首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An ultraperformance LC (UPLC) method for the separation of different lipid molecular species and lipid isomers using a stationary phase incorporating charged surface hybrid (CSH) technology is described. The resulting enhanced separation possibilities of the method are demonstrated using standards and human plasma extracts. Lipids were extracted from human plasma samples with the Bligh and Dyer method. Separation of lipids was achieved on a 100 × 2.1 mm inner diameter CSH C18 column using gradient elution with aqueous-acetonitrile-isopropanol mobile phases containing 10 mM ammonium formate/0.1% formic acid buffers at a flow rate of 0.4 ml/min. A UPLC run time of 20 min was routinely used, and a shorter method with a 10 min run time is also described. The method shows extremely stable retention times when human plasma extracts and a variety of biofluids or tissues are analyzed [intra-assay relative standard deviation (RSD) <0.385% and <0.451% for 20 and 10 min gradients, respectively (n = 5); interassay RSD <0.673% and <0.763% for 20 and 10 min gradients, respectively (n = 30)]. The UPLC system was coupled to a hybrid quadrupole orthogonal acceleration time-of-flight mass spectrometer, equipped with a traveling wave ion-mobility cell. Besides demonstrating the separation for different lipids using the chromatographic method, we demonstrate the use of the ion-mobility MS platform for the structural elucidation of lipids. The method can now be used to elucidate structures of a wide variety of lipids in biological samples of different matrices.  相似文献   

2.
Blood plasma is the most complex human-derived proteome, containing other tissue proteomes as subsets. This proteome has only been partially characterized due to the extremely wide dynamic range of the plasma proteins of more than ten orders of magnitude. Thus, the reduction in sample complexity prior to mass spectrometric analysis is particularly important and alternative separation methodologies are required to more effectively mine the lower abundant plasma proteins. Here, we demonstrated a novel separation approach using 2-D free-flow electrophoresis (FFE) separating proteins and peptides in solution according to their pI prior to LC-MS/MS. We used the combination of sequential protein and peptide separation by first separating the plasma proteins into specific FFE fractions. Tryptic digests of the separated proteins were generated and subsequently separated using FFE. The protein separation medium was optimized to segregate albumin into specific fractions containing only few other proteins. An optimization of throughput for the protein separation reduced the separation time of 1 mL of plasma to approximately 3 h providing sufficient material for digestion and the subsequent peptide separation. Our approach revealed low-abundant proteins (e.g., L-selectin at 17 ng/mL and vascular endothelial-cadherin precursor at 30 ng/mL) and several tissue leakage products, thus providing a powerful orthogonal separation step in the proteomics workflow.  相似文献   

3.
The use of proteomics for efficient, accurate, and complete analysis of clinical samples poses a variety of technical challenges. The presence of higher abundance proteins in the plasma, such as albumin, may mask the detection of lower abundance proteins such as the cytokines. Methods have been proposed to deplete the sample of these higher abundance proteins to facilitate detection of those with lower abundance. In this study, a commercially available albumin depletion kit was used to determine if removal of albumin would measurably reduce detection of lower abundance cytokine proteins in human plasma. The Montage Albumin Deplete Kit (Millipore) was used to deplete albumin from LPS-stimulated whole blood from 15 normal human donors. Albumin depletion was measured using the BCG reagent and SDS-PAGE, and cytokine recovery was determined by a microassay immunoassay that measures both pro- and anti-inflammatory cytokines. Average albumin depletion from the samples was 72%. However, several cytokines were also significantly reduced when the albumin was removed from the plasma. Additionally, there was a variable reduction in cytokine recovery from a known mixture of cytokines in a minimal amount of plasma that were loaded onto the columns. These data demonstrate that there may be a non-specific loss of cytokines following albumin depletion, which may confound subsequent proteomic analysis.  相似文献   

4.
5.
Immler D  Greven S  Reinemer P 《Proteomics》2006,6(10):2947-2958
Authentic biomarkers, distilling the essence of a complex, functionally significant process in a mammalian system into a precise, physicochemical measurement have been implicated as a tool of increasing importance for drug discovery and development. However, even in spite of recent technological advances, validating a new biomarker candidate, where generation of suitable antibodies is required, is still a long-lasting task. Methods to accelerate initial validation by MS approaches have been suggested, but all methods described so far are associated with serious drawbacks, finally leading to non-generic methods of detection and quantification. Moreover, when complex body fluids are used as samples, efficient debulking strategies are crucial to open a window of analytical sensitivity in the ng/mL range, where many diagnostically relevant analytes are present. Here we report the proof-of-principle of a multi-dimensional strategy for accelerated initial validation of biomarker candidates by MS, which promises to be generally applicable, sensitive and quantitative. The method presented employs a combination of electrophoretic and chromatographic steps on the peptide level, followed by MS quantification using isotopically labeled synthetic peptides as internal standards. Our proposed workflow includes up to four dimensions, finally resulting in a desired LOD sufficient to detect and quantify diagnostically relevant analytes from complex samples. Although the current state of the method only represents a starting point for further validation and development, it reveals great potential in biomarker validation.  相似文献   

6.
A novel strategy, termed protein array pixelation, is described for comprehensive profiling of human plasma and serum proteomes. This strategy consists of three sequential high-resolution protein prefractionation methods (major protein depletion, solution isoelectrofocusing, and 1-DE) followed by nanocapillary RP tryptic peptide separation prior to MS/MS analysis. The analysis generates a 2-D protein array where each pixel in the array contains a group of proteins with known pI and molecular weight range. Analysis of the HUPO samples using this strategy resulted in 575 and 2890 protein identifications from plasma and serum, respectively, based on HUPO-approved criteria for high-confidence protein assignments. Most importantly, a substantial number of low-abundance proteins (low ng/mL - pg/mL range) were identified. Although larger volumes were used in initial prefractionation steps, the protein identifications were derived from fractions equivalent to approximately 0.6 microL (45 microg) of plasma and 2.4 microL (204 microg) of serum. The time required for analyzing the entire protein array for each sample is comparable to some published shotgun analyses of plasma and serum proteomes. Therefore, protein array pixelation is a highly sensitive method capable of detecting proteins differing in abundance by up to nine orders of magnitude. With further refinement, this method has the potential for even higher capacity and higher throughput.  相似文献   

7.
Due to ease of accessibility, plasma has become the sample of choice for proteomics studies directed towards biomarker discovery intended for use in diagnostics, prognostics and even in theranostics. The result of these extensive efforts is a long list of potential biomarkers, very few of which have led to clinical utility. Why have so many potential biomarkers failed validation? Herein, we address certain issues encountered, which complicate biomarker discovery efforts originating from plasma. The advantages of stabilizing the sample at collection by the addition of protease inhibitors are discussed. The principles of free-flow electrophoresis (FFE) separation are provided together with examples applying to various studies. Finally, particular attention is given to plasma or serum analysis using multidimensional separation strategies into which the FFE is incorporated. The advantages of using FFE separation in these workflows are discussed.  相似文献   

8.
Due to ease of accessibility, plasma has become the sample of choice for proteomics studies directed towards biomarker discovery intended for use in diagnostics, prognostics and even in theranostics. The result of these extensive efforts is a long list of potential biomarkers, very few of which have led to clinical utility. Why have so many potential biomarkers failed validation? Herein, we address certain issues encountered, which complicate biomarker discovery efforts originating from plasma. The advantages of stabilizing the sample at collection by the addition of protease inhibitors are discussed. The principles of free-flow electrophoresis (FFE) separation are provided together with examples applying to various studies. Finally, particular attention is given to plasma or serum analysis using multidimensional separation strategies into which the FFE is incorporated. The advantages of using FFE separation in these workflows are discussed.  相似文献   

9.
The creation of a double His-tag fusion that forms a RNA stem loop in the mRNA encoding the N-terminus of the target protein is a novel approach for the enhancement of expression, purification, and detection of a recombinant protein. Compared to a single His-tag fusion, a tandem His-tag fusion RNA stem loop, located downstream of the constitutive groE and Ch promoters, enhanced heterologous gene expression in Brucella, Salmonella, and Escherichia. We demonstrated one-step detection and purification of recombinant green fluorescence protein (GFP) directly from Brucella spp. without using Escherichia coli as an expression host. The amount of purified GFP using the tandem His-tag RNA stem loop increased more than threefold; moreover, the sensitivity of detection increased more than fourfold in comparison to the single His-tag fusion form. This method has the potential to significantly improve heterologous gene expression and high-throughput protein synthesis and purification.  相似文献   

10.

Background

To date, the complexity of the plasma proteome exceeds the analytical capacity of conventional approaches to isolate lower abundance proteins that may prove to be informative biomarkers. Only complex multistep separation strategies have been able to detect a substantial number of low abundance proteins (<100 ng/ml). The first step of these protocols is generally the depletion of high abundance proteins by the use of immunoaffinity columns or, alternatively, the enrichment of by the use of solid phase hexapeptides ligand libraries.

Methodology/Principal Findings

Here we present a direct comparison of these two approaches. Following either approach, the plasma sample was further fractionated by SCX chromatography and analyzed by RP-LC-MS/MS with a Q-TOF mass spectrometer. The depletion of the 20 most abundant plasma proteins allowed the identification of about 25% more proteins than those detectable following low abundance proteins enrichment. The two datasets are partially overlapping and the identified proteins belong to the same order of magnitude in terms of plasma concentration.

Conclusions/Significance

Our results show that the two approaches give complementary results. However, the enrichment of low abundance proteins has the great advantage of obtaining much larger amount of material that can be used for further fractionations and analyses and emerges also as a cheaper and technically simpler approach. Collectively, these data indicate that the enrichment approach seems more suitable as the first stage of a complex multi-step fractionation protocol.  相似文献   

11.
The major human vitamin K-dependent proteins were purified from plasma using immunoadsorbents made with antibodies specific for each protein. Monoclonal antibodies to Factor VII, Factor IX, Factor X, Protein C, and Protein S were prepared from mice immunized with isolated vitamin K-dependent antigens. Purified monoclonal antibodies and a purified burro polyclonal anti-prothrombin immunoglobulin were individually coupled to Sepharose and used in a tandem series of columns to purify each of the vitamin K-dependent proteins from eluates of barium citrate precipitates of plasma. The proteins were eluted from the columns by sodium thiocyanate and retained functional activity following dialysis. Prothrombin, Factor VII, Factor IX, Factor X and Protein C were essentially homogeneous as judged by NaDodSO4-PAGE; Protein S was isolated as a Protein S-C4b binding protein complex. These results indicate the utility of monoclonal antibody immunoadsorbents for purifying the human vitamin K-dependent proteins and represent a considerable simplification over other purification schemes.  相似文献   

12.
A method is described to isolate human erythropoietin (hEPO) from plasma using an EPO-specific immunoaffinity micro well plate (IAP). The operating conditions of the method (binding, blocking and elution) were optimised to avoid isoform discrimination and cross-contamination with other glycoproteins. The overall hEPO recovery was ca. 56% and significant clean-up for plasmatic hEPO was achieved. Polyvinylpyrrolidone (PVP) was used as a blocking reagent and elution took place at pH 11.0. Under these conditions all isoforms from recombinant human EPOs (rhEPOs) and analogues were uniformly recovered guaranteeing lack of discrimination. The resulting procedure allowed isolating erythropoietin from plasma in conditions amenable to hEPO analysis by other techniques such as SDS-PAGE or IEF. Moreover, avoiding contamination with other glycosylated material allowed the identification in human plasma samples of the non-human N-glycolyl-neuraminic acid (Neu5Gc) using HPLC-FLD. Neu5Gc is present as 1–2% of the sialic acid content in rhEPO so this approach could be used to unequivocally detect abuse of rhEPOs or analogues as part of the doping control.  相似文献   

13.
An assay employing automated solid-phase extraction (SPE) followed by high-performance liquid chromatography with positive ion TurboIonspray tandem mass spectrometry (LC-MS-MS) was developed and validated for the quantification of rosuvastatin (Crestor) in human plasma. Rosuvastatin is a hydroxy-methyl glutaryl coenzyme A reductase inhibitor currently under development by AstraZeneca. The standard curve range in human plasma was 0.1-30 ng/ml with a lower limit of quantification (LLOQ) verified at 0.1 ng/ml. Inaccuracy was less than 8% and imprecision less than +/-15% at all concentration levels. There was no interference from endogenous substances. The analyte was stable in human plasma following three freeze/thaw cycles and for up to 6 months following storage at both -20 and -70 degrees C. The assay was successfully applied to the analysis of rosuvastatin in human plasma samples derived from clinical trials, allowing the pharmacokinetics of the compound to be determined.  相似文献   

14.
Plasma samples from a large number of different ethnic groups, consisting of U.S. whites, U.S. blacks, Eskimos from Kodiak and St. Lawrence Island, Aleuts of the Pribilof Islands, and three Amerindian groups from Canada and Mexico have been analyzed by isoelectric focusing followed by immunoblotting to determine the magnitude of genetic variation at the F XIIIB structural locus. The synthesis of published data and our new data demonstrate remarkable variation in the distribution of the three common alleles at this locus and establishes F XIIIB as an extremely informative marker for population differentiation and evolutionary studies. Genetic distance analysis based on this variation separates Caucasian, black, and Mongoloid populations into three distinct clusters.  相似文献   

15.
Separation of complex protein mixtures that have a wide dynamic range of concentration, such as plasma or serum, is a challenge for proteomic analysis. Sample preparation to remove high-abundant proteins is essential for proteomics analysis. Immunoglobulin yolk (IgY) antibodies have unique and advantageous features that enable specific protein removal to aid in the detection of low-abundant proteins and biomarker discovery. This report describes the efficiency and effectiveness of IgY microbeads in separating 12 abundant proteins from plasma with an immunoaffinity spin column or LC column. The protein separation and sample preparation process was monitored via SDS-PAGE, 2-DE, LC-MS/MS, or clinical protein assays. The data demonstrate the high specificity of the protein separation, with removal of 95-99.5% of the abundant proteins. IgY microbeads against human proteins can also selectively remove orthologous proteins of other mammals such as mouse, rat, etc. Besides the specificity and reproducibility of the IgY microbeads, the report discusses the factors that may cause potential variations in protein separation such as protein-protein interactions (known as "Interactome"), binding and washing conditions of immunoaffinity reagents, etc. A novel concept of Seppromics is introduced to address methodologies and science of protein separation in a context of proteomics.  相似文献   

16.
The partitioning of cells in aqueous two-phase systems formed by poly(ethylene glycol) (PEG) and dextran can be changed by incubating the cells with a PEG-modified antibody directed specifically against its surface. We have developed a new approach for immunoaffinity cell partitioning (IACP) in which the antibodies are first reacted with tresylated monomethoxy PEG (TMPEG) in sodium phosphate buffer, pH 7.5, the excess TMPEG is quenched by reaction with bovine serum albumin, and the resulting preparation is used directly for incubation with the cells without any isolation of the monomethoxyPEG (MPEG)-antibody conjugates. We have demonstrated the specificity of this IACP method by showing that MPEG-modified anti-human red blood cell antibody increases the partition of human erythrocytes from the interface to the PEG-rich top phase (up to 100%) but not the partitioning of either neutrophils or HL60 cells. Irrelevant antibodies do not affect the partitioning of red blood cells. The partitioning behaviors of erythrocytes and HL60 cells in mixtures varying from 75 to 10% red blood cells subjected to IACP are similar to those of the pure cell population, i.e., erythrocytes ca. 100% and HL60 cells 3% in top phase. Thus, the population of erythrocytes can be almost completely extracted into the top phase in a single step. The contaminant cells represent only a small percentage (less than 5% in most of the cases) of the cell mixture recovered in top phase. Both cell populations can be completely separated by countercurrent distribution (CCD).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
Chang SS  Hsu HL  Cheng JC  Tseng CP 《PloS one》2011,6(5):e20303

Background

Bacterial DNA contamination in PCR reagents has been a long standing problem that hampers the adoption of broad-range PCR in clinical and applied microbiology, particularly in detection of low abundance bacteria. Although several DNA decontamination protocols have been reported, they all suffer from compromised PCR efficiency or detection limits. To date, no satisfactory solution has been found.

Methodology/Principal Findings

We herein describe a method that solves this long standing problem by employing a broad-range primer extension-PCR (PE-PCR) strategy that obviates the need for DNA decontamination. In this method, we first devise a fusion probe having a 3′-end complementary to the template bacterial sequence and a 5′-end non-bacterial tag sequence. We then hybridize the probes to template DNA, carry out primer extension and remove the excess probes using an optimized enzyme mix of Klenow DNA polymerase and exonuclease I. This strategy allows the templates to be distinguished from the PCR reagent contaminants and selectively amplified by PCR. To prove the concept, we spiked the PCR reagents with Staphylococcus aureus genomic DNA and applied PE-PCR to amplify template bacterial DNA. The spiking DNA neither interfered with template DNA amplification nor caused false positive of the reaction. Broad-range PE-PCR amplification of the 16S rRNA gene was also validated and minute quantities of template DNA (10–100 fg) were detectable without false positives. When adapting to real-time and high-resolution melting (HRM) analytical platforms, the unique melting profiles for the PE-PCR product can be used as the molecular fingerprints to further identify individual bacterial species.

Conclusions/Significance

Broad-range PE-PCR is simple, efficient, and completely obviates the need to decontaminate PCR reagents. When coupling with real-time and HRM analyses, it offers a new avenue for bacterial species identification with a limited source of bacterial DNA, making it suitable for use in clinical and applied microbiology laboratories.  相似文献   

19.
AIMS: To study the effect of low pH stress on glutathione (GSH) synthesis and excretion capability of GSH fermentation production in Candida utilis. METHODS AND RESULTS: When C. utilis WSH 02-08 was cultivated in a glucose-ammonium sulfate medium without pH control, GSH leakage occurred when the pH of the medium decreased to 1.5. However, analysis of the cell viability indicated that the cells were not lysed. To further study the effect of low pH stress on GSH production, pH-controlled batch cultures were conducted, where the pH was switched from 5.5 to 1.2 at 24 h and maintained at 1.2 for 6 h. Nearly all intracellular GSH was leaked into the medium and the cell viability decreased dramatically, conceiving a long-term exposure of strain WSH 02-08 at low pH environment led to a complete cell lysis. A critical point (treated at pH 1.2 for 3 h) was experimentally determined, where most cells were alive but suffering a low pH stress. Low pH-stressed C. utilis cells displayed an increased intracellular GSH synthesis and export capability, which protected the cells against short-term low pH treatment. CONCLUSIONS: Using this knowledge, a low pH-stress strategy was developed and applied in fed-batch production of GSH and 197.3 mg l-1 of GSH was secreted into the medium. The GSH-specific production yield could be increased from 2.11 to 2.67% (w/w), and the total GSH concentration could reach 737.1 mg l-1 and increased by 24.9%. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report of GSH secretion of C. utilis at low pH. This study demonstrated the importance of the physiology-based fermentation strategy in the production of useful metabolites.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号