanterior and lateral chest X rays at RV, functional residual capacity, one-half inspiratory capacity, and TLC were used to measure the length of diaphragm apposed to ribcage (Lap), cross-sectional area of the pulmonary ribcage, DeltaVdi, and volume beneath the lung-apposed dome of the diaphragm. Emphysema subjects, relative to controls, had increased Lap at comparable lung volumes (4.3 vs. 1.0 cm near predicted TLC, 95% confidence interval 3.4-5.2 vs. 0-2.1), pulmonary rib cage cross-sectional area (emphysema/controls 1.22 +/- 0.03, P < 0.001 at functional residual capacity), and DeltaVdi/DeltaLap (0.25 vs. 0.14 liters/cm, P < 0.05). During a vital capacity inspiration, relative to controls, DeltaVdi was normal in five (1.94 +/- 0.51 liters) and decreased in four (0.51 +/- 0.40 liters) emphysema subjects, and volume beneath the dome did not increase in emphysema (0 +/- 0.36 vs. 0.82 +/- 0.80 liters, P < 0.05). We conclude that DeltaVdi can be normal in emphysema because 1) hyperinflation is shared between ribcage and diaphragm, preserving Lap, and 2) the diaphragm remains flat during inspiration.  相似文献   

4.
Airway distensibility appears to be unaffected by airway smooth muscle (ASM) tone, despite the influence of ASM tone on the airway diameter-pressure relationship. This discrepancy may be because the greatest effect of ASM tone on airway diameter-pressure behavior occurs at low transpulmonary pressures, i.e., low lung volumes, which has not been investigated. Our study aimed to determine the contribution of ASM tone to airway distensibility, as assessed via the forced oscillation technique (FOT), across all lung volumes with a specific focus on low lung volumes. We also investigated the accompanying influence of ASM tone on peripheral airway closure and heterogeneity inferred from the reactance versus lung volume relationship. Respiratory system conductance and reactance were measured using FOT across the entire lung volume range in 22 asthma subjects and 19 healthy controls before and after bronchodilator. Airway distensibility (slope of conductance vs. lung volume) was calculated at residual volume (RV), functional residual capacity (FRC), and total lung capacity. At baseline, airway distensibility was significantly lower in subjects with asthma at all lung volumes. After bronchodilator, distensibility significantly increased at RV (64.8%, P < 0.001) and at FRC (61.8%, P < 0.01) in subjects with asthma but not in control subjects. The increased distensibility at RV and FRC in asthma were not associated with the accompanying changes in the reactance versus lung volume relationship. Our findings demonstrate that, at low lung volumes, ASM tone reduces airway distensibility in adults with asthma, independent of changes in airway closure and heterogeneity.  相似文献   

5.
Twelve stable adult asthmatics slowly inhaled boluses of He at 20, 40, or 60% vital capacity (VC); these volumes were achieved either by expiring from total lung capacity (TLC) or by inspiring from residual volume (RV). Inspirations were continued to TLC and then were followed by slow expirations to RV while expired He was measured as a function of expired volume. At 20% VC slopes of alveolar plateaus (phase III) were positive, at 40% VC they were flat, and at 60% VC they were negative; at 20 and 60% VC the slopes were steeper than those in normals. When boluses were administered at 40 and 60% VC, He washout curves were independent of lung volume history. However at 20% VC the slope of phase III was significantly less positive when boluses were given after inspiration from RV than after expiration from TLC. In eight subjects, who were given inhaled beta-agonists, slopes of all He washouts decreased and became independent of volume history at 20% VC. We conclude that in asthmatics at low lung volumes the airways that determine ventilation distribution behave as though they have less hysteresis than the lung parenchyma probably due to increased airway tone.  相似文献   

6.
Pharyngeal cross-sectional area in normal men and women   总被引:4,自引:0,他引:4  
Pharyngeal size and the dynamic behavior of the upper airway may be important factors in modulating respiratory airflow. Patients with obstructive sleep apnea are known to have reduced pharyngeal cross-sectional area. However, no systematic measurements of pharyngeal area in healthy asymptomatic subjects are available, in part due to the lack of simple, rapid, and noninvasive measurement techniques. We utilized the acoustic reflection technique to measure pharyngeal cross-sectional area in 24 healthy volunteers (14 males, 10 females). Pharyngeal area was measured during a continuous slow expiration from total lung capacity (TLC) to residual volume (RV). We compared pharyngeal cross-sectional areas in males and females at three lung volumes: TLC, 50% of vital capacity (VC), and RV. In males, pharyngeal areas (means +/- SD) were 6.4 +/- 1.3 cm2 at TLC, 5.4 +/- 0.9 cm2 at 50% VC, and 4.1 +/- 0.8 cm2 at RV. In females, pharyngeal areas were 4.8 +/- 0.6 cm2 at TLC, 4.2 +/- 0.5 cm2 at 50% VC, and 3.7 +/- 0.6 cm2 at RV. The difference in area between males and females was statistically significant at TLC and 50% VC but not at RV. However, when the pharyngeal cross-sectional area was normalized for body surface area, this difference was not significant. In males there was a negative correlation of pharyngeal area with age. We conclude that sex differences in pharyngeal area are related to body size, pharyngeal area shows a similar variation with lung volumes in males and females, and in males pharyngeal area reduces with age.  相似文献   

7.

Background

Histopathological studies on lung specimens from patients with cystic fibrosis (CF) and recent results from a mouse model indicate that emphysema may contribute to CF lung disease. However, little is known about the relevance of emphysema in patients with CF. In the present study, we used computationally generated density masks based on multidetector computed tomography (MDCT) of the chest for non-invasive characterization and quantification of emphysema in CF.

Methods

Volumetric MDCT scans were acquired in parallel to pulmonary function testing in 41 patients with CF (median age 20.1 years; range 7-66 years) and 21 non-CF controls (median age 30.4 years; range 4-68 years), and subjected to dedicated software. The lung was segmented, low attenuation volumes below a threshold of -950 Hounsfield units were assigned to emphysema volume (EV), and the emphysema index was computed (EI). Results were correlated with forced expiratory volume in 1 s percent predicted (FEV1%), residual volume (RV), and RV/total lung capacity (RV/TLC).

Results

We show that EV was increased in CF (457±530 ml) compared to non-CF controls (78±90 ml) (P<0.01). EI was also increased in CF (7.7±7.5%) compared to the control group (1.2±1.4%) (P<0.05). EI correlated inversely with FEV1% (rs=-0.66), and directly with RV (rs=0.69) and RV/TLC (rs=0.47) in patients with CF (P<0.007), but not in non-CF controls. Emphysema in CF was detected from early adolescence (~13 years) and increased with age (rs=0.67, P<0.001).

Conclusions

Our results indicate that early onset emphysema detected by densitometry on chest MDCT is a characteristic pathology that contributes to airflow limitation and may serve as a novel endpoint for monitoring lung disease in CF.  相似文献   

8.
The effects of breathing depth in attenuating induced bronchoconstriction were studied in 12 healthy subjects. On four separate, randomized occasions, the depth of a series of five breaths taken soon (approximately 1 min) after methacholine (MCh) inhalation was varied from spontaneous tidal volume to lung volumes terminating at approximately 80, approximately 90, and 100% of total lung capacity (TLC). Partial forced expiratory flow at 40% of control forced vital capacity (V(part)) and residual volume (RV) were measured at control and again at 2, 7, and 11 min after MCh. The decrease in V(part) and the increase in RV were significantly less when the depth of the five-breath series was progressively increased (P < 0.001), with a linear relationship. The attenuating effects of deep breaths of any amplitude were significantly greater on RV than V(part) (P < 0.01) and lasted as long as 11 min, despite a slight decrease with time when the end-inspiratory lung volume was 100% of TLC. In conclusion, in healthy subjects exposed to MCh, a series of breaths of different depth up to TLC caused a progressive and sustained attenuation of bronchoconstriction. The effects of the depth of the five-breath series were more evident on the RV than on V(part), likely due to the different mechanisms that regulate airway closure and expiratory flow limitation.  相似文献   

9.
We studied the effect of volume history on airway closure in six healthy males ranging from 32 to 67 yr of age. The method used was to compare the regional distribution of 133Xe boluses distributed according to N2O uptake during open-glottis breath-hold maneuvers with the regional distribution of boluses of intravenously injected 133Xe. Measurements were made at two lung volumes, one close to residual volume (RV) and the other just below closing volume. The required volume was reached either by expiring from total lung capacity or by inspiring from RV. Although there was considerable airway closure in the basal regions of the lungs at both lung volumes studied, the degree of airway closure was not dependent on the previous volume history. We conclude that the airways concerned with closure have a volume-pressure hysteresis similar to that of the lung parenchyma. Furthermore in normal humans the volume-pressure hysteresis of the lung is not secondary to airway closure.  相似文献   

10.
In 14 healthy male subjects we studied the effects of rib cage and abdominal strapping on lung volumes, airway resistance (Raw), and total respiratory resistance (Rrs) and reactance (Xrs). Rib cage, as well as abdominal, strapping caused a significant decrease in vital capacity (respectively, -36 and -34%), total lung capacity (TLC) (-31 and -27%), functional residual capacity (FRC) (-28 and -28%), and expiratory reserve volume (-40 and -48%) and an increase in specific airway conductance (+24 and +30%) and in maximal expiratory flow at 50% of control TLC (+47 and +42%). The decrease of residual volume (RV) was significant (-12%) with rib cage strapping only. Abdominal strapping resulted in a minor overall increase in Rrs, whereas rib cage strapping produced a more marked increase at low frequencies; thus a frequency dependence of Rrs was induced. A similar pattern, but with lower absolute values, of Rrs was obtained by thoracic strapping when the subject was breathing at control FRC. Xrs was decreased, especially at low frequencies, with abdominal strapping and even more with thoracic strapping; thus the resonant frequency of the respiratory system was shifted toward higher frequencies. Partitioning Rrs and Xrs into resistance and reactance of lungs and chest wall demonstrated that the different effects of chest wall and abdominal strapping on Rrs and Xrs reflect changes mainly of chest wall mechanics.  相似文献   

11.

Background

In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomography analysis algorithm for quantification of aerated lung volume in mice; an indicator of pulmonary fibrosis and emphysema severity.

Methodology

Mice received an intratracheal instillation of bleomycin (n = 8), elastase (0.25U elastase n = 9, 0.5U elastase n = 8) or saline control (n = 6 for fibrosis, n = 5 for emphysema). A subset of mice was scanned without intervention, to evaluate potential radiation-induced toxicity (n = 4). Some bleomycin-instilled mice were treated with imatinib for proof of concept (n = 8). Mice were scanned weekly, until four weeks after induction, when they underwent pulmonary function testing, lung histology and collagen quantification. Aerated lung volumes were calculated with our automated algorithm.

Principal Findings

Our automated image-based aerated lung volume quantification method is reproducible with low intra-subject variability. Bleomycin-treated mice had significantly lower scan-derived aerated lung volumes, compared to controls. Aerated lung volume correlated with the histopathological fibrosis score and total lung collagen content. Inversely, a dose-dependent increase in lung volume was observed in elastase-treated mice. Serial scanning of individual mice is feasible and visualized dynamic disease progression. No radiation-induced toxicity was observed. Three-dimensional images provided critical topographical information.

Conclusions

We report on a high resolution in vivo micro-computed tomography image analysis algorithm that runs fully automated and allows quantification of aerated lung volume in mice. This method is reproducible with low inherent measurement variability. We show that it is a reliable quantitative tool to investigate experimental lung fibrosis and emphysema in mice. Its non-invasive nature has the unique benefit to allow dynamic 4D evaluation of disease processes and therapeutic interventions.  相似文献   

12.
We studied the relation between changes in pulmonary and systemic hemodynamics to those in the airway resistance, respiratory tissue mechanics, and thoracic gas volume (TGV) following acute hemorrhage and blood reinfusion in rats. Forced oscillation technique was used to measure airway resistance (Raw), respiratory tissue damping, and elastance at baseline and after stepwise 1-ml blood withdrawals up to 5 ml total, followed by stepwise reinfusion up to full restoration. Mean systemic (Pam) and pulmonary arterial pressures and suprarenal aortic blood flow were measured at each step. In supplemental animals, plethysmographic TGV, Pam, and respiratory mechanics measurements were performed. Blood volume loss (BVL) led to proportional decreases in Raw (66.5 ± 8.8 vs. 44.8 ± 9.0 cmH(2)O·s·l(-1) with 5 ml, P < 0.001), Pam, and aortic blood flow. In contrast, tissue damping increased significantly (1,070 ± 91 vs. 1,235 ± 105 cmH(2)O/l, P = 0.009 with 5 ml BVL), whereas tissue elastance did not change significantly. TGV significantly increased with acute BVL (3.7 ± 0.2 vs. 4.2 ± 0.2 ml, P = 0.01). Stepwise reinfusions produced opposite changes in the above parameters, with Raw reaching a higher value than baseline (P = 0.001) upon full volume restoration. Both adrenalin (P = 0.015) and noradrenalin levels were elevated (P = 0.010) after 5-ml blood withdrawal. Our data suggest that the decreases in Raw following BVL may be attributed to the following: 1) an increased TGV enhancing airway parenchymal tethering forces; and 2) an increase in circulating catecholamines. The apparent beneficial effect of a reduction in Raw in acute hemorrhagic shock is counteracted by an increase in dead space and the appearance of peripheral mechanical heterogeneities due to de-recruitment of the pulmonary vasculature.  相似文献   

13.
The double sigmoidal nature of the mouse pressure-volume (PV) curve is well recognized but largely ignored. This study systematically examined the effect of inflating the mouse lung to 40 cm H2O transrespiratory pressure (Prs) in vivo. Adult BALB/c mice were anesthetized, tracheostomized, and mechanically ventilated. Thoracic gas volume was calculated using plethysmography and electrical stimulation of the intercostal muscles. Lung mechanics were tracked during inflation-deflation maneuvers using a modification of the forced oscillation technique. Inflation beyond 20 cm H2O caused a shift in subsequent PV curves with an increase in slope of the inflation limb and an increase in lung volume at 20 cm H2O. There was an overall decrease in tissue elastance and a fundamental change in its volume dependence. This apparent "softening" of the lung could be recovered by partial degassing of the lung or applying a negative transrespiratory pressure such that lung volume decreased below functional residual capacity. Allowing the lung to spontaneously recover revealed that the lung required approximately 1 h of mechanical ventilation to return to the original state. We propose a number of possible mechanisms for these observations and suggest that they are most likely explained by the unfolding of alveolar septa and the subsequent redistribution of the fluid lining the alveoli at high transrespiratory pressure.  相似文献   

14.
We examined the effects of elastase-induced emphysema on lung volumes, pulmonary mechanics, and airway responses to inhaled methacholine (MCh) of nine male Brown Norway rats. Measurements were made before and weekly for 4 wk after elastase in five rats. In four rats measurements were made before and at 3 wk after elastase; in these same animals the effects of changes in end-expiratory lung volume on the airway responses to MCh were evaluated before and after elastase. Airway responses were determined from peak pulmonary resistance (RL) calculated after 30-s aerosolizations of saline and doubling concentrations of MCh from 1 to 64 mg/ml. Porcine pancreatic elastase (1 IU/g) was administered intratracheally. Before elastase RL rose from 0.20 +/- 0.02 cmH2O.ml-1.s (mean +/- SE; n = 9) to 0.57 +/- 0.06 after MCh (64 mg/ml). A plateau was observed in the concentration-response curve. Static compliance and the maximum increase in RL (delta RL64) were significantly correlated (r = 0.799, P less than 0.01). Three weeks after elastase the maximal airway response to MCh was enhanced and no plateau was observed; delta RL64 was 0.78 +/- 0.07 cmH2O.ml-1.s, significantly higher than control delta RL64 (0.36 +/- 0.7, P less than 0.05). Before elastase, increase of end-expiratory lung volume to functional residual capacity + 1.56 ml (+/- 0.08 ml) significantly reduced RL at 64 mg MCh/ml from 0.62 +/- 0.05 cmH2O.ml-1.s to 0.50 +/- 0.03, P less than 0.05.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Tracheal dimensions at total lung capacity (TLC) and residual volume (RV) were analyzed roentgenographically in 17 pairs of male adolescent twins (mean age 16.3 yr; 12 monozygotic pairs and 5 dizygotic pairs). Genetic factors dominated environmental traits in intra- as well as extrathoracic tracheal width at RV. Extrathoracic tracheal width at TLC was also governed by genetic components. Intrathoracic tracheal depth (anteroposterior diameter), length, and cross-sectional area did not seem to be genetically controlled at TLC and RV. Intrathoracic tracheal cross-sectional area increased by 14.4% and became more elliptical from RV to TLC, owing mainly to an increase in tracheal depth (16.7%). Increments from RV to TLC in tracheal depth but not width correlated with increases in lung width, depth, and height. Intrathoracic trachea was elongated 14% in association with increase in lung height from RV to TLC. At TLC, extrathoracic tracheal width was larger than intrathoracic tracheal width, but this dimension did not differ at RV. These results indicate that genetic factors influence, at least at RV, the tracheal rings more strongly than membranous parts. Intrathoracic tracheal depth but not width increases during inspiration in accordance with increase in lung volume. Extrathoracic tracheal width widens more than intrathoracic trachea from RV to TLC.  相似文献   

16.
This study compared the lung volumes and pulmonary functions of older endurance-trained athletes with those of healthy sedentary age-matched controls, young athletes, and young untrained men to determine whether training affects the age-associated changes in these variables. Despite large differences in maximal 02 consumption (VO2max), the older athletes and their sedentary peers had similar values for all pulmonary variables when expressed as absolute values. However, because the older athletes were shorter than the older sedentary men, their vital capacity, total lung capacity (TLC), and forced expiratory volume in 1 s were significantly larger than those of the older sedentary men when normalized for age and height; the average values for maximal voluntary ventilation and residual volume (RV) were also larger in the older athletes when normalized for age and height, but the differences were not significant. The young trained and untrained men did not differ in any of these measures. TLC was the only pulmonary variable that was the same in the young and older men; RV and the RV-to-TLC ratio were larger, whereas all other pulmonary function and volume measures were lower in the older men compared with the younger men. The older athletes were the only group whose lung volumes and pulmonary function measures were all, except for RV, substantially greater than expected based on their age and height. Thus prolonged strenuous endurance training in these older highly trained endurance athletes appears to have altered the decline in pulmonary function and volumes associated with aging.  相似文献   

17.
18.
We hypothesized that structural airway remodeling contributes to airways hyperresponsiveness (AHR) in asthma. Small, medium, and large airways were analyzed by computed tomography in 21 asthmatic volunteers under baseline conditions (FEV1 = 64% predicted) and after maximum response to albuterol (FEV1 = 76% predicted). The difference in pulmonary function between baseline and albuterol was an estimate of AHR to the baseline smooth muscle tone (BSMT). BSMT caused an increase in residual volume (RV) that was threefold greater than the decrease in forced vital capacity (FVC) because of a simultaneous increase in total lung capacity (TLC). The decrease in FVC with BSMT was the major determinant of the baseline FEV1 (P < 0.0001). The increase in RV correlated inversely with the relaxed luminal diameter of the medium airways (P = 0.009) and directly with the wall thickness of the large airways (P = 0.001). The effect of BSMT on functional residual capacity (FRC) controlled the change in TLC relative to the change in RV. When the FRC increased with RV, TLC increased and FVC was preserved. When the relaxed large airways were critically narrowed, FRC and TLC did not increase and FVC fell. With critical large airways narrowing, the FRC was already elevated from dynamic hyperinflation before BSMT and did not increase further with BSMT. FEV1/FVC in the absence of BSMT correlated directly with large airway luminal diameter and inversely with the fall in FVC with BSMT. These findings suggest that dynamic hyperinflation caused by narrowing of large airways is a major determinant of AHR in asthma.  相似文献   

19.
We studied lung mechanics and regional lung function in five young men during restrictive chest strapping. The effects on lung mechanics were similar to those noted by others in that lung elastic recoil increased as did maximum expiratory flow at low lung volumes. Chest strapping reduced the maximum expiratory flow observed at a given elastic recoil pressure. Breathing helium increased maximum expiratory flow less when subjects were strapped than when they were not. These findings indicated that strapping decreased the caliber of airways upstream from the equal pressure point. Regional lung volumes from apex to base were measured with xenon 133 while subjects were seated. The distribution of regional volumes was measured at RV, and at volumes equal to strapped FRC and strapped TLC; no change due to chest strapping was observed. Similarly, the regional distribution of 133Xe boluses inhaled at RV and strapped TLC was unaffected by chest strapping. Closing capacity decreased with chest strapping. We concluded that airway closure decreased during chest strapping and that airway closure was not the cause of the observed increase in elastic recoil of the lung. The combination of decreased slope of the static pressure-volume curve and unchanged regional volumes suggested that strapping increased the apex-to-base pleural pressure gradient.  相似文献   

20.
A tracking impedance estimation technique was developed to follow the changes in total respiratory impedance (Zrs) during slow total lung capacity maneuvers in six anesthetized and mechanically ventilated BALB/c mice. Zrs was measured with the wave-tube technique and pseudorandom forced oscillations at nine frequencies between 4 and 38 Hz during inflation from a transrespiratory pressure of 0-20 cmH2O and subsequent deflation, each lasting for approximately 20 s. Zrs was averaged for 0.125 s and fitted by a model featuring airway resistance (Raw) and inertance, and tissue damping and elastance (H). Lower airway conductance (Glaw) was linearly related to volume above functional residual capacity (V) between 0 and 75-95% maximum V, with a mean slope of dGlaw/dV = 13.6 +/- 4.6 cmH2O-1. s-1. The interdependence of Raw and H was characterized by two distinct and closely linear relationships for the low- and high-volume regions, separated at approximately 40% maximum V. Comparison of Raw with the highest-frequency resistance of the total respiratory system revealed a marked volume-dependent contribution of tissue resistance to total respiratory system resistance, resulting in the overestimation of Raw by 19 +/- 8 and 163 +/- 40% at functional residual capacity and total lung capacity, respectively, whereas the lowest frequency reactance was proportional to H; these findings indicate that single-frequency resistance values may become inappropriate as surrogates of Raw when tissue impedance is changing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号