首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Dock2 has been shown to be indispensable for chemotaxis of mature lymphocytes as a critical Rac activator. However, the functional expression of Dock2 in immature hematopoietic cells is unclear. In this study, we demonstrate that Dock2 is broadly expressed in bone marrow (BM) hematopoietic compartment, including hematopoietic stem/progenitor cell (HSC/HPC) fraction. Response of Dock2−/− HPCs to CXCL12 in chemotaxis and actin polymerization in vitro was impaired, although α4 integrin activation by CXCL12 was not altered. Myelosuppressive stress on HSCs in vivo, such as consecutive 5-FU administration and serial bone marrow transplantation, did not show hematopoietic defect in Dock2−/− mice. Long-term engraftment of transplanted Dock2−/− BM cells was severely impaired in competitive reconstitution. However, this was not intrinsic to HSCs but originated from the defective competition of Dock2−/− lymphoid precursors. These results suggest that Dock2 plays a significant role in BM lymphopoiesis, but is dispensable for HSC engraftment and self-renewal.  相似文献   

2.
Despite the established role for PI3Ks in cell migration, the PI3Ks involved in lymphocyte chemotaxis are poorly defined. In this study, we report that p110gamma-deficient T cells, but not B cells, show reduced chemotactic responses to the lymphoid chemokines, CCL19, CCL21, and CXCL12. As B cell and T cell chemotactic responses were both sensitive to the general PI3K inhibitors, wortmannin (WMN) and LY294002, we explored whether B cell responses were affected in mice lacking p110delta, a major PI3K isoform in lymphocytes. B cells deficient in p110delta showed diminished chemotactic responses, especially to CXCL13. Adoptive transfer experiments with WMN-treated wild-type B cells and with p110delta-deficient B cells revealed diminished homing to Peyer's patches and splenic white pulp cords. WMN selectively inhibited CXCR5-dependent B cell homing to Peyer's patches. These observations establish that p110gamma and p110delta function in lymphocyte chemotaxis, and show differential roles for PI3K family members in B and T cell migration.  相似文献   

3.
The entry of neutrophils into tissue has been well characterised; however the fate of these cells once inside the tissue microenvironment is not fully understood. A variety of signal transduction pathways including those involving class I PI3 Kinases have been suggested to be involved in neutrophil migration. This study aims to determine the involvement of PI3 Kinases in chemokinetic and chemotactic neutrophil migration in response to CXCL8 and GM-CSF in a three-dimensional collagen gel, as a model of tissue. Using a three-dimensional collagen assay chemokinetic and chemotactic migration induced by CXCL8 was inhibited with the pan PI3 Kinase inhibitor wortmannin. Analysis of the specific Class I PI3 Kinase catalytic isoforms alpha, delta and gamma using the inhibitors PIK-75, PIK-294 and AS-605240 respectively indicated differential roles in CXCL8-induced neutrophil migration. PIK-294 inhibited both chemokinetic and chemotactic CXCL8-induced migration. AS-605240 markedly reduced CXCL8 induced chemokinetic migration but had no effect on CXCL8 induced chemotactic migration. In contrast PIK-75 inhibited chemotactic migration but not chemokinetic migration. At optimal concentrations of GM-CSF the inhibitors had no effect on the percentage of neutrophil migration in comparison to the control however at suboptimal concentrations wortmannin, AS-605240 and PIK-294 inhibited chemokinesis. This study suggests that PI3 Kinase is necessary for CXCL8 induced migration in a 3D tissue environment but that chemokinetic and chemotactic migration may be controlled by different isoforms with gamma shown to be important in chemokinesis and alpha important in chemotaxis. Neutrophil migration in response to suboptimal concentrations of GM-CSF is dependent on PI3 Kinase, particularly the gamma and delta catalytic isoforms.  相似文献   

4.
PI3K plays a fundamental role in regulating neutrophil recruitment into sites of inflammation but the role of the different isoforms of PI3K remains unclear. In this study, we evaluated the role of PI3Kgamma and PI3Kdelta for neutrophil influx induced by the exogenous administration or the endogenous generation of the chemokine CXCL1. Administration of CXCL1 in PI3Kgamma(-/-) or wild-type (WT) mice induced similar increases in leukocyte rolling, adhesion, and emigration in the cremaster muscle when examined by intravital microscopy. The induction of neutrophil recruitment into the pleural cavity or the tibia-femoral joint induced by the injection of CXCL1 was not significantly different in PI3Kgamma(-/-) or WT mice. Neutrophil influx was not altered by treatment of WT mice with a specific PI3Kdelta inhibitor, IC87114, or a specific PI3Kgamma inhibitor, AS605240. The administration of IC87114 prevented CXCL1-induced neutrophil recruitment only in presence of the PI3Kgamma inhibitor or in PI3Kgamma(-/-) mice. Ag challenge of immunized mice induced CXCR2-dependent neutrophil recruitment that was inhibited by wortmannin or by blockade of and PI3Kdelta in PI3Kgamma(-/-) mice. Neutrophil recruitment to bronchoalveolar lavage induced by exogenously added or endogenous production of CXCL1 was prevented in PI3Kgamma(-/-) mice. The accumulation of the neutrophils in lung tissues was significantly inhibited only in PI3Kgamma(-/-) mice treated with IC87114. Neutrophil recruitment induced by exogenous administration of C5a or fMLP appeared to rely solely on PI3Kgamma. Altogether, our data demonstrate that there is a tissue- and stimulus-dependent role of PI3Kgamma and PI3Kdelta for neutrophil recruitment induced by different chemoattractants in vivo.  相似文献   

5.
The directional movement of cells in chemoattractant gradients requires sophisticated control of the actin cytoskeleton. Uniform exposure of Dictyostelium discoideum amoebae as well as mammalian leukocytes to chemoattractant triggers two phases of actin polymerization. In the initial rapid phase, motility stops and the cell rounds up. During the second slow phase, pseudopodia are extended from local regions of the cell perimeter. These responses are highly correlated with temporal and spatial accumulations of PI(3,4,5)P3/PI(3,4)P2 reflected by the translocation of specific PH domains to the membrane. The slower phase of PI accumulation and actin polymerization is more prominent in less differentiated, unpolarized cells, is selectively increased by disruption of PTEN, and is relatively more sensitive to perturbations of PI3K. Optimal levels of the second responses allow the cell to respond rapidly to switches in gradient direction by extending lateral pseudopods. Consequently, PI3K inhibitors impair chemotaxis in wild-type cells but partially restore polarity and chemotactic response in pten- cells. Surprisingly, the fast phase of PI(3,4,5)P3 accumulation and actin polymerization, which is relatively resistant to PI3K inhibition, can support inefficient but reasonably accurate chemotaxis.  相似文献   

6.
During embryonic development, cell movement is orchestrated by a multitude of attractants and repellents. Chemoattractants applied as a gradient, such as cAMP with Dictyostelium discoideum or fMLP with neutrophils, induce the activation of phospholipase C (PLC) and phosphoinositide 3 (PI3)-kinase at the front of the cell, leading to the localized depletion of phosphatidylinositol 4,5-bisphosphate (PI[4,5]P(2)) and the accumulation of phosphatidylinositol-3,4,5-trisphosphate (PI[3,4,5]P(3)). Using D. discoideum, we show that chemorepellent cAMP analogues induce localized inhibition of PLC, thereby reversing the polarity of PI(4,5)P(2). This leads to the accumulation of PI(3,4,5)P(3) at the rear of the cell, and chemotaxis occurs away from the source. We conclude that a PLC polarity switch controls the response to attractants and repellents.  相似文献   

7.
CXCL12-induced chemotaxis and adhesion to VCAM-1 decrease as B cells differentiate in the bone marrow. However, the mechanisms that regulate CXCL12/CXCR4-mediated signaling are poorly understood. We report that after CXCL12 stimulation of progenitor B cells, focal adhesion kinase (FAK) and PI3K are inducibly recruited to raft-associated membrane domains. After CXCL12 stimulation, phosphorylated FAK is also localized in membrane domains. The CXCL12/CXCR4-FAK pathway is membrane cholesterol dependent and impaired by metabolic inhibitors of G(i), Src family, and the GTPase-activating protein, regulator of G protein signaling 1 (RGS1). In the bone marrow, RGS1 mRNA expression is low in progenitor B cells and high in mature B cells, implying developmental regulation of CXCL12/CXCR4 signaling by RGS1. CXCL12-induced chemotaxis and adhesion are impaired when FAK recruitment and phosphorylation are inhibited by either membrane cholesterol depletion or overexpression of RGS1 in progenitor B cells. We conclude that the recruitment of signaling molecules to specific membrane domains plays an important role in CXCL12/CXCR4-induced cellular responses.  相似文献   

8.
Mesenchymal cell migration as exhibited by fibroblasts is distinct from amoeboid cell migration and is characterized by dynamic competition among multiple protrusions, which determines directional persistence and responses to spatial cues. Localization of phosphoinositide 3-kinase (PI3K) signaling is thought to play a broadly important role in cell motility, yet the context-dependent functions of this pathway have not been adequately elucidated. By mapping the spatiotemporal dynamics of cell protrusion/retraction and PI3K signaling monitored by total internal reflection fluorescence microscopy, we show that randomly migrating fibroblasts reorient polarity through PI3K-dependent branching and pivoting of protrusions. PI3K inhibition did not affect the initiation of newly branched protrusions, nor did it prevent protrusion induced by photoactivation of Rac. Rather, PI3K signaling increased after, not before, the onset of local protrusion and was required for the lateral spreading and stabilization of nascent branches. During chemotaxis, the branch experiencing the higher chemoattractant concentration was favored, and, thus, the cell reoriented so as to align with the external gradient.  相似文献   

9.
Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown.The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC.Maximum migration of MSC towards CCL25 was observed at 103 nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration.These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.  相似文献   

10.
11.
Time-lapsed videomicroscopy was used to study the migration of platelet-endothelial cell adhesion molecule-1-deficient (PECAM-1(-/-)) murine neutrophils undergoing chemotaxis in Zigmond chambers containing IL-8, KC, or fMLP gradients. PECAM-1(-/-) neutrophils failed to translocate up the IL-8, KC, and fMLP gradients. Significant reductions in cell motility and cell spreading were also observed in IL-8 or KC gradients. In wild-type neutrophils, PECAM-1 and F-actin were colocalized at the leading fronts of polarized cells toward the gradient. In contrast, in PECAM-1(-/-) neutrophils, although F-actin also localized to the leading front of migrating cells, F-actin polymerization was unstable, and cycling was remarkably increased compared with that of wild-type neutrophils. This may be due to the decreased cytokine-induced mobilization of the actin-binding protein, moesin, into the cytoskeleton of PECAM-1(-/-) neutrophils. PECAM-1(-/-) neutrophils also exhibited intracellularly dislocalized Src homology 2 domain containing phosphatase 1 (SHP-1) and had less IL-8-induced SHP-1 phosphatase activity. These results suggest that PECAM-1 regulates neutrophil chemotaxis by modulating cell motility and directionality, in part through its effects on SHP-1 localization and activation.  相似文献   

12.
Phosphoinositide 3-kinase (PI3K) is a lipid kinase which phosphorylates the D3 position of the phosphoinositide derivatives and is known to be activated by a host of protein tyrosine kinases. PI3K has been demonstrated to play an important role in mitogenesis and cell transformation in several cell systems. However, the functional roles of PI3K in pancreatic acinar cells remain to be determined. The objective of this study was to identify and characterize the PI3K pathway and its relation to other non-receptor protein tyrosine kinases in mediating signal transduction of pancreatic acinar cells. Intact acini isolated from the rat pancreas were incubated with or without cholecystokinin octapeptide (CCK-8). A Triton X-100-soluble and 10000 rpm supernatant of the cell sonicates was used for immunoprecipitation and Western immunoblotting. When a monoclonal anti-phosphotyrosine antibody (clone 4G10) was used, two major tyrosine-phosphorylated bands were observed at the location of p85 and p60. CCK (10 pM and 10 nM) significantly enhanced the tyrosine phosphorylation of these two bands. Furthermore, when a monoclonal anti-PI3K antibody (clone UB93-3) which recognizes the N-terminal SH2 domain of the p85 regulatory subunit of PI3K was used, CCK (10 pM-10 nM) dose-dependently increased the amount of the immunodetectable PI3K band with a peak occurring at 5 min. The increase in the immunodetectable PI3K band elicited by CCK did not require the presence of extracellular Ca2+. The pp60src inhibitor, herbimycin A (6 microM), and the PI3K inhibitor, wortmannin (6 microM), both decreased intensities of the PI3K band elicited by CCK. Herbimycin A abolished phosphotransferase activities of the Src kinase following stimulation with CCK, whereas wortmannin had no effect, suggesting that Src is an upstream regulator of PI3K. Wortmannin (3-6 microM) abolished CCK-stimulated pancreatic amylase secretion. Immunoprecipitation studies using an anti-Src antibody (clone CD11) or PI3K antibody in conjunction with the anti-phosphotyrosine antibody showed that, in response to CCK, tyrosine phosphorylations of Src and PI3K were enhanced at the location of p60 and p85, respectively. Src was co-immunoprecipitated with PI3K following stimulation with CCK, suggesting that pp60src forms an immunocomplex with PI3K via the N-SH2 domain of the p85 regulatory subunit. Thus PI3K and its association with Src appear to be involved in mediating CCK-stimulated pancreatic exocytosis.  相似文献   

13.
Tang W  Zhang Y  Xu W  Harden TK  Sondek J  Sun L  Li L  Wu D 《Developmental cell》2011,21(6):1038-1050
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.  相似文献   

14.
Directed cell migration and cell polarity are crucial in many facets of biological processes. Cellular motility requires a complex array of signaling pathways, in which orchestrated cross-talk, a feedback loop, and multi-component signaling recur. Almost every signaling molecule requires several regulatory processes to be functionally activated, and a lack of a signaling molecule often leads to chemotaxis defects, suggesting an integral role for each component in the pathway. We outline our current understanding of the signaling event that regulates chemotaxis with an emphasis on recent findings associated with the Ras, PI3K, and target of rapamycin (TOR) pathways and the interplay of these pathways. Ras, PI3K, and TOR are known as key regulators of cellular growth. Deregulation of those pathways is associated with many human diseases, such as cancer, developmental disorders, and immunological deficiency. Recent studies in yeast, mammalian cells, and Dictyostelium discoideum reveal another critical role of Ras, PI3K, and TOR in regulating the actin cytoskeleton, cell polarity, and cellular movement. These findings shed light on the mechanism by which eukaryotic cells maintain cell polarity and directed cell movement, and also demonstrate that multiple steps in the signal transduction pathway coordinately regulate cell motility.  相似文献   

15.
Cancer cells depend on chemotaxis for invasion and frequently overexpress and/or activate Src. We previously reported that v-Src accelerates motility by promoting phosphoinositide 3-kinase (PI3-K) signalling but abrogates chemotaxis. We here addressed the mechanism of the loss of chemotactic response to platelet-derived growth factor (PDGF) gradients in fibroblasts harbouring a thermosensitive v-Src kinase. At non-permissive temperature, PDGF receptor (PDGFR) signalling, assessed by phosphoY(751)-specific antibodies (a docking site for PI3-K), was not detected without PDGF and showed a concentration-dependent PDGF response. Both immunolabeling of PI3-K (p110) and live cell imaging of its product (phosphatidylinositol 3,4,5 tris-phosphate) showed PI3-K recruitment and activation at lamellipodia polarized towards a PDGF gradient. Centrosomes and PDGFR- and Src-bearing endosomes were also oriented towards this gradient. Upon v-Src thermoactivation, (i) Y(751) phosphorylation was moderately induced without PDGF and synergistically increased with PDGF; (ii) PI3-K was recruited and activated all along the plasma membrane without PDGF and did not polarize in response to a PDGF gradient; and (iii) polarization of centrosomes and of PDGFR-bearing endosomes were also abrogated. Thus, PDGF can further increase PDGFR auto-phosphorylation despite strong Src kinase activity, but diffuse downstream activation of PI3-K by Src abrogates cell polarization and chemotaxis: "signalling requires silence".  相似文献   

16.
Neutrophil chemotaxis is a critical component of the innate immune response. Neutrophils can sense an extremely shallow gradient of chemoattractants and produce relatively robust chemotactic behavior. This directional migration requires cell polarization with actin polymerization occurring predominantly in the leading edge. Synthesis of phosphatidylinositol (3,4,5) trisphosphate (PIP3) by phosphoinositide 3-kinase (PI3K) contributes to asymmetric F-actin synthesis and cell polarization during neutrophil chemotaxis. To determine the contribution of the hemopoietic cell-restricted PI3K delta in neutrophil chemotaxis, we have developed a potent and selective PI3K delta inhibitor, IC87114. IC87114 inhibited polarized morphology of neutrophils, fMLP-stimulated PIP3 production and chemotaxis. Tracking analysis of IC87114-treated neutrophils indicated that PI3K delta activity was required for the directional component of chemotaxis, but not for random movement. Inhibition of PI3K delta, however, did not block F-actin synthesis or neutrophil adhesion. These results demonstrate that PI3K delta can play a selective role in the amplification of PIP3 levels that lead to neutrophil polarization and directional migration.  相似文献   

17.
Human airway epithelial cells (HAEC) constitutively express the CXC chemokine receptor CXCR3, which regulates epithelial cell movement. In diseases such as chronic obstructive pulmonary disease and asthma, characterized by denudation of the epithelial lining, epithelial cell migration may contribute to airway repair and reconstitution. This study compared the potency and efficacy of three CXCR3 ligands, I-TAC/CXCL11, IP-10/CXCL10, and Mig/CXCL9, as inducers of chemotaxis in HAEC and examined the underlying signaling pathways involved. Studies were performed in cultured HAEC from normal subjects and the 16-HBE cell line. In normal HAEC, the efficacy of I-TAC-induced chemotaxis was 349 ± 88% (mean ± SE) of the medium control and approximately one-half the response to epidermal growth factor, a highly potent chemoattractant. In normal HAEC, Mig, IP-10, and I-TAC induced chemotaxis with similar potency and a rank order of efficacy of I-TAC = IP-10 > Mig. Preincubation with pertussis toxin completely blocked CXCR3-induced migration. Of interest, intracellular [Ca2+] did not rise in response to I-TAC, IP-10, or Mig. I-TAC induced a rapid phosphorylation (5–10 min) of two of the three MAPKs, i.e., p38 and ERK1/2. Pretreatment of HAEC with the p38 inhibitor SB 20358 or the PI3K inhibitor wortmannin dose-dependently inhibited the chemotactic response to I-TAC. In contrast, the ERK1/2 inhibitor U0126 had no effect on chemotaxis. These data indicate that in HAEC, CXCR3-mediated chemotaxis involves a G protein, which activates both the p38 MAPK and PI3K pathways in a calcium-independent fashion. G protein-coupled receptor; mitogen-activated protein kinase; phosphatidylinositol 3-kinase; cytoskeleton  相似文献   

18.
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.  相似文献   

19.
Previous work has suggested a role for phosphatidylinositide 3′-kinase (PI3-kinase) in platelet-derived growth factor (PDGF)-induced actin reorganization and chemotaxis. In support of this notion, we show in this report that the PI3-kinase inhibitor wortmannin inhibits chemotaxis of PDGF β-receptor expressing porcine aortic endothelial (PAE/PDGFR-β) cells. Treatment with wortmannin resulted in a dose-dependent decrease in chemotaxis with an IC50value of about 15–20 nM.Higher concentrations of wortmannin also reduced basal random migration of transfected cells in the absence of PDGF. We also investigated the role of Rac in PDGF-induced actin reorganization and cell motility. Overexpression of wt Rac in PAE/PDGFR-β cells led to an increased cell motility and edge ruffling in response to PDGF-BB, compared to control cells. In PAE/PDGFR-β cells transfected with inducible V12Rac (a constitutively active Rac mutant), membrane ruffling occurred in the absence of PDGF stimulation and was independent of PI3-kinase activity. On the other hand, PAE/PDGFR-β cells transfected with inducible N17Rac (a dominant negative Rac mutant) failed to show membrane ruffling in response to PDGF stimulation. Together with previous observations, these data indicate that activation of PI3-kinase is crucial for initiation of PDGF-induced cell motility responses and that Rac has a major role downstream of PI3-kinase, in this pathway.  相似文献   

20.
Eosinophil major basic protein (MBP) is an effective stimulus for neutrophil superoxide (O(2)(-)) production, degranulation, and IL-8 production. In this study we evaluated the participation of phosphoinositide 3-kinase (PI3K) and PI3K-associated signaling events in neutrophil activation by MBP. Inhibition of PI3K activity blocked MBP-stimulated O(2)(-) production, but not degranulation or IL-8 production. Measurement of Akt phosphorylation at Ser(473) and Thr(308) confirmed that MBP stimulated PI3K activity and also demonstrated indirectly activation of phosphoinositide-dependent kinase-1 by MBP. Genistein and the Src kinase family inhibitor, 4-amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, inhibited MBP-stimulated phosphorylation of Akt. 4-Amino-5-(4-methyphenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine also inhibited MBP-stimulated O(2)(-) production. MBP stimulated phosphorylation and translocation of the p85 subunit of class I(A) PI3K, but not translocation of the p110gamma subunit of class I(B) PI3K, to the neutrophil membrane. Inhibition of protein kinase Czeta (PKCzeta) inhibited MBP-stimulated O(2)(-) production. Measurement of phosphorylated PKCzeta (Thr(410)) and PKCdelta (Thr(505)) confirmed that PKCzeta, but not PKCdelta, is activated in MBP-stimulated neutrophils. The time courses for phosphorylation and translocation of the p85 subunit of class I(A) PI3K, activation of Akt, and activation of PKCzeta were similar. Moreover, inhibition of PI3K activity inhibited MBP-induced activation of PKCzeta. We conclude that MBP stimulates a Src kinase-dependent activation of class I(A) PI3K and, in turn, activation of PKCzeta in neutrophils, which contributes to the activation of NADPH oxidase and the resultant O(2)(-) production in response to MBP stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号