首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The CAAX motif at the C terminus of most monomeric GTPases is required for membrane targeting because it signals for a series of three posttranslational modifications that include isoprenylation, endoproteolytic release of the C-terminal- AAX amino acids, and carboxyl methylation of the newly exposed isoprenylcysteine. The individual contributions of these modifications to protein trafficking and function are unknown. To address this issue, we performed a series of experiments with mouse embryonic fibroblasts (MEFs) lacking Rce1 (responsible for removal of the -AAX sequence) or Icmt (responsible for carboxyl methylation of the isoprenylcysteine). In MEFs lacking Rce1 or Icmt, farnesylated Ras proteins were mislocalized. In contrast, the intracellular localizations of geranylgeranylated Rho GTPases were not perturbed. Consistent with the latter finding, RhoGDI binding and actin remodeling were normal in Rce1- and Icmt-deficient cells. Swapping geranylgeranylation for farnesylation on Ras proteins or vice versa on Rho proteins reversed the differential sensitivities to Rce1 and Icmt deficiency. These results suggest that postprenylation CAAX processing is required for proper localization of farnesylated Ras but not geranygeranylated Rho proteins.  相似文献   

2.
Post-translational modification by protein prenylation is required for membrane targeting and biological function of monomeric GTPases. Ras and Rho proteins possess a C-terminal CAAX motif (C is cysteine, A is usually an aliphatic residue, and X is any amino acid), in which the cysteine is prenylated, followed by proteolytic cleavage of the AAX peptide and carboxyl methylation by the Rce1 CAAX protease and Icmt methyltransferase, respectively. Rab GTPases usually undergo double geranylgeranylation within CC or CXC motifs. However, very little is known about processing and membrane targeting of Rabs that naturally contain a CAAX motif. We show here that a variety of Rab-CAAX proteins undergo carboxyl methylation, both in vitro and in vivo, with one exception. Rab38(CAKS) is not methylated in vivo, presumably because of the inhibitory action of the lysine residue within the AAX motif for cleavage by Rce1. Unlike farnesylated Ras proteins, we observed no targeting defects of overexpressed Rab-CAAX proteins in cells deficient in Rce1 or Icmt, as reported for geranylgeranylated Rho proteins. However, endogenous geranylgeranylated non-methylated Rab-CAAX and Rab-CXC proteins were significantly redistributed to the cytosol at steady-state levels and redistribution correlates with higher affinity of RabGDI for non-methylated Rabs in Icmt-deficient cells. Our data suggest a role for methylation in Rab function by regulating the cycle of Rab membrane recruitment and retrieval. Our findings also imply that those Rabs that undergo post-prenylation processing follow an indirect targeting pathway requiring initial endoplasmic reticulum membrane association prior to specific organelle targeting.  相似文献   

3.
Many lines of evidence indicate the importance of the Rho family guanine nucleotide triphosphatases (GTPases) in directing axon extension and guidance. The signaling networks that involve these proteins regulate actin cytoskeletal dynamics in navigating neuronal growth cones. However, the intricate patterns that regulate Rho GTPase activation and signaling are not yet fully defined. Activity and subcellular localization of the Rho GTPases are regulated by post-translational modification. The addition of a geranylgeranyl group to the carboxy (C-) terminus targets Rho GTPases to the plasma membrane and promotes their activation by facilitating interaction with guanine nucleotide exchange factors and allowing sequestering by association with guanine dissociation inhibitors. However, it is unclear how these modifications affect neurite extension or how subcellular localization alters signaling from the classical Rho GTPases (RhoA, Rac1, and Cdc42). Here, we review recent data addressing this issue and propose that Rho GTPase geranylgeranylation regulates outgrowth.  相似文献   

4.
Proteins terminating with a CAAX motif, such as the Ras proteins and the nuclear lamins, undergo post-translational modification of a C-terminal cysteine with an isoprenyl lipid via a process called protein prenylation. After prenylation, the last three residues of CAAX proteins are clipped off by Rce1, an integral membrane endoprotease of the endoplasmic reticulum. Prenylation is crucial to the function of many CAAX proteins, but the physiologic significance of endoproteolytic processing has remained obscure. To address this issue, we used Cre/loxP recombination techniques to create mice lacking Rce1 in the heart, an organ where Rce1 is expressed at particularly high levels. The hearts from heart-specific Rce1 knockout mice manifested reduced levels of both the Rce1 mRNA and CAAX endoprotease activity, and the hearts manifested an accumulation of CAAX protein substrates. The heart-specific Rce1 knockout mice initially appeared healthy but died starting at 3-5 months of age. By 10 months of age, approximately 70% of the mice had died. Pathological studies revealed that the heart-specific Rce1 knockout mice had a dilated cardiomyopathy. By contrast, liver-specific Rce1 knockout mice appeared healthy, had normal transaminase levels, and had normal liver histology. These studies indicate that the endoproteolytic processing of CAAX proteins is essential for cardiac function but is less important for the liver.  相似文献   

5.
Eukaryotic proteins containing a CAAX (A is aliphatic amino acid) C-terminal tetrapeptide sequence generally undergo a lipid modification, the addition of a prenyl group. Proteins that are modified by prenylation, such as Ras GTPases, can be subsequently modified by a proteolytic event that removes a C-terminal tripeptide (AAX). Two distinct proteases have been identified that are involved in the CAAX proteolytic step, FACE-1/Ste24 and FACE-2/Rce1. These proteases have different enzymatic properties, substrate specificities, and biological functions. However, a proposal has been made that plants lack a FACE-2/Rce1-type protease. Here, we describe the isolation of a cDNA from Arabidopsis thaliana that encodes a 311-aa protein with characteristics that are similar to the FACE-2/Rce1 group of enzymes. Northern blot analysis demonstrates widespread expression of this gene in plant tissues. Heterologous expression of the A. thaliana cDNA in yeast restores CAAX proteolytic activity to yeast lacking native CAAX proteases. The recombinant protein produced in this system displays an in vivo substrate specificity profile distinct from AtSte24 and cleaves a farnesylated CAAX tetrapeptide in vitro. These results provide evidence for the existence of a previously unsuspected plant FACE-2/Rce1 ortholog and support the evolutionary conservation of dual CAAX proteolytic systems in eukaryotes.  相似文献   

6.
7.
After isoprenylation, the Ras proteins and other CAAX proteins undergo two additional enzymatic modifications-endoproteolytic release of the last three amino acids of the protein by the protease Rce1 and methylation of the carboxyl-terminal isoprenylcysteine by the methyltransferase Icmt. This postisoprenylation processing is thought to be important for the association of Ras proteins with membranes. Blocking postisoprenylation processing, by inhibiting Rce1, has been suggested as a potential approach for retarding cell growth and blocking cellular transformation. The objective of this study was to develop a cell culture system for addressing these issues. We generated mice with a conditional Rce1 allele (Rce1(flox)) and produced Rce1(flox/flox) fibroblasts. Cre-mediated excision of Rce1 (thereby producing Rce1(Delta/Delta) fibroblasts) eliminated Ras endoproteolytic processing and methylation and caused a partial mislocalization of truncated K-Ras and H-Ras fusion proteins within cells. Rce1(Delta/Delta) fibroblasts grew more slowly than Rce1(flox/flox) fibroblasts. The excision of Rce1 also reduced Ras-induced transformation, as judged by the growth of colonies in soft agar. The excision of Rce1 from a Rce1(flox/flox) skin carcinoma cell line also significantly retarded the growth of cells, and this effect was exaggerated by cotreatment of the cells with a farnesyltransferase inhibitor. These studies support the idea that interference with postisoprenylation processing retards cell growth, limits Ras-induced transformation, and sensitizes tumor cells to a farnesyltransferase inhibitor.  相似文献   

8.
9.
Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1). Classically, the variable (X) amino acid determines whether a protein will be an Ftase or Ggtase-I substrate, with Ggtase-I substrates often containing CaaL motifs. In this study, we identify the gene encoding the β subunit of Ggtase-I (CDC43) and demonstrate that Ggtase-mediated activity is not essential. However, Cryptococcus neoformans CDC43 is important for thermotolerance, morphogenesis, and virulence. We find that Ggtase-I function is required for full membrane localization of Rho10 and the two Cdc42 paralogs (Cdc42 and Cdc420). Interestingly, the related Rac and Ras proteins are not mislocalized in the cdc43Δ mutant even though they contain similar CaaL motifs. Additionally, the membrane localization of each of these GTPases is dependent on the prenylation of the CaaX cysteine. These results indicate that C. neoformans CaaX prenyltransferases may recognize their substrates in a unique manner from existing models of prenyltransferase specificity. It also suggests that the C. neoformans Ftase, which has been shown to be more important for C. neoformans proliferation and viability, may be the primary prenyltransferase for proteins that are typically geranylgeranylated in other species.  相似文献   

10.
Wrch-1 is a Rho family GTPase that shares strong sequence and functional similarity with Cdc42. Like Cdc42, Wrch-1 can promote anchorage-independent growth transformation. We determined that activated Wrch-1 also promoted anchorage-dependent growth transformation of NIH 3T3 fibroblasts. Wrch-1 contains a distinct carboxyl-terminal extension not found in Cdc42, suggesting potential differences in subcellular location and function. Consistent with this, we found that Wrch-1 associated extensively with plasma membrane and endosomes, rather than with cytosol and perinuclear membranes like Cdc42. Like Cdc42, Wrch-1 terminates in a CAAX tetrapeptide (where C is cysteine, A is aliphatic amino acid, and X is any amino acid) motif (CCFV), suggesting that Wrch-1 may be prenylated similarly to Cdc42. Most surprisingly, unlike Cdc42, Wrch-1 did not incorporate isoprenoid moieties, and Wrch-1 membrane localization was not altered by inhibitors of protein prenylation. Instead, we showed that Wrch-1 is modified by the fatty acid palmitate, and pharmacologic inhibition of protein palmitoylation caused mislocalization of Wrch-1. Most interestingly, mutation of the second cysteine of the CCFV motif (CCFV > CSFV), but not the first, abrogated both Wrch-1 membrane localization and transformation. These results suggest that Wrch-1 membrane association, subcellular localization, and biological activity are mediated by a novel membrane-targeting mechanism distinct from that of Cdc42 and other isoprenylated Rho family GTPases.  相似文献   

11.
Ras converting enzyme 1 (Rce1) is an integral membrane endoprotease localized to the endoplasmic reticulum that mediates the cleavage of the carboxyl-terminal three amino acids from CaaX proteins, whose members play important roles in cell signaling processes. Examples include the Ras family of small GTPases, the γ-subunit of heterotrimeric GTPases, nuclear lamins, and protein kinases and phosphatases. CaaX proteins, especially Ras, have been implicated in cancer, and understanding the post-translational modifications of CaaX proteins would provide insight into their biological function and regulation. Many proteolytic mechanisms have been proposed for Rce1, but sequence alignment, mutational studies, topology, and recent crystallographic data point to a novel mechanism involving a glutamate-activated water and an oxyanion hole. Studies using in vivo and in vitro reporters of Rce1 activity have revealed that the enzyme cleaves only prenylated substrates and the identity of the a2 amino residue in the Ca1a2X sequence is most critical for recognition, preferring Ile, Leu, or Val. Substrate mimetics can be somewhat effective inhibitors of Rce1 in vitro. Small-molecule inhibitor discovery is currently limited by the lack of structural information on a eukaryotic enzyme, but a set of 8-hydroxyquinoline derivatives has demonstrated an ability to mislocalize all three mammalian Ras isoforms, giving optimism that potent, selective inhibitors might be developed. Much remains to be discovered regarding cleavage specificity, the impact of chemical inhibition, and the potential of Rce1 as a therapeutic target, not only for cancer, but also for other diseases.  相似文献   

12.
The Ras converting enzyme (RCE) promotes a proteolytic activity that is required for the maturation of Ras, the yeast a-factor mating pheromone, and certain other proteins whose precursors bear a C-terminal CAAX tetrapeptide motif. Despite the physiological importance of RCE, the enzymatic mechanism of this protease remains undefined. In this study, we have evaluated the substrate specificity of RCE orthologs from yeast (Rce1p), worm, plant, and human and have determined the importance of conserved residues toward enzymatic activity. Our findings indicate that RCE orthologs have conserved substrate specificity, cleaving CVIA, CTLM, and certain other CAAX motifs, but not the CASQ motif, when these motifs are placed in the context of the yeast a-factor precursor. Our mutational studies of residues conserved between the orthologs indicate that an alanine substitution at His194 completely inactivates yeast Rce1p enzymatic activity, whereas a substitution at Glu156 or His248 results in marginal activity. We have also determined that residues Glu157, Tyr160, Phe190, and Asn252 impact the substrate selectivity of Rce1p. Computational methods predict that residues influencing Rce1p function are all near or within hydrophobic segments. Combined, our data indicate that yeast Rce1p function requires residues that are invariably conserved among an extended family of prokaryotic and eukaryotic enzymes and that these residues are likely to lie within or immediately adjacent to the transmembrane segments of this membrane-localized enzyme.  相似文献   

13.
The small GTPases Rho, Rac, and Cdc42 are monoglucosylated at effector domain amino acid threonine 37/35 by Clostridium difficile toxins A and B. Glucosylation renders the Rho proteins inactive by inhibiting effector coupling. To understand the functional consequences, effects of glucosylation on subcellular distribution and cycling of Rho GTPases between cytosol and membranes were analyzed. In intact cells and in cell lysates, glucosylation leads to a translocation of the majority of RhoA GTPase to the membranes whereas a minor fraction is monomeric in the cytosol without being complexed with the guanine nucleotide dissociation inhibitor (GDI-1). Rho complexed with GDI-1 is not substrate for glucosylation, and modified Rho does not bind to GDI-1. However, a membranous factor inducing release of Rho from the GDI complex makes cytosolic Rho available as a substrate for glucosylation. The binding of glucosylated RhoA to the plasma membranes is saturable, competable with unmodified Rho-GTPgammaS guanosine 5'-O-(3-thiotriphosphate), and takes place at a membrane protein with a molecular mass of about 70 kDa. Membrane-bound glucosylated Rho is not extractable by GDI-1 as unmodified Rho is, leading to accumulation of modified Rho at membranous binding sites. Thus, in addition to effector coupling inhibition, glucosylation also inhibits Rho cycling between cytosol and membranes, a prerequisite for Rho activation.  相似文献   

14.
Two Ras-related proteins, ERas and Rheb, which are involved in the phosphatidylinositol 3-kinase pathway, display high GTP affinity and have atypical CAAX motifs. The factors governing the intracellular localization of ERas and Rheb are incompletely understood. In the current study, we show by confocal microscopy that ERas is localized to the plasma membrane, whereas Rheb is confined to the endomembranes. Membrane localization of the two proteins was abolished by mutation of the cysteine of the CAAX motif. Membrane targeting was also abolished by a farnesyltransferase inhibitor but not by a geranylgeranyltransferase inhibitor. In mouse fibroblasts deficient in either Rce1 (Ras converting enzyme 1) or Icmt (isoprenylcysteine carboxyl methyltransferase), ERas was mislocalized mainly to the Golgi apparatus, whereas Rheb showed diffuse localization. Mutation of cysteines in the hypervariable region of ERas prevented the plasma membrane localization of ERas, very strongly suggesting that palmitoylation of the cysteines is essential for membrane targeting. The hypervariable region of Rheb does not contain cysteines or polybasic residues, and when it was replaced with the hypervariable region of H-Ras, Rheb displayed plasma membrane localization. These data indicate that ERas shares the same posttranslational modifications with H-Ras and N-Ras and is localized at the plasma membrane. Rheb also shares the same membrane-targeting pathway but because of the absence of palmitoylation is located on endomembranes.  相似文献   

15.
Mammalian Rho family GTPases are intracellular signal transducers known to regulate multiple signaling pathways involved in actin organization and cell proliferation. However, previous knowledge of their cellular functions came mostly from studies using a dominant-negative or constitutively active mutant expression approach in various clonal cell lines. Such an approach has increasingly been recognized to impose experimental limitations related to specificity, dosage and/or clonal variation. Recent progress in mammalian Rho GTPase cell biology by gene targeting individual Rho GTPases in mice has provided more convincing evidence of their physiological roles and signaling pathways in diverse primary cells. Although adaptive compensation by related Rho GTPase members remains a potential concern in the gene targeting approach, in many cases these studies enable an elucidation of the unique functions of individual Rho GTPases in different cell types in vivo.  相似文献   

16.
VEGF isoforms     
The Rho-family of p21 small GTPases are directly linked to the regulation of actin-based motile machinery and play a key role in the control of cell migration. Aside from the original and most well-characterized canonical Rho GTPases RhoA, Rac1, and Cdc42, numerous isoforms of these key proteins have been identified and shown to have specific roles in regulating various cellular motility processes. The major difficulty in addressing these isoform-specific effects is that isoforms typically contain highly similar primary amino acid sequences and thus are able to interact with the same upstream regulators and the downstream effector targets. Here, we will introduce the major members of each GTPase subfamily and discuss recent advances in the design and application of fluorescent resonance energy transfer-based probes, which are at the forefront of the technologies available to directly probe the differential, spatiotemporal activation dynamics of these proteins in live single cells. Currently, it is possible to specifically detect the activation status of RhoA vs. RhoC isoforms, as well as Cdc42 vs. TC-10 isoforms in living cells. Clearly, additional efforts are still required to produce biosensor systems capable of detecting other isoforms of Rho GTPases including RhoB, Rac2/3, RhoG, etc. Through such efforts, we will uncover the isoform-specific roles of these near-identical proteins in living cells, clearly an important area of the Rho GTPase biology that is not yet fully appreciated.  相似文献   

17.
Most Rho family GTPases serve as key molecular switches in a wide spectrum of biological processes. An increasing number of studies have expanded their roles to the spermatogenesis. Several members of Rho family have been confirmed to be essential for mammalian spermatogenesis, but the precise roles of this family in male reproduction have not been well studied yet. Here we report a surprising function of an atypical and testis-specific Rho GTPase, RSA-14-44 in spermatogenesis. Featured by unique structural and expressional patterns, RSA-14-44 is distinguished from three canonical members of Rho cluster. Thus, we define RSA-14-44 as a new member of Rho GTPases family and rename it RhoS (Rho in spermatogenic cells). RhoS associates with PSMB5, a catalytic subunit of the proteasome, in a series of stage-specific spermatogenic cells. More importantly, RhoS does not directly modulate the cellular proteasome activity, but participates in regulating the stability of "unincorporated" PSMB5 precursors. Meanwhile, our data demonstrate that the activation of RhoS is prerequisite for negatively regulating the stability of PSMB5 precursors. Therefore, our finding uncovers a direct and functional connection between the Rho GTPase family and the pathway of proteasome biogenesis and provide new clues for deciphering the secrets of spermatogenesis.  相似文献   

18.
The posttranslational modification of C-terminal CAAX motifs in proteins such as Ras, most Rho GTPases, and G protein γ subunits, plays an essential role in determining their subcellular localization and correct biological function. An integral membrane methyltransferase, isoprenylcysteine carboxyl methyltransferase (ICMT), catalyzes the final step of CAAX processing after prenylation of the cysteine residue and endoproteolysis of the -AAX motif. We have determined the crystal structure of a prokaryotic ICMT ortholog, revealing a markedly different architecture from conventional methyltransferases that utilize S-adenosyl-L-methionine (SAM) as a cofactor. ICMT comprises a core of five transmembrane α helices and a cofactor-binding pocket enclosed within a highly conserved C-terminal catalytic subdomain. A tunnel linking the reactive methyl group of SAM to the inner membrane provides access for the prenyl lipid substrate. This study explains how an integral membrane methyltransferase achieves recognition of both a hydrophilic cofactor and a lipophilic prenyl group attached to a polar protein substrate.  相似文献   

19.
Farnesyltransferase inhibitors (FTIs) block Ras farnesylation, subcellular localization and activity, and inhibit the growth of Ras-transformed cells. Although FTIs are ineffective against K-Ras4B, the Ras isoform most commonly mutated in human cancers, they can inhibit the growth of tumors containing oncogenic K-Ras4B, implicating other farnesylated proteins or suggesting distinct functions for farnesylated and for geranylgeranylated K-Ras, which is generated when farnesyltransferase is inhibited. In addition to bypassing FTI blockade through geranylgeranylation, K-Ras4B resistance to FTIs may also result from its higher affinity for farnesyltransferase. Using chimeric Ras proteins containing all combinations of Ras background, CAAX motif, and K-Ras polybasic domain, we show that either a polybasic domain or an alternatively prenylated CAAX renders Ras prenylation, Ras-induced Elk-1 activation, and anchorage-independent cell growth FTI-resistant. The polybasic domain alone increases the affinity of Ras for farnesyltransferase, implying independent roles for each K-Ras4B sequence element in FTI resistance. Using microarray analysis and colony formation assays, we confirm that K-Ras function is independent of the identity of the prenyl group and, therefore, that FTI inhibition of K-Ras transformed cells is likely to be independent of K-Ras inhibition. Our results imply that relevant FTI targets will lack both polybasic and potentially geranylgeranylated methionine-CAAX motifs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号