首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Compound C is commonly used as an inhibitor of AMP-activated protein kinase (AMPK), which serves as a key energy sensor in cells. In this study, we found that Compound C treatment of MCF7 cells led to Bax redistribution from the cytoplasm to mitochondria and cell death. However, this effect does not involve AMPK. In addition, we found that treatment with this compound leads to an enhanced ceramide production. Analyses by quantitative PCR and ceramide synthase activity assay suggest that ceramide synthase 5 (LASS/CerS 5) is involved in Compound C-induced ceramide upregulation. Downregulation of LASS/CerS 5 was found to attenuate Compound C-mediated ceramide production, Bax redistribution, and cell death.  相似文献   

2.
Ceramide is a key bioactive mediator that inhibits surfactant phosphatidylcholine (PtdCho) synthesis in lung epithelia. Ceramide availability is governed by sphingomyelin (SM) hydrolysis, but less is known regarding its de novo synthesis. In this study, we observed that ceramide synthesis within murine lung epithelia was associated with high-level ceramide synthase (dihydroceramide synthase) activity. Longevity assurance homolog 5 (LASS5) was the predominant ceramide synthase isoform detected in lung epithelia, whereas relatively lower level expression was detected for the other five mammalian homologs. Pulmonary LASS5 was developmentally regulated, but its expression was spatially and gender nonspecific. Exogenously expressed LASS5 in lung epithelia was membrane-associated, triggering increased ceramide synthesis, whereas knockdown studies using fumonisin B1 or LASS5 small, interfering RNA reduced ceramide synthase activity by 78% or 45%, respectively. Overexpression of LASS5 also reduced PtdCho synthesis, but maximal inhibition was achieved when LASS5 was coexpressed with a plasmid encoding a neutral sphingomyelinase involved in SM hydrolysis. These results demonstrate that LASS5 is the major ceramide synthase gene product involved in sphingolipid production that may also regulate PtdCho metabolism in pulmonary epithelia.  相似文献   

3.
Bax triggers cell apoptosis by permeabilizing the outer mitochondrial membrane, leading to membrane potential loss and cytochrome c release. However, it is unclear if proteasomal degradation of Bax is involved in the apoptotic process, especially in heart ischemia-reperfusion (I/R)-induced injury. In the present study, KPC1 expression was heightened in left ventricular cardiomyocytes of patients with coronary heart disease (CHD), in I/R-myocardium in vivo and in hypoxia and reoxygenation (H/R)-induced cardiomyocytes in vitro. Overexpression of KPC1 reduced infarction size and cell apoptosis in I/R rat hearts. Similarly, the forced expression of KPC1 restored mitochondrial membrane potential (MMP) and cytochrome c release driven by H/R in H9c2 cells, whereas reducing cell apoptosis, and knockdown of KPC1 by short-hairpin RNA (shRNA) deteriorated cell apoptosis induced by H/R. Mechanistically, forced expression of KPC1 promoted Bax protein degradation, which was abolished by proteasome inhibitor MG132, suggesting that KPC1 promoted proteasomal degradation of Bax. Furthermore, KPC1 prevented basal and apoptotic stress-induced Bax translocation to mitochondria. Bax can be a novel target for the antiapoptotic effects of KPC1 on I/R-induced cardiomyocyte apoptosis and render mechanistic penetration into at least a subset of the mitochondrial effects of KPC1.  相似文献   

4.
5.
Bax-dependent apoptosis induced by ceramide in HL-60 cells   总被引:11,自引:0,他引:11  
Kim HJ  Mun JY  Chun YJ  Choi KH  Kim MY 《FEBS letters》2001,505(2):264-268
Ceramide is an important lipid messenger involved in mediating a variety of cell functions including apoptosis. In this study, we show that antisense bax inhibits cytochrome c release, poly(ADP-ribose)polymerase cleavage and cell death induced by ceramide in HL-60 cells. In addition, ceramide induces translocation of Bax to mitochondria. The addition of the broad spectrum caspase inhibitor zVAD-fmk prevented ceramide-induced apoptotic cell death but did not inhibit translocation of Bax and mitochondrial cytochrome c release. Furthermore, ceramide inhibits the expression of the antiapoptotic protein Bcl-xL with an increase in the ratio of Bax to Bcl-xL. These data provide direct evidence that Bax plays an important role in regulating ceramide-induced apoptosis.  相似文献   

6.
Lag1 (longevity assurance gene 1) homologues, a family of transmembrane proteins found in all eukaryotes, have been shown to be necessary for (dihydro)ceramide synthesis. All Lag1 homologues contain a highly conserved stretch of 52 amino acids known as the Lag1p motif. However, the functional significance of the conserved Lag1p motif for (dihydro)ceramide synthesis is currently unknown. In this work, we have investigated the function of the motif by introducing eight point mutations in the Lag1p motif of the mouse LASS1 (longevity assurance homologue 1 of yeast Lag1). The (dihydro)ceramide synthase activity of the mutants was tested using microsomes in HeLa cells and in vitro. Six of the mutations resulted in loss of activity in cells and in vitro. In addition, our results showed that C18:0 fatty acid CoA (but not cis-C18:1 fatty acid CoAs) are substrates for LASS1 and that LASS1 in HeLa cells is sensitive to fumonisin B1, an in vitro inhibitor of (dihydro)ceramide synthase. Moreover, we mutated the Lag1p motif of another Lag homologue, human LASS5. The amino acid substitutions in the human LASS5 were the same as in mouse LASS1, and had the same effect on the in vitro activity of LASS5, suggesting the Lag1p motif appears to be essential for the enzyme activity of all Lag1 homologues.  相似文献   

7.
We demonstrated recently (Riebeling, C., Allegood, J.C., Wang, E., Merrill, A. H. Jr., and Futerman, A. H. (2003) J. Biol. Chem. 278, 43452-43459) that upon over-expression in human embryonic kidney cells, longevity assurance gene homolog 5 (LASS5, previously named TRH4) elevates the synthesis of (dihydro)ceramides selectively enriched in palmitic acid. To determine whether LASS5 is a bona fide dihydroceramide synthase or, alternatively, whether it modifies an endogenous dihydroceramide synthase, we over-expressed LASS5 with a hemagglutinin (HA) tag at the C terminus, solubilized it using digitonin, and purified it by immunoprecipitation. Solubilized LASS5-HA displays the same fatty acid selectivity as the membrane-bound enzyme. After elution from agarose beads, only one band could be detected by SDS-PAGE, and its identity was confirmed to be LASS5 by mass spectrometry. Dihydroceramide synthase activity of the eluted LASS5-HA protein was totally dependent on exogenously added phospholipids. Moreover, eluted LASS5-HA was highly selective toward palmitoyl-CoA as acyl donor and was inhibited by the (dihydro)ceramide synthase inhibitor, fumonisin B1. This study identifies LASS5 as a genuine dihydroceramide synthase and demonstrates that mammalian dihydroceramide synthases do not require additional subunits for their activity.  相似文献   

8.
In endothelium, reoxygenation after hypoxia (H/R) has been shown to induce production of reactive oxygen species (ROS) by complex III of the mitochondrial respiratory chain. The purpose of the present study was to test the involvement of ceramide in this phenomenon. Human umbilical vein endothelial cells underwent 2 h of hypoxia (PO2, approximately 20 mmHg) without glucose and 1 h of reoxygenation (PO2, approximately 120 mmHg) with glucose. ROS production was measured by the fluorescent marker 2',7'-dichlorodihydrofluorescein diacetate, and cell death by propidium iodide. We showed that 1) after 1 h of reoxygenation, fluorescence had risen and that ROS production was inhibited by desipramine, an inhibitor of sphingomyelinase, an enzyme responsible for ceramide production (126 +/- 7% vs. 48 +/- 12%, P < 0.05); 2) administration of ceramide (N-acetylsphingosine) per se (i.e., in the absence of H/R) induced ROS production (65 +/- 3%), which was inhibited by complex III inhibitor: antimycin A (24 +/- 3%, P < 0.0001), or stigmatellin (31 +/- 2%, P < 0.0001); 3) hypoxia/reoxygenation-induced ROS production was not affected by either ceramide-activated protein kinase inhibitor dimethyl aminopurine or mitochondrial permeability transition inhibitor cyclosporin A but was significantly inhibited by the antiapoptotic protein Bcl-2 (82 +/- 8%, P < 0.05); 4) ceramide-induced ROS production was also inhibited by Bcl-2 (41 +/- 4%, P < 0.0001). These results demonstrate that in endothelial cells submitted to hypoxia and glucose depletion followed by reoxygenation with glucose, the pathway implicated in mitochondrial complex III ROS production is ceramide dependent and is decreased by the antiapoptotic protein Bcl-2.  相似文献   

9.
The cell membrane contains very small distinct membrane domains enriched of sphingomyelin and cholesterol that are named rafts. We have shown that the formation of ceramide via activation of the acid sphingomyelinase transforms rafts into ceramide-enriched membrane platforms. These platforms are required for infection of mammalian cells with Pseudomonas aeruginosa, Staphylococcus aureus, or Neisseriae gonorrhoeae. In the present study we determined whether the acid sphingomyelinase, ceramide, and ceramide-enriched membrane platforms are also involved in the infection of human cells with pathogenic rhinoviruses. We demonstrate that infection of human epithelial cells with several rhinovirus strains triggers a rapid activation of the acid sphingomyelinase correlating with microtubules- and microfilament-mediated translocation of the enzyme from an intracellular compartment onto the extracellular leaflet of the cell membrane. The activity of the acid sphingomyelinase results in the formation of ceramide in the cell membrane and, finally, large ceramide-enriched membrane platforms. Rhinoviruses colocalize with ceramide-enriched membrane platforms during the infection. The significance of ceramide-enriched membrane platforms for rhinoviral uptake is demonstrated by the finding that genetic deficiency or pharmacological inhibition of the acid sphingomyelinase prevented infection of human epithelial cells by rhinoviruses. The data identify the acid sphingomyelinase and ceramide as key molecules for the infection of human cells with rhinoviruses.  相似文献   

10.
Nitric oxide and reactive oxygen species play a critical role in photoreceptor apoptosis. However, the exact molecular mechanisms triggered by oxidative stress in photoreceptor cell death remain undefined. Here, we demonstrate that the sphingolipid ceramide is the key mediator of oxidative stress-induced apoptosis in 661W retinal photoreceptor cells. Treatment of 661W cells with the nitric oxide donor, sodium nitroprusside, activates acid sphingomyelinase. As a result, sphingomyelin is hydrolysed, which leads to an increase in the concentration of ceramide. We also show that ceramide is responsible for the activation of the mitochondrial apoptotic pathway in 661W photoreceptor cells and subsequent activation of the caspase cascade. Furthermore, we show for the first time that ceramide is responsible for the increased Ca2+ levels in the mitochondria and cytosol that precedes activation of the calpain-mediated apoptotic pathway. Additionally, we provide evidence that ceramide also activates the endolysosomal protease cathepsin D pathway. In summary, our findings show that ceramide controls the cell death decisions in photoreceptor cells and highlight the relevance of acid sphingomyelinase as a potential therapeutic target for the treatment of retinal pathologies.  相似文献   

11.
The role of mitochondrial apoptotic pathway in cardiomyocytes subjected to hypoxia/reoxygenation(H/R) was studied. Cultured cardiomyocytes from neonatal Sprague-Dawley rats were exposed to hyoxia/reoxygenation, the apoptotic cardiomyocytes were stained with Annexin-V-FITC, Hoechst 33342 and TUNEL assay. Mitochondrial transmembrane potential of cardiomyocytes was assessed by JC-1 under fluorescence microscope, the expressions of bcl-2, bax, cytochrome c, apoptosis-induced factor (AIF), and caspase-3 were tested by western-blot. Our data showed apoptosis of cardiomyocytes was significantly increased during H/R, accompanied by translocation of bax to mitochondria, release of cytochrome c and AIF to cytosol. The results indicate that the mitochondrial-mediated apoptotic pathway is initiated as a result of H/R.  相似文献   

12.
The objective of this study was to evaluate mitochondrial alterations in a cell-based model of myocardial ischemia/reperfusion (I/R) injury. Using GFP-biosensors and fluorescence deconvolution microscopy, we investigated mitochondrial morphology in relation to Bax and Bid activation in the HL-1 cardiac cell line. Mitochondria underwent extensive fragmentation during ischemia. Bax translocation from cytosol to mitochondria was initiated during ischemia and proceeded during reperfusion. However, Bax translocation was not sufficient to induce cell death or mitochondrial dysfunction. Bid processing was caspase-8 dependent, and Bid translocation to mitochondria occurred after Bax translocation and clustering, and minutes before cell death. Clustering of Bax into distinct regions on mitochondria could be prevented by CsA, an inhibitor of the mitochondrial permeability transition pore, and also by SB203580, an inhibitor of p38 MAPK. Surprisingly, mitochondrial fragmentation which occurred during ischemia and before Bax translocation could be reversed by the addition of the p38 inhibitor SB203580 at reperfusion. Taken together, these results implicate p38 MAPK in the mitochondrial remodeling response to I/R that facilitates Bax recruitment to mitochondria.  相似文献   

13.
C(6)-pyridinium (D-erythro-2-N-[6'-(1'-pyridinium)-hexanoyl]sphingosine bromide [LCL29]) is a cationic mitochondrion-targeting ceramide analog that promotes mitochondrial permeabilization and cancer cell death. In this study, we compared the biological effects of that compound with those of D-erythro-C(6)-ceramide, its non-mitochondrion-targeting analog. In MCF7 cells it was found that C(6)-pyridinium ceramide preferentially promoted autophagosome formation and retarded cell growth more extensively than its uncharged analog. This preferential inhibition of cell growth was also observed in breast epithelial cells and other breast cancer cells. In addition, this compound could promote Bax translocation to mitochondria. This redistribution of Bax in MCF7 cells could be blocked by the pan-caspase inhibitor zVAD-fmk but via a Bid-independent signaling pathway. Moreover, C(6)-pyridinium ceramide-induced translocation of Bax to mitochondria led to mitochondrial permeabilization and cell death. Overall, we show that mitochondrial targeting of C(6)-pyridinium ceramide significantly enhances cellular response to this compound.  相似文献   

14.
The proapoptotic protein Bax plays an important role in cardiomyocytic cell death. Ablation of this protein has been shown to diminish cardiac damage in Bax-knockout mice during ischemia-reperfusion. Presently, studies of Bax-mediated cardiac cell death examined primarily the expression levels of Bax and its prosurvival factor Bcl-2 rather than the localization of this protein, which dictates its function. Using immunofluorescence labeling, we have shown that in neonatal rat cardiomyocytes and in H9c2 cardiomyoblasts, Bax translocates from cytosol to mitochondria upon the induction of apoptosis by hypoxia-reoxygenation-serum withdrawal and by the presence of the free-radical inducer menadione. Also, we found that Bax translocation to mitochondria was associated with the exposure of an NH2-terminal epitope, and that this translocation could be partially blocked by the prosurvival factors Bcl-2 and Bcl-XL. To visualize the translocation of Bax in living cells, we have developed an H9c2 cell line that stably expresses green fluorescent protein (GFP)-tagged Bax. This cell line has GFP-Bax localized primarily in the cytosol in the absence of apoptotic inducers. Upon induction of apoptosis by a number of stimuli, including menadione, staurosporine, sodium nitroprusside, and hypoxia-reoxygenation-serum withdrawal, we could observe the translocation of Bax from cytosol to mitochondria. This translocation was not affected by retinoic acid-induced differentiation of H9c2 cells. Additionally, this translocation was associated with loss of mitochondrial membrane potential, release of cytochrome c, and fragmentation of nuclei. Finally, using a tetramethylrhodamine-based dye, we have shown that a rapid screening process based on the loss of mitochondrial membrane potential could be developed to monitor GFP-Bax translocation to mitochondria. Overall, the GFP-Bax-stable H9c2 cell line that we have developed represents a unique tool for examining Bax-mediated apoptosis, and it could be of great importance in screening therapeutic compounds that could block Bax translocation to mitochondria to attenuate apoptosis.  相似文献   

15.
Transferrin receptor mediates internalization of transferrin with bound ferric ions through the clathrin-dependent pathway. We found that binding of transferrin to the receptor induced rapid generation of cell surface ceramide which correlated with activation of acid, but not neutral, sphingomyelinase. At the onset of transferrin internalization both ceramide level and acid sphingomyelinase activity returned to their basic levels. Down-regulation of acid sphingomyelinase in cells with imipramine or silencing of the enzyme expression with siRNA stimulated transferrin internalization and inhibited its recycling. In these conditions colocalization of transferrin with clathrin was markedly reduced. Simultaneously, K+ depletion of cells which interfered with the assembly of clathrin-coated pits inhibited the uptake of transferrin much less efficiently than it did in control conditions. The down-regulation of acid sphingomyelinase activity led to the translocation of transferrin receptor to the raft fraction of the plasma membrane upon transferrin binding. The data suggest that lack of cell surface ceramide, generated in physiological conditions by acid sphingomyelinase during transferrin binding, enables internalization of transferrin/transferrin receptor complex by clathrin-independent pathway.  相似文献   

16.
Despite the role of sphingolipid/cholesterol rafts as signaling platforms for Fcgamma receptor II (FcgammaRII), the mechanism governing translocation of an activated receptor toward the rafts is unknown. We show that at the onset of FcgammaRII cross-linking acid sphingomyelinase is rapidly activated. This enzyme is extruded from intracellular compartments to the cell surface, and concomitantly, exofacially oriented ceramide is produced. Both non-raft and, to a lesser extent, raft sphingomyelin pools were hydrolyzed at the onset of FcgammaRII cross-linking. The time course of ceramide production preceded the recruitment of FcgammaRII to rafts and the receptor phosphorylation. Exogenous C(16)-ceramide facilitated clustering of FcgammaRII and its association with rafts. In contrast, inhibition of acid sphingomyelinase diminished both the ceramide generation and clustering of cross-linked FcgammaRII. Under these conditions, tyrosine phosphorylation of FcgammaRII and receptor-accompanying proteins was also reduced. All the inhibitory effects were bypassed by treatment of cells with exogenous ceramide. These data provide evidence that the generation of cell surface ceramide is a prerequisite for fusion of cross-linked FcgammaRII and rafts, which triggers the receptor tyrosine phosphorylation and signaling.  相似文献   

17.

Background

We previously identified curcumin as a potent inducer of fibroblast apoptosis, which could be used to treat hypertrophic scar formation. Here we investigated the underlying mechanism of this process.

Principal Findings

Curcumin-induced apoptosis could not be blocked by caspase-inhibitors and we could not detect any caspase-3/7 activity. Curcumin predominantly induced mitochondria-mediated ROS formation and stimulated the expression of the redox-sensitive pro-apoptotic factor p53. Inhibition of the pro-apoptotic signaling enzyme glycogen synthase kinase-3β (GSK-3β) blocked curcumin-induced apoptosis. Apoptosis was associated with high molecular weight DNA damage, a possible indicator of apoptosis-inducing factor (AIF) activity. Indeed, curcumin caused nuclear translocation of AIF, which could be blocked by the antioxidant N-acetyl cysteine. We next investigated how AIF is effluxed from mitochondria in more detail. The permeability transition pore complex (PTPC), of which the voltage-dependent anion channel (VDAC) is a component, could be involved since the VDAC-inhibitor DIDS (4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid) efficiently blocked AIF translocation. However, PTPC is not involved in AIF release since cyclosporine A, a specific inhibitor of the complex did not block apoptosis. Alternatively, the pro-apoptotic protein Bax could have formed mitochondrial channels and interacted with VDAC. Curcumin caused mitochondrial translocation of Bax, which was blocked by DIDS, suggesting a Bax-VDAC interaction. Interestingly, ceramide channels can also release apoptogenic factors from mitochondria and we found that addition of ceramide induced caspase-independent apoptosis. Surprisingly, this process could also be blocked by DIDS, suggesting the concerted action of Bax, VDAC and ceramide in the efflux of AIF from the mitochondrion.

Conclusions

Curcumin-induced fibroblast apoptosis is totally caspase-independent and relies on the mitochondrial formation of ROS and the subsequent nuclear translocation of AIF, which is released from a mitochondrial pore that involves VDAC, Bax and possibly ceramides. The composition of the AIF-releasing channel seems to be much more complex than previously thought.  相似文献   

18.
Resistance to chemotherapeutic drugs often limits their clinical efficacy. Previous studies have implicated the bioactive sphingolipid sphingosine-1-phosphate (S-1-P) in regulating sensitivity to cisplatin [cis-diamminedichloroplatinum(II)] and showed that modulating the S-1-P lyase can alter cisplatin sensitivity. Here, we show that the members of the sphingosine kinase (SphK1 and SphK2) and dihydroceramide synthase (LASS1/CerS1, LASS4/CerS4, and LASS5/CerS5) enzyme families each have a unique role in regulating sensitivity to cisplatin and other drugs. Thus, expression of SphK1 decreases sensitivity to cisplatin, carboplatin, doxorubicin, and vincristine, whereas expression of SphK2 increases sensitivity. Expression of LASS1/CerS1 increases the sensitivity to all the drugs tested, whereas LASS5/CerS5 only increases sensitivity to doxorubicin and vincristine. LASS4/CerS4 expression has no effect on the sensitivity to any drug tested. Reflecting this, we show that the activation of the p38 mitogen-activated protein (MAP) kinase is increased only by LASS1/CerS1, and not by LASS4/CerS4 or LASS5/CerS5. Cisplatin was shown to cause a specific translocation of LASS1/CerS1, but not LASS4/CerS4 or LASS5/CerS5, from the endoplasmic reticulum (ER) to the Golgi apparatus. Supporting the hypothesis that this translocation is mechanistically involved in the response to cisplatin, we showed that expression of SphK1, but not SphK2, abrogates both the increased cisplatin sensitivity in cells stably expressing LASS1/CerS and the translocation of the LASS1/CerS1. The data suggest that the enzymes of the sphingolipid metabolic pathway can be manipulated to improve sensitivity to the widely used drug cisplatin.  相似文献   

19.
20.
Estrogen is a known immunomodulator with pleiotropic effects on macrophage function that partly accounts for the gender bias observed in numerous autoimmune, cardiovascular, and neurodegenerative disorders. The effect of estrogen on the survival of human macrophages is largely unknown, and in this study we demonstrate that 17beta-estradiol (E2) provokes a death response in human THP-1 macrophages by initiating Bax translocation from cytosol to the mitochondria; however, a concomitant up-regulation of Bcl-2 creates a Bax to Bcl-2 ratio favorable for Bcl-2, thus ensuring cell survival. Both Bcl-2 up-regulation and Bax translocation are estrogen receptor-dependent events; however, Bcl-2 augmentation but not Bax translocation is dependent on Ca(2+) increase, activation of protein kinase C, and ERK phosphorylation. This estrogen-induced Bcl-2 increase is crucial for the survival of THP-1 macrophages as well as that of human peripheral blood monocyte-derived macrophages, which is evident from E2-induced cell death under small interfering RNA-mediated Bcl-2 knockdown conditions. Hence, this study demonstrates that E2-induced Bcl-2 up-regulation is a homeostatic survival mechanism necessary for the manifestation of immunomodulatory effect of estrogen on human macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号