首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The burden of non-interoperability between on-line genomic resources is increasingly the rate-limiting step in large-scale genomic analysis. BioMOBY is a biological Web Service interoperability initiative that began as a retreat of representatives from the model organism database community in September, 2001. Its long-term goal is to provide a simple, extensible platform through which the myriad of on-line biological databases and analytical tools can offer their information and analytical services in a fully automated and interoperable way. Of the two branches of the larger BioMOBY project, the Web Services branch (MOBY-S) has now been deployed over several dozen data sources worldwide, revealing some significant observations about the nature of the integrative biology problem; in particular, that Web Service interoperability in the domain of bioinformatics is, unexpectedly, largely a syntactic rather than a semantic problem. That is to say, interoperability between bioinformatics Web Services can be largely achieved simply by specifying the data structures being passed between the services (syntax) even without rich specification of what those data structures mean (semantics). Thus, one barrier of the integrative problem has been overcome with a surprisingly simple solution. Here, we present a non-technical overview of the critical components that give rise to the interoperable behaviors seen in MOBY-S and discuss an exemplar case, the PlaNet consortium, where MOBY-S has been deployed to integrate the on-line plant genome databases and analytical services provided by a European consortium of databases and data service providers.  相似文献   

3.
MOTIVATION: As more whole genome sequences become available, comparing multiple genomes at the sequence level can provide insight into new biological discovery. However, there are significant challenges for genome comparison. The challenge includes requirement for computational resources owing to the large volume of genome data. More importantly, since the choice of genomes to be compared is entirely subjective, there are too many choices for genome comparison. For these reasons, there is pressing need for bioinformatics systems for comparing multiple genomes where users can choose genomes to be compared freely. RESULTS: PLATCOM (Platform for Computational Comparative Genomics) is an integrated system for the comparative analysis of multiple genomes. The system is built on several public databases and a suite of genome analysis applications are provided as exemplary genome data mining tools over these internal databases. Researchers are able to visually investigate genomic sequence similarities, conserved gene neighborhoods, conserved metabolic pathways and putative gene fusion events among a set of selected multiple genomes. AVAILABILITY: http://platcom.informatics.indiana.edu/platcom  相似文献   

4.
植物功能基因组学研究进展   总被引:5,自引:0,他引:5  
植物基因组研究已经由以全基因组测序为目标的结构基因组学转向以基因功能鉴定为目标的功能基因组学研究.本简要介绍了植物功能基因组的主要研究方法,如基因表达系列分析法、表达序列标签法、差异表达谱基因芯片法、蛋白质组学分析法以及生物信息学等及其研究现状,并展望了植物功能基因组学的应用前景.  相似文献   

5.
6.
Amino acid changes due to non-synonymous variation are included as annotations for individual proteins in UniProtKB/Swiss-Prot and RefSeq which present biological data in a protein-or gene-centric fashion. Unfortunately, proteome-wide analysis of non-synonymous singlenucleotide variations (nsSNVs) is not easy to perform because information on nsSNVs and functionally important sites are not well integrated both within and between databases and their search engines. We have developed SNVDis that allows evaluation of proteome-wide nsSNV distribution in functional sites, domains and pathways. More specifically, we have integrated human-specific data from major variation databases (UniProtKB, dbSNP and COSMIC), comprehensive sequence feature annotation from UniProtKB, Pfam, RefSeq, Conserved Domain Database (CDD) and pathway information from Protein ANalysis THrough Evolutionary Relationships (PANTHER) and mapped all of them in a uniform and comprehensive way to the human reference proteome provided by UniProtKB/Swiss-Prot. Integrated information of active sites, pathways, binding sites, domains, which are extracted from a number of different sources, provides a detailed overview of how nsSNVs are distributed over the human proteome and pathways and how they intersect with functional sites of proteins. Additionally, it is possible to find out whether there is an over-or under-representation of nsSNVs in specific domains, pathways or user-defined protein lists. The underlying datasets are updated once every 3 months. SNVDis is freely available at http://hive.biochemistry.gwu.edu/tool/snvdis.  相似文献   

7.
This is an interim report on the Functional Genomics Experiment (FuGE) Object Model. FuGE is a framework for creating data standards for high-throughput biological experiments, developed by a consortium of researchers from academia and industry. FuGE supports rich annotation of samples, protocols, instruments, and software, as well as providing extension points for technology specific details. It has been adopted by microarray and proteomics standards bodies as a basis for forthcoming standards. It is hoped that standards developers for other omics techniques will join this collaborative effort; widespread adoption will allow uniform annotation of common parts of functional genomics workflows, reduce standard development and learning times through the sharing of consistent practice, and ease the construction of software for accessing and integrating functional genomics data.  相似文献   

8.
植物功能基因组学研究进展   总被引:9,自引:0,他引:9  
植物功能基因组学是从整体水平研究基因的功能及表达规律的科学。对植物功能基因组学的研究将助于我们对基因功能的理解和对植物性状的定性改造和利用。本文简要介绍了植物功能基因组学的概念、研究方法和最新研究进展。  相似文献   

9.

Background  

DAS is a widely adopted protocol for providing syntactic interoperability among biological databases. The popularity of DAS is due to a simplified and elegant mechanism for data exchange that consists of sources exposing their RESTful interfaces for data access. As a growing number of DAS services are available for molecular biology resources, there is an incentive to explore this protocol in order to advance data discovery and integration among these resources.  相似文献   

10.
The majority of the heritability of coronary artery disease (CAD) remains unexplained, despite recent successes of genome-wide association studies (GWAS) in identifying novel susceptibility loci. Integrating functional genomic data from a variety of sources with a large-scale meta-analysis of CAD GWAS may facilitate the identification of novel biological processes and genes involved in CAD, as well as clarify the causal relationships of established processes. Towards this end, we integrated 14 GWAS from the CARDIoGRAM Consortium and two additional GWAS from the Ottawa Heart Institute (25,491 cases and 66,819 controls) with 1) genetics of gene expression studies of CAD-relevant tissues in humans, 2) metabolic and signaling pathways from public databases, and 3) data-driven, tissue-specific gene networks from a multitude of human and mouse experiments. We not only detected CAD-associated gene networks of lipid metabolism, coagulation, immunity, and additional networks with no clear functional annotation, but also revealed key driver genes for each CAD network based on the topology of the gene regulatory networks. In particular, we found a gene network involved in antigen processing to be strongly associated with CAD. The key driver genes of this network included glyoxalase I (GLO1) and peptidylprolyl isomerase I (PPIL1), which we verified as regulatory by siRNA experiments in human aortic endothelial cells. Our results suggest genetic influences on a diverse set of both known and novel biological processes that contribute to CAD risk. The key driver genes for these networks highlight potential novel targets for further mechanistic studies and therapeutic interventions.  相似文献   

11.
《Genetics》2013,195(1):275-287
Whole-genome sequencing, particularly in fungi, has progressed at a tremendous rate. More difficult, however, is experimental testing of the inferences about gene function that can be drawn from comparative sequence analysis alone. We present a genome-wide functional characterization of a sequenced but experimentally understudied budding yeast, Saccharomyces bayanus var. uvarum (henceforth referred to as S. bayanus), allowing us to map changes over the 20 million years that separate this organism from S. cerevisiae. We first created a suite of genetic tools to facilitate work in S. bayanus. Next, we measured the gene-expression response of S. bayanus to a diverse set of perturbations optimized using a computational approach to cover a diverse array of functionally relevant biological responses. The resulting data set reveals that gene-expression patterns are largely conserved, but significant changes may exist in regulatory networks such as carbohydrate utilization and meiosis. In addition to regulatory changes, our approach identified gene functions that have diverged. The functions of genes in core pathways are highly conserved, but we observed many changes in which genes are involved in osmotic stress, peroxisome biogenesis, and autophagy. A surprising number of genes specific to S. bayanus respond to oxidative stress, suggesting the organism may have evolved under different selection pressures than S. cerevisiae. This work expands the scope of genome-scale evolutionary studies from sequence-based analysis to rapid experimental characterization and could be adopted for functional mapping in any lineage of interest. Furthermore, our detailed characterization of S. bayanus provides a valuable resource for comparative functional genomics studies in yeast.  相似文献   

12.
13.
14.
Melanin protects the skin and eyes from the harmful effects of UV irradiation, protects neural cells from toxic insults, and is required for sound conduction in the inner ear. Aberrant regulation of melanogenesis underlies skin disorders (melasma and vitiligo), neurologic disorders (Parkinson''s disease), auditory disorders (Waardenburg''s syndrome), and opthalmologic disorders (age related macular degeneration). Much of the core synthetic machinery driving melanin production has been identified; however, the spectrum of gene products participating in melanogenesis in different physiological niches is poorly understood. Functional genomics based on RNA-mediated interference (RNAi) provides the opportunity to derive unbiased comprehensive collections of pharmaceutically tractable single gene targets supporting melanin production. In this study, we have combined a high-throughput, cell-based, one-well/one-gene screening platform with a genome-wide arrayed synthetic library of chemically synthesized, small interfering RNAs to identify novel biological pathways that govern melanin biogenesis in human melanocytes. Ninety-two novel genes that support pigment production were identified with a low false discovery rate. Secondary validation and preliminary mechanistic studies identified a large panel of targets that converge on tyrosinase expression and stability. Small molecule inhibition of a family of gene products in this class was sufficient to impair chronic tyrosinase expression in pigmented melanoma cells and UV-induced tyrosinase expression in primary melanocytes. Isolation of molecular machinery known to support autophagosome biosynthesis from this screen, together with in vitro and in vivo validation, exposed a close functional relationship between melanogenesis and autophagy. In summary, these studies illustrate the power of RNAi-based functional genomics to identify novel genes, pathways, and pharmacologic agents that impact a biological phenotype and operate outside of preconceived mechanistic relationships.  相似文献   

15.
Enormous amounts of data result from genome sequencing projects and new experimental methods. Within this tremendous amount of genomic data 30-40 per cent of the genes being identified in an organism remain unknown in terms of their biological function. As a consequence of this lack of information the overall schema of all the biological functions occurring in a specific organism cannot be properly represented. To understand the functional properties of the genomic data more experimental data must be collected. A pathway database is an effort to handle the current knowledge of biochemical pathways and in addition can be used for interpretation of sequence data. Some of the existing pathway databases can be interpreted as detailed functional annotations of genomes because they are tightly integrated with genomic information. However, experimental data are often lacking in these databases. This paper summarises a list of pathway databases and some of their corresponding biological databases, and also focuses on information about the content and the structure of these databases, the organisation of the data and the reliability of stored information from a biological point of view. Moreover, information about the representation of the pathway data and tools to work with the data are given. Advantages and disadvantages of the analysed databases are pointed out, and an overview to biological scientists on how to use these pathway databases is given.  相似文献   

16.
17.
Peter Schattner 《Genomics》2009,93(3):187-195
Integrated genome databases – such as the UCSC, Ensembl and NCBI MapViewer databases – and their associated data querying and visualization interfaces (e.g. the genome browsers) have transformed the way that molecular biologists, geneticists and bioinformaticists analyze genomic data. Nevertheless, because of the complexity of these tools, many researchers take advantage of only a fraction of their capabilities. In this tutorial, using examples from medical genetics and alternative splicing, I describe some of the biological questions that can be addressed with these techniques. I also show why doing so typically is more effective than using alternative methods and indicate some of the resources available for learning more about the advanced capabilities of these powerful tools.  相似文献   

18.
林木基因组学研究进展   总被引:7,自引:0,他引:7  
林木基因组学研究进展迅速。结构基因组学方面,已构建了近40个主要造林树种的遗传连锁图谱,在不同树种中定位了30余个重要的数量性状位点,在部分树种中开展了基因组比较和综合图谱构建研究,杨树的全基因组测序已经完成,桉树的全基因组测序正在进行。功能基因组学方面,已分析了主要造林树种多种组织的转录组EST序列,对林木次生生长与木材形成、开花和抗寒性的形成等过程开展了功能基因组学研究。另外,探讨了林木基因组学研究的发展趋势,以期为我国林木基因组学研究提供有益的参考。  相似文献   

19.
The outcomes of pathway database computations depend on pathway ontology   总被引:3,自引:0,他引:3  
Different biological notions of pathways are used in different pathway databases. Those pathway ontologies significantly impact pathway computations. Computational users of pathway databases will obtain different results depending on the pathway ontology used by the databases they employ, and different pathway ontologies are preferable for different end uses. We explore differences in pathway ontologies by comparing the BioCyc and KEGG ontologies. The BioCyc ontology defines a pathway as a conserved, atomic module of the metabolic network of a single organism, i.e. often regulated as a unit, whose boundaries are defined at high-connectivity stable metabolites. KEGG pathways are on average 4.2 times larger than BioCyc pathways, and combine multiple biological processes from different organisms to produce a substrate-centered reaction mosaic. We compared KEGG and BioCyc pathways using genome context methods, which determine the functional relatedness of pairs of genes. For each method we employed, a pair of genes randomly selected from a BioCyc pathway is more likely to be related by that method than is a pair of genes randomly selected from a KEGG pathway, supporting the conclusion that the BioCyc pathway conceptualization is closer to a single conserved biological process than is that of KEGG.  相似文献   

20.
人类基因组全序列的精细图已完成,当前生命科学面临的重要任务就是如何将基因组序列信息转化为基因的功能信息,了解生命活动的分子机理,改善人类健康,为生物技术发展提供动力 . 在一系列功能基因组研究新技术中,高通量 (high-throughput) 和高内涵 (high-content) 的细胞筛选技术平台已经显示出巨大潜力,发挥着越来越重要的作用 . 通过在体外培养的哺乳动物细胞中基因过表达或抑制基因表达,分析所产生信号传导通路和 / 或细胞表型改变,可以直接发现基因功能 . 近年来一些技术上的进展,使细胞筛选平台具有微量、自动、高效、高通量,以及可以系统研究的特点,已经成为功能基因组研究的核心方法之一 . 近 2~3 年来已经出现一批成功应用细胞筛选平台进行大规模功能基因组研究的报道 . 我国在这一领域的研究也开始起步,将对我国生物技术的源头创新研究产生深远的影响 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号