首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
While the roles of the mammalian target of rapamycin (mTOR) signaling in regulation of cell growth, proliferation, and survival have been well documented in various cell types, its actions in osteoblasts are poorly understood. In this study, we determined the effects of rapamycin, a specific inhibitor of mTOR, on osteoblast proliferation and differentiation using MC3T3-E1 preosteoblastic cells (MC-4) and primary mouse bone marrow stromal cells (BMSCs). Rapamycin significantly inhibited proliferation in both MC-4 cells and BMSCs at a concentration as low as 0.1 nM. Western blot analysis shows that rapamycin treatment markedly reduced levels of cyclin A and D1 protein in both cell types. In differentiating osteoblasts, rapamycin dramatically reduced osteoblast-specific osteocalcin (Ocn), bone sialoprotein (Bsp), and osterix (Osx) mRNA expression, ALP activity, and mineralization capacity. However, the drug treatment had no effect on osteoblast differentiation parameters when the cells were completely differentiated. Importantly, rapamycin markedly reduced levels of Runx2 protein in both proliferating and differentiating but not differentiated osteoblasts. Finally, overexpression of S6K in COS-7 cells significantly increased levels of Runx2 protein and Runx2 activity. Taken together, our studies demonstrate that mTOR signaling affects osteoblast functions by targeting osteoblast proliferation and the early stage of osteoblast differentiation.  相似文献   

3.
4.
5.
6.
Runx2: of bone and stretch   总被引:4,自引:0,他引:4  
  相似文献   

7.
G蛋白偶联受体3(Gpr3)属于G蛋白偶联受体视紫质家族成员. Gpr3通过激活Gs蛋白介导的下游信号通路,维持卵泡卵母细胞减数分裂的前期阻滞,但在卵泡颗粒细胞中的作用不清. 为了明确Gpr3在猪卵泡颗粒细胞中的功能,构建了Gpr3基因的真核表达载体,利用过表达的方式激活其介导的信号通路,并利用MTT、流式细胞术和real-time PCR等方法检测了过表达Gpr3对猪卵泡颗粒细胞增殖及凋亡的影响. 结果显示,过表达Gpr3后,猪颗粒细胞的增殖水平显著下调,G0/G1期细胞的百分比增加,S期细胞减少,Cyclin B1和CDK1 mRNA的表达量也显著降低;同时,显著增加了颗粒细胞的凋亡率,在抑制Bcl-2表达的同时,促进了Bax的表达. 结果表明:过表达Gpr3在猪颗粒细胞中具有抑增殖促凋亡的作用,丰富了其在调节卵泡发育过程中的生物学功能.  相似文献   

8.
Runx proteins are essential for a number of developmental processes and are aberrantly expressed in many human cancers. Runx factors bind DNA and co‐factors to activate or repress genes crucial for bone formation, hematopoiesis, and neuronal development. Co‐activator activator (CoAA) is a nuclear protein that regulates gene expression, RNA splicing and is overexpressed in many human tumors. In this study, we identified CoAA as a Runx2 binding protein. CoAA repressed Runx factor‐dependent activation of reporter genes in a histone deacetylase‐independent manner. CoAA also blocked Runx2‐mediated repression of the Axin2 promoter, a novel Runx target gene. The carboxy‐terminus of CoAA is essential for binding the Runt domains of Runx1 and Runx2. In electophoretic mobility shift assays, CoAA inhibited Runx2 interactions with DNA. These data indicate that CoAA is an inhibitor of Runx factors and can negate Runx factor regulation of gene expression. CoAA is expressed at high levels in human fetal osteoblasts and osteosarcoma cell lines. Suppression of CoAA expression by RNA interference reduced osteosarcoma cell viability in vitro, suggesting that it contributes to the proliferation and/or survival of osteoblast lineage cells. J. Cell. Biochem. 108: 378–387, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
10.
11.
12.
13.
14.
Runx2 has been identified as "a master gene" for the differentiation of osteoblasts and Runx2-deficient mice has demonstrated a complete absence of mature osteoblast and ossification. To further characterize the Runx2 responsive elements within the bone sialoprotein (BSP) promoter and further investigate into the role of Runx2 haploinsufficiency in osteoblast differentiation, mBSP9.0Luc mice and mBSP4.8Luc mice were crossed with Runx2-deficient mice respectively. Luciferase assay, micro CT scan, and histological analysis were performed using tissues isolated from mBSP9.0luc/Runx2+/- mice, mBSP4.8luc/Runx2+/- mice and their corresponding Runx2+/+ littermates. Alkaline phosphatase activity, mineralization assays and RT-PCR analysis using calvarial osteoblasts isolated from these transgenic mice were also performed. Luciferase assay demonstrated an early increase in luciferase expression in mBSP9.0luc/Runx2+/- mice before the expression level of luciferase dramatically decreased and turned lower than that in their control littermates in later stages. In contrast, luciferase expression in mBSP4.8luc/Runx2+/- failed to show such an early increase. Micro CT scan and histological analysis showed that BMD and trabecular bone volume were decreased and bone formation was delayed in Runx2+/- mice. Furthermore, mineralization assay and semi-quantitative RT-PCR assay demonstrated a gene-dose-dependent decrease in bone nodule formation and bone marker genes expression levels in cultured calvarial osteoblasts derived from Runx2 knockout mice. Reconstitution of Runx2-null cells with Runx2 vector partially rescued the osteoblast function defects. In conclusion, the 9.0 kb BSP promoter demonstrated a higher tissue-specific regulation of the BSP gene by Runx2 in vivo and full Runx2 gene dose is essential for osteoblast differentiation and normal bone formation.  相似文献   

15.
Parathyroid hormone (PTH) increases fibroblast growth factor receptor‐1 (FGFR1) and fibroblast growth factor‐2 (FGF‐2) expression in osteoblasts and the anabolic response to PTH is reduced in Fgf2?/? mice. This study examined whether candidate factors implicated in the anabolic response to PTH were modulated in Fgf2?/? osteoblasts. PTH increased Runx‐2 protein expression in Fgf2+/+ but not Fgf2?/? osteoblasts. By immunocytochemistry, PTH treatment induced nuclear accumulation of Runx‐2 only in Fgf2+/+ osteoblasts. PTH and FGF‐2 regulate Runx‐2 via activation of the cAMP response element binding proteins (CREBs). Western blot time course studies showed that PTH increased phospho‐CREB within 15 min that was sustained for 24 h in Fgf2+/+ but had no effect in Fgf2?/? osteoblasts. Silencing of FGF‐2 in Fgf2+/+ osteoblasts blocked the stimulatory effect of PTH on Runx‐2 and CREBs phosphorylation. Studies of the effects of PTH on proteins involved in osteoblast precursor proliferation and apoptosis showed that PTH increased cyclinD1‐cdk4/6 protein in Fgf2+/+ but not Fgf2?/? osteoblasts. Interestingly, PTH increased the cell cycle inhibitor p21/waf1 in Fgf2?/? osteoblasts. PTH increased Bcl‐2/Bax protein ratio in Fgf2+/+ but not Fgf2?/? osteoblasts. In addition PTH increased cell viability in Fgf2+/+ but not Fgf2?/? osteoblasts. These data suggest that endogenous FGF‐2 is important in PTH effects on osteoblast proliferation, differentiation, and apoptosis. Reduced expression of these factors may contribute to the reduced anabolic response to PTH in the Fgf2?/? mice. Our results strongly indicate that the anabolic PTH effect is dependent in part on FGF‐2 expression. J. Cell. Physiol. 219: 143–151, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
17.
18.
Pseudohyphal differentiation in the budding yeast Saccharomyces cerevisiae is induced in diploid cells in response to nitrogen starvation and abundant fermentable carbon source. Filamentous growth requires at least two signaling pathways: the pheromone responsive MAP kinase cascade and the Gpa2p-cAMP-PKA signaling pathway. Recent studies have established a physical and functional link between the Galpha protein Gpa2 and the G protein-coupled receptor homolog Gpr1. We report here that the Gpr1 receptor is required for filamentous and haploid invasive growth and regulates expression of the cell surface flocculin Flo11. Epistasis analysis supports a model in which the Gpr1 receptor regulates pseudohyphal growth via the Gpa2p-cAMP-PKA pathway and independently of both the MAP kinase cascade and the PKA related kinase Sch9. Genetic and physiological studies indicate that the Gpr1 receptor is activated by glucose and other structurally related sugars. Because expression of the GPR1 gene is known to be induced by nitrogen starvation, the Gpr1 receptor may serve as a dual sensor of abundant carbon source (sugar ligand) and nitrogen starvation. In summary, our studies reveal a novel G protein-coupled receptor senses nutrients and regulates the dimorphic transition to filamentous growth via a Galpha protein-cAMP-PKA signal transduction cascade.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号