首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing evidence suggests that the aryl hydrocarbon receptor (AhR) pathway has an important role in the regulation of inflammatory responses. Most recently, we have shown that the activation of the AhR pathway by a potent AhR agonist inhibits the development of dextran sodium sulfate (DSS)-induced colitis, a model of human ulcerative colitis, by the induction of prostaglandin E2 (PGE2) in the large intestine. Because several strains of probiotic lactic acid bacteria have been reported to inhibit DSS-induced colitis by unidentified mechanisms, we hypothesized that particular strains of lactic acid bacterium might have the potential to activate the AhR pathway, thereby inhibiting DSS-induced colitis. This study investigated whether there are specific lactic acid bacterial strains that can activate the AhR pathway, and if so, whether this AhR-activating potential is associated with suppression of DSS-induced colitis. By using AhR signaling reporter cells, we found that Lactobacillus bulgaricus OLL1181 had the potential to activate the AhR pathway. OLL1181 also induced the mRNA expression of cytochrome P450 family 1A1 (CYP1A1), a target gene of the AhR pathway, in human colon cells, which was inhibited by the addition of an AhR antagonist, α-naphthoflavon (αNF). In addition, mice treated orally with OLL1181 showed an increase in CYP1A1 mRNA expression in the large intestine and amelioration of DSS-induced colitis. Thus, OLL1181 can induce activation of the intestinal AhR pathway and inhibit DSS-induced colitis in mice. This strain of lactic acid bacterium has therefore the potential to activate the AhR pathway, which may be able to suppress colitis.  相似文献   

2.
Human serum paraoxonase 1 (hPON1) belongs to a family of enzymes that catalyze the hydrolysis of a broad range of esters and lactones. Although the very first identification of hPON1 might have been as a calcium-dependent paraoxonase/arylesterase, PON1 is in fact a lactonase associated with high-density lipoprotein and strongly stimulated by apoA-I. PON1 hydrolyzes various organophosphates, including insecticides and nerve gases. PON1 also plays a key role in prevention of atherosclerosis. Mediation of cholesterol efflux from macrophage is a key in vivo function of PON1. In present study, the hPON1 Q gene was cloned into baculovirus transfer vector pVL1392 and expressed in silkworm expression system. The rhPON1 Q presented two bands with every near molecular weight of about 40 and 43 kDa according to sodium dodecyl sulphate-polyacrylamide gel electrophoresis and Western blotting analysis. The expression level was up to 1,256 mg/L in haemolymph, about 50 times as high as that from BmN cells (24.8 mg/L). After purified by two chromatography steps (DEAE-Sepharose and HiTrap Chelating HP), the purity of rhPON1 Q was up to 90%, and the enzymatic properties are similar to serum hPON1.  相似文献   

3.
Paraoxonase-1 (PON1) and HDL are tightly associated in plasma, and this is generally assumed to reflect the need for the enzyme to associate with a hydrophobic complex. The association has been examined in coronary cases and age-matched controls. Highly significant (P < 0.0001), positive associations were observed between PON1 activities and concentrations and HDL-cholesterol and apolipoprotein A-I (apoA-I) concentrations in cases and controls. Corrected slopes were significantly different in cases (cases vs. controls: arylesterase, r = 0.19 vs. 0.38, P < 0.02 for apoA-I and r = 0.15 vs. 0.34, P < 0.02 for HDL-cholesterol) such that if PON1 should influence serum HDL, it would be less effective in coronary cases. When examined as a function of the PON1 gene promoter polymorphism C-107 T, highly significant differences (P < 0.001) in HDL-cholesterol and apoA-I were observed between genotypes for controls, with high expresser alleles having the highest HDL concentrations. This relationship was lost in cases with coronary disease. The coding region polymorphisms Q192R and L55M of the PON1 gene showed no association with HDL. The promoter polymorphism was an independent determinant of HDL concentrations in multivariate analyses. These data are consistent with an impact of PON1 on plasma concentrations of HDL, with detrimental modifications to the relationship in coronary cases.  相似文献   

4.
Oda MN  Bielicki JK  Berger T  Forte TM 《Biochemistry》2001,40(6):1710-1718
Paraoxonase (PON) is transported primarily on apolipoprotein A-I (apoA-I) -containing high-density lipoprotein (HDL) and is thought to protect against early atherogenic events including low-density lipoprotein (LDL) oxidation and monocyte migration. It has been proposed that apoA-I may be necessary for PON's association with plasma HDL. On the basis of this, we examined the effect of apoA-I on PON's enzymatic activity and its ability to associate with HDL. Additionally, we examined whether changes in apoA-I primary structure (cysteine substitution mutations) could modulate these effects. Chinese hamster ovary cells stably transfected with human PON1A cDNA were incubated in the presence and absence of recombinant wild-type apoA-I (apoA-I(WT)) and specific Cys substitution mutations. Extracellular accumulation of PON activity in the presence of apoA-I(WT) was 0.095 +/- 0.013 unit/mg of cell protein (n = 7) compared to 0.034 +/- 0.010 unit/mg of cell protein in the absence of apoA-I (n = 7), a 2.79-fold increase in activity when apoA-I was incubated with the cells. Lipid-free apoA-I did not increase PON activity, while preformed nascent HDL increased PON activity only 30%, suggesting that maximal PON activity is lipid-dependent and requires coassembly of PON and apoA-I on nascent HDL. The cysteine mutations R10C, R27C, and R61C significantly increased (p < 0.01) PON activity 32.6% +/- 14.7%, 31.6% +/- 18.9%, and 27.4% +/- 20%, respectively, over that of wild type (WT). No changes in PON activity were observed with apoA-I cysteine substitution mutations in the C-terminal portion of the protein. The data suggest that, for optimal PON activity, coassembly of the enzyme onto nascent HDL is required and that the N-terminal region of apoA-I may be important in the assembly process.  相似文献   

5.
6.
Several clinical and angiographic intervention trials have shown that fibrate treatment leads to a reduction of the coronary events associated to atherosclerosis. Fibrates are ligands for peroxisome proliferator-activated receptor alpha (PPARalpha) that modulate risk factors related to atherosclerosis by acting at both systemic and vascular levels. Here, we investigated the effect of treatment with the PPARalpha agonist fenofibrate (FF) on the development of atherosclerotic lesions in apolipoprotein (apo) E-deficient mice and human apoA-I transgenic apoE-deficient (hapoA-I Tg x apoE-deficient) mice fed a Western diet. In apoE-deficient mice, plasma lipid levels were increased by FF treatment with no alteration in the cholesterol distribution profile. FF treatment did not reduce atherosclerotic lesion surface area in the aortic sinus of 5-month-old apoE-deficient mice. By contrast, FF treatment decreased total cholesterol and esterified cholesterol contents in descending aortas of these mice, an effect that was more pronounced in older mice exhibiting more advanced lesions. Furthermore, FF treatment reduced MCP-1 mRNA levels in the descending aortas of apoE-deficient mice, whereas ABCA-1 expression levels were maintained despite a significant reduction of aortic cholesterol content. In apoE-deficient mice expressing a human apoA-I transgene, FF increased human apoA-I plasma and hepatic mRNA levels without affecting plasma lipid levels. This increase in human apoA-I expression was accompanied by a significant reduction in the lesion surface area in the aortic sinus. These data indicate that the PPARalpha agonist fenofibrate reduces atherosclerosis in these animal models of atherosclerosis.  相似文献   

7.
8.
Does paraoxonase play a role in susceptibility to cardiovascular disease?   总被引:8,自引:0,他引:8  
Human serum paraoxonase (PON1) is an esterase that is bound to high-density lipoproteins (HDLs). It can hydrolyze organophosphates and its activity is inversely related to atherosclerosis. Some studies also suggest that a relationship exists between polymorphisms of the gene that encodes paraoxonase and coronary heart disease (CHD), whereas other studies, in different populations, have not found such an association. One mechanism by which certain PON1 allozymes might protect against atherosclerosis is by inhibition of the oxidation of HDL and low-density lipoprotein (LDL). Experimental studies suggest that this protection is associated with the ability of PON1 to hydrolyze specific lipid peroxides in oxidized lipoproteins. Interventions that preserve or enhance PON1 activity, as well as manipulations of PON1 polymorphisms, might help delay the onset of CHD.  相似文献   

9.
10.
In humans, a chronically increased circulating level of C-reactive protein (CRP), a positive acute-phase reactant, is an independent risk factor for cardiovascular disease. This observation has led to considerable interest in the role of inflammatory proteins in atherosclerosis. In this review, after discussing CRP, we focus on the potential role in the pathogenesis of human vascular disease of inflammation-induced proteins that are carried by lipoproteins. Serum amyloid A (SAA) is transported predominantly on HDL, and levels of this protein increase markedly during acute and chronic inflammation in both animals and humans. Increased SAA levels predict the risk of cardiovascular disease in humans. Recent animal studies support the proposal that SAA plays a role in atherogenesis. Evidence is accruing that secretory phospholipase A(2), an HDL-associated protein, and platelet-activating factor acetylhydrolase, a protein associated predominantly with LDL in humans and HDL in mice, might also play roles both as markers and mediators of human atherosclerosis. In contrast to positive acute-phase proteins, which increase in abundance during inflammation, negative acute-phase proteins have received less attention. Apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, decreases during inflammation. Recent studies also indicate that HDL is oxidized by myeloperoxidase in patients with established atherosclerosis. These alterations may limit the ability of apoA-I to participate in reverse cholesterol transport. Paraoxonase-1 (PON1), another HDL-associated protein, also decreases during inflammation. PON1 is atheroprotective in animal models of hypercholesterolemia. Controversy over its utility as a marker of human atherosclerosis may reflect the fact that enzyme activity rather than blood level (or genotype) is the major determinant of cardiovascular risk. Thus, multiple lipoprotein-associated proteins that change in concentration during acute and chronic inflammation may serve as markers of cardiovascular disease. In future studies, it will be important to determine whether these proteins play a causal role in atherogenesis.  相似文献   

11.
12.
13.
PURPOSE OF REVIEW: To summarize the new articles published in the last year on paraoxonases, including their expression in cardiovascular diseases, and regulation by pharmacological and nutritional means. RECENT FINDINGS: The elucidation of the crystal structure of the paraoxonase 1 (PON1) gene, obtained by directed evolution, shows that it consists of a six-bladed beta-propeller with a unique active site. PON1 is present in HDL but also in lipoprotein-deficient serum, in VLDL and in chylomicrons. PON1 protects lipids in lipoproteins, in macrophages and in erythrocytes from oxidation. Cellular PON2 and PON3 were also shown to reduce oxidative stress. Beyond its antioxidative properties, PON1 possesses additional antiatherogenic properties against macrophage foam cell formation: attenuation of cholesterol and oxidized lipids influx, inhibition of macrophage cholesterol biosynthesis and stimulation of macrophage cholesterol efflux. The PON1 gene is regulated by Sp1 and protein kinase C, whereas the PON2 gene in macrophages is regulated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. PON1 activity and mass are both reduced in cardiovascular diseases and the hypocholesterolemic drugs, statins, increase serum PON1 activity (by reducing oxidative stress, or by upregulating hepatic PON1 expression). Expression of cellular PON2, like PON1, was upregulated by statins. Nutritional antioxidants, such as polyphenols, increase PON1 mRNA expression and activity, by an aryl hydrocarbon receptor-dependent mechanism. SUMMARY: The elucidation of PON1 structure and its active center has enabled a better understanding of its mechanism of action, including its physio-pathological substrate(s). Some drugs and nutrients including dietary antioxidants and polyphenols considerably increase the activities of paraoxonases which, in turn, can reduce oxidative stress and atherosclerosis development.  相似文献   

14.
High density lipoprotein (HDL)-associated paraoxonase-1 (PON1) anti-atherogenic properties in macrophages, i.e. inhibition of cell-mediated oxidation of low density lipoprotein (LDL) and stimulation of cholesterol efflux, were studied using recombinant variants of PON1 and apoA-I expressed in Escherichia coli and reconstituted HDL (rHDL) particles composed of phosphatidylcholine/free cholesterol (PC/FC) and apoA-I. PON1 lactonase activity is stimulated by apoA-I by approximately 7-fold relative to PC/FC particles. Wild-type (WT) PON1 bound to rHDL inhibited macrophage-mediated LDL oxidation and stimulated cholesterol efflux from the cells to 2.3- and 3.2-fold greater extents, respectively, compared with WT PON1 bound to PC/FC particles without apoA-I. We also tested PON1 catalytic histidine dyad mutants (H115Q and H134Q) that are properly folded and that bind HDL in a similar mode compared with WT PON1, but that exhibit almost no lactonase activity. These could not inhibit macrophage-mediated LDL oxidation or stimulate rHDL-mediated cholesterol efflux from the cells. Furthermore, whereas HDL-bound WT PON1 induced the formation of lysophosphatidylcholine (LPC) in macrophages, the His dyad mutants did not, suggesting that the above anti-atherogenic properties of HDL-associated PON1 involve LPC release. Indeed, enrichment of macrophages with increasing concentrations of LPC resulted in inhibition of the cells' capability to oxidize LDL and in stimulation of HDL-mediated cholesterol efflux from the macrophages in an LPC dose-dependent manner. Thus, we provide the first direct indication that the anti-atherogenic properties of PON1 are related to its lipolactonase activity and propose a model in which PON1 acts as a lipolactonase to break down oxidized lipids and to generate LPC.  相似文献   

15.
Apolipoprotein (apo)A-I, the major protein component of HDL, is synthesized principally in the small intestine and liver. Recently we observed an increase in plasma apoA-I level in humans who were on an oxidized fat diet. To test whether oxidized fatty acids could affect apoA-I synthesis, we incubated day 4 (undifferentiated) and day 14 (differentiated) Caco-2 cells with varying concentrations of oxidized linoleic acid (ox-linoleic acid) (5, 10, and 25 microM) and unoxidized linoleic acid for 24 h. Ox-linoleic acid caused a dose-dependent increase in the levels of apoA-I protein in both differentiated and undifferentiated Caco-2 cells as assessed by ELISA and Western blot analysis. Whereas apoB production was not increased by ox-linoleic acid in both day 4 and day 14 Caco-2 cells. The mRNA expression for apoA-I paralleled the protein expression when measured by RT-PCR. We also found that both day 4 and day 14 Caco-2 cells did express peroxisomal proliferator-activated receptor-gamma (PPAR-gamma). mRNA and PPAR-gamma ligand could increase apoA-I secretion in these cells.Therefore we propose that the mechanism for the induction of apoA-I might include PPAR-gamma for which oxidized fatty acid is a ligand.  相似文献   

16.
Reduced activity of paraoxonase 1 (PON1), a high-density lipoprotein (HDL)-associated enzyme, has been implicated in the development of atherosclerosis. Post-translational modifications of PON1 may represent important mechanisms leading to reduced PON1 activity. Under atherosclerotic conditions, myeloperoxidase (MPO) is known to associate with HDL. MPO generates the oxidants hypochlorous acid and nitrogen dioxide, which can lead to post-translational modification of PON1, including tyrosine modifications that inhibit PON1 activity. Nitrogen dioxide also drives lipid peroxidation, leading to the formation of reactive lipid dicarbonyls such as malondialdehyde and isolevuglandins, which modify HDL and could inhibit PON1 activity. Because isolevuglandins are more reactive than malondialdehyde, we used in vitro models containing HDL, PON1, and MPO to test the hypothesis that IsoLG formation by MPO and its subsequent modification of HDL contributes to MPO-mediated reductions in PON1 activity. Incubation of MPO with HDL led to modification of HDL proteins, including PON1, by IsoLG. Incubation of HDL with IsoLG reduced PON1 lactonase and antiperoxidation activities. IsoLG modification of recombinant PON1 markedly inhibited its activity, while irreversible IsoLG modification of HDL before adding recombinant PON1 only slightly inhibited the ability of HDL to enhance the catalytic activity of recombinant PON1. Together, these studies support the notion that association of MPO with HDL leads to lower PON1 activity in part via IsoLG-mediated modification of PON1, so that IsoLG modification of PON1 could contribute to increased risk for atherosclerosis, and blocking this modification might prove beneficial to reduce atherosclerosis.  相似文献   

17.
Hyperglycemia is associated with abnormal plasma lipoprotein metabolism and with an elevation in circulating nucleotide levels. We evaluated how extracellular nucleotides may act to perturb hepatic lipoprotein secretion. Adenosine diphosphate (ADP) (>10 μM) acts like a proteasomal inhibitor to stimulate apoB100 secretion and inhibit apoA-I secretion from human liver cells at 4 h and 24 h. ADP blocks apoA-I secretion by stimulating autophagy. The nucleotide increases cellular levels of the autophagosome marker, LC3-II, and increases co-localization of LC3 with apoA-I in punctate autophagosomes. ADP affects autophagy and apoA-I secretion through P2Y(13). Overexpression of P2Y(13) increases cellular LC3-II levels by ~50% and blocks induction of apoA-I secretion. Conversely, a siRNA-induced reduction in P2Y(13) protein expression of 50% causes a similar reduction in cellular LC3-II levels and a 3-fold stimulation in apoA-I secretion. P2Y(13) gene silencing blocks the effects of ADP on autophagy and apoA-I secretion. A reduction in P2Y(13) expression suppresses ERK1/2 phosphorylation, increases the phosphorylation of IR-β and protein kinase B (Akt) >3-fold, and blocks the inhibition of Akt phosphorylation by TNFα and ADP. Conversely, increasing P2Y(13) expression significantly inhibits insulin-induced phosphorylation of insulin receptor (IR-β) and Akt, similar to that observed after treatment with ADP. Nucleotides therefore act through P2Y(13), ERK1/2 and insulin receptor signaling to stimulate autophagy and affect hepatic lipoprotein secretion.  相似文献   

18.
High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号