首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state ATP hydrolysis in the F1-ATPase of the F(O)F1 ATP synthase complex involves rotation of the central gamma subunit relative to the catalytic sites in the alpha3beta3 pseudo-hexamer. To understand the relationship between the catalytic mechanism and gamma subunit rotation, the pre-steady-state kinetics of Mg x ATP hydrolysis in the soluble F1-ATPase upon rapid filling of all three catalytic sites was determined. The experimentally accessible partial reactions leading up to the rate-limiting step and continuing through to the steady-state mode were obtained for the first time. The burst kinetics and steady-state hydrolysis for a range of Mg x ATP concentrations provide adequate constraints for a unique minimal kinetic model that can fit all the data and satisfy extensive sensitivity tests. Significantly, the fits show that the ratio of the rates of ATP hydrolysis and synthesis is close to unity even in the steady-state mode of hydrolysis. Furthermore, the rate of Pi binding in the absence of the membranous F(O) sector is insignificant; thus, productive Pi binding does not occur without the influence of a proton motive force. In addition to the minimal steps of ATP binding, reversible ATP hydrolysis/synthesis, and the release of product Pi and ADP, one additional rate-limiting step is required to fit the burst kinetics. On the basis of the testing of all possible minimal kinetic models, this step must follow hydrolysis and precede Pi release in order to explain burst kinetics. Consistent with the single molecule analysis of Yasuda et al. (Yasuda, R., Noji, H., Yoshida, M., Kinosita, K., and Itoh, H. (2001) Nature 410, 898-904), we propose that the rate-limiting step involves a partial rotation of the gamma subunit; hence, we name this step k(gamma). Moreover, the only model that is consistent with our data and many other observations in the literature suggests that reversible hydrolysis/synthesis can only occur in the active site of the beta(TP) conformer (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628).  相似文献   

2.
Thromboxane synthase (TXAS) is a "non-classical" cytochrome P450. Without any need for an external electron donor, or for a reductase or molecular oxygen, it uses prostaglandin H2 (PGH2) to catalyze either an isomerization reaction to form thromboxane A2 (TXA2) or a fragmentation reaction to form 12-l-hydroxy-5,8,10-heptadecatrienoic acid and malondialdehyde (MDA) at a ratio of 1:1:1 (TXA2:heptadecatrienoic acid:MDA). We report here kinetics of TXAS with heme ligands in binding study and with PGH2 in enzymatic study. We determined that 1) binding of U44069, an oxygen-based ligand, is a two-step process; U44069 first binds TXAS, then ligates the heme-iron with a maximal rate constant of 105-130 s(-1); 2) binding of cyanide, a carbon-based ligand, is a one-step process with k(on) of 2.4 M(-1) s(-1) and k(off) of 0.112 s(-1); and 3) both imidazole and clotrimazole (nitrogen-based ligands) bind TXAS in a two-step process; an initial binding to the heme-iron with on-rate constants of 8.4 x 10(4) M(-1) s(-1) and 1.5 x 10(5) M(-1) s(-1) for imidazole and clotrimazole, respectively, followed by a slow conformational change with off-rate constants of 8.8 s(-1) and 0.53 s(-1), respectively. The results of our binding study indicate that the TXAS active site is hydrophobic and spacious. In addition, steady-state kinetic study revealed that TXAS consumed PGH2 at a rate of 3,800 min(-1) and that the k(cat)/K(m) for PGH2 consumption was 3 x 10(6) M(-1) s(-1). Based on these data, TXAS appears to be a very efficient catalyst. Surprisingly, rapid-scan stopped-flow experiments revealed marginal absorbance changes upon mixing TXAS with PGH2, indicating minimal accumulation of any heme-derived intermediates. Freeze-quench EPR measurements for the same reaction showed minimal change of heme redox state. Further kinetic analysis using a combination of rapid-mixing chemical quench and computer simulation showed that the kinetic parameters of TXAS-catalyzed reaction are: PGH2 bound TXAS at a rate of 1.2-2.0 x 10(7) M(-1) s(-1); the rate of catalytic conversion of PGH2 to TXA2 or MDA was at least 15,000 s(-1) and the lower limit of the rates for products release was 4,000-6,000 s(-1). Given that the cellular PGH2 concentration is quite low, we concluded that under physiological conditions, the substrate-binding step is the rate-limiting step of the TXAS-catalyzed reaction, in sharp contrast with "classical" P450 enzymes.  相似文献   

3.
Ryota Iino  Hiroyuki Noji 《BBA》2012,1817(10):1732-1739
F1-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α3β3 ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a “dictator” completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F1-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

4.
The kinetics of the phospholipase A2-catalyzed hydrolysis of bilayer vesicles and mixed micelles of several oxyglycero and thioglycero analogues of phospholipids have been studied. The results with vesicles show that, depending on the source of the enzyme, the rates of hydrolysis of the oxy-containing long-chain phosphatidylmethanols are 2.5- to 28-fold higher compared to the rates of hydrolysis of the analogous thio substrates. The oxygen to sulfur substitution does not significantly alter the affinities of the enzymes for the reaction products or calcium. Since it is unlikely that sulfur substitution changes the rate constants for the formation and dissociation of the enzyme-product complex by the same factor, the element effects seen in the rates of hydrolysis of the oxy- and thioester phospholipids in vesicles are primarily due to a change in the rate constant for the chemical step of the catalytic turnover cycle. For bovine pancreatic phospholipase A2, various mutants with lower catalytic activity were used to show that the value of the element effect does not increase in the mutants. These results establish that, for the pancreatic phospholipase A2, the element effect is fully expressed, and the chemical step is fully rate-limiting for both oxyglycero and thioglycero phospholipids in vesicles. It was found that the element effect decreases from 7 to 1 when long-chain phosphatidylmethanols are present in micelles of a neutral diluent. This result suggests that the chemical step is not rate-limiting during the hydrolysis of these mixed micelle substrates.  相似文献   

5.
[11,11-2H2]-, [9,10,12,13-2H4]-, [9,10,11,11,12,13-2H6]- and unlabelled linoleic acids were incubated with pure lipoxygenase-1 from soya beans. The apparent rate constants of the overall reactions and the apparent Michaelis constants in air-equilibrated solutions at 25°C and pH 9.0 were obtained from Lineweaver-Burk plots. The apparent Km-values were hardly affected by the type of substrate used. Substrates bearing 2H instead of 1H at C-11 gave rise to considerable isotope effects, kH/k2H values being 8.7 and 9.3 for dideutero- and hexadeutero linoleate, respectively. From the observed isotope effects it was concluded, that H-abstraction from C-11 is the rate-determining step in the overall reaction. All substrates used gave identical product distributions. No measurable exchange of deuterium with solvent hydrogen occurred during oxygenation.  相似文献   

6.
Sun SX  Wang H  Oster G 《Biophysical journal》2004,86(3):1373-1384
ATP synthase uses a rotary mechanism to carry out its cellular function of manufacturing ATP. The central gamma-shaft rotates inside a hexameric cylinder composed of alternating alpha- and beta-subunits. When operating in the hydrolysis direction under high frictional loads and low ATP concentrations, a coordinated mechanochemical cycle in the three catalytic sites of the beta-subunits rotates the gamma-shaft in three 120 degrees steps. At low frictional loads, the 120 degrees steps alternate with three ATP-independent substeps separated by approximately 30 degrees. We present a quantitative model that accounts for these substeps and show that the observed pauses are due to 1), the asymmetry of the F(1) hexamer that produces a propeller-like motion of the power-stroke and 2), the relatively tight binding of ADP to the catalytic sites.  相似文献   

7.
F(1)-ATPase (F(1)) is an ATP-driven rotary motor wherein the γ subunit rotates against the surrounding α(3)β(3) stator ring. The 3 catalytic sites of F(1) reside on the interface of the α and β subunits of the α(3)β(3) ring. While the catalytic residues predominantly reside on the β subunit, the α subunit has 1 catalytically critical arginine, termed the arginine finger, with stereogeometric similarities with the arginine finger of G-protein-activating proteins. However, the principal role of the arginine finger of F(1) remains controversial. We studied the role of the arginine finger by analyzing the rotation of a mutant F(1) with a lysine substitution of the arginine finger. The mutant showed a 350-fold longer catalytic pause than the wild-type; this pause was further lengthened by the slowly hydrolyzed ATP analog ATPγS. On the other hand, the mutant F(1) showed highly unidirectional rotation with a coupling ratio of 3 ATPs/turn, the same as wild-type, suggesting that cooperative torque generation by the 3 β subunits was not impaired. The hybrid F(1) carrying a single copy of the α mutant revealed that the reaction step slowed by the mutation occurs at +200° from the binding angle of the mutant subunit. Thus, the principal role of the arginine finger is not to mediate cooperativity among the catalytic sites, but to enhance the rate of the ATP cleavage by stabilizing the transition state of ATP hydrolysis. Lysine substitution also caused frequent pauses because of severe ADP inhibition, and a slight decrease in ATP-binding rate.  相似文献   

8.
F(1)-ATPase is a rotary motor protein in which 3 catalytic β-subunits in a stator α(3)β(3) ring undergo unidirectional and cooperative conformational changes to rotate the rotor γ-subunit upon adenosine triphosphate hydrolysis. The prevailing view of the mechanism behind this rotary catalysis elevated the γ-subunit as a "dictator" completely controlling the chemical and conformational states of the 3 catalytic β-subunits. However, our recent observations using high-speed atomic force microscopy clearly revealed that the 3 β-subunits undergo cyclic conformational changes even in the absence of the rotor γ-subunit, thus dethroning it from its dictatorial position. Here, we introduce our results in detail and discuss the possible operating principle behind the F(1)-ATPase, along with structurally related hexameric ATPases, also mentioning the possibility of generating hybrid nanomotors. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

9.
The crystal structure of bovine mitochondrial F1-ATPase is described. Several features of the structure are consistent with the binding change mechanism of catalysis, in which binding of substrates induces conformational changes that result in a high degree of cooperativity between the three catalytic sites. Furthermore, the structure also suggests that catalysis is accompanied by a physical rotation of the centrally placed gamma-subunit relative to the approximately spherical alpha3beta3 subassembly.  相似文献   

10.
It has been shown for the first time that deacylation is the rate-limiting step in the enteropeptidase-catalyzed hydrolysis of highly effective oligopeptide substrates containing four Asp residues in positions P2–P5. On the other hand, the rate-limiting step in the hydrolysis of low-efficiency peptide substrates containing less than four Asp or Glu residues in positions P2–P5 is acylation, as it has previously been suggested for all amide and peptide substrates of serine proteases on the basis of classical works of Bender et al. The method of introduction of an additional nucleophile or another effector that selectively affects the deacylation step was used to determine the rate-limiting step in the enteropeptidase hydrolysis of N α-benzyloxycarbonyl-L-lysine thiobenzyl ester, the highly efficient amide substrate GlyAsp4-Lys β-naphthyl amide, and the low-efficiency peptide substrate VLSAADK-GNVKAAWG (where a hyphen denotes the hydrolysis site).  相似文献   

11.
Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase   总被引:1,自引:0,他引:1  
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.  相似文献   

12.
ATP hydrolysis and synthesis by the F(0)F(1)-ATP synthase are coupled to proton translocation across the membrane in the presence of magnesium. Calcium is known, however, to disrupt this coupling in the photosynthetic enzyme in a unique way: it does not support ATP synthesis, and CaATP hydrolysis is decoupled from any proton translocation, but the membrane does not become leaky to protons. Understanding the molecular basis of these calcium-dependent effects can shed light on the as yet unclear mechanism of coupling between proton transport and rotational catalysis. We show here, using an actin filament gamma-rotation assay, that CaATP is capable of sustaining rotational motion in a highly active hybrid photosynthetic F(1)-ATPase consisting of alpha and beta subunits from Rhodospirillum rubrum and gamma subunit from spinach chloroplasts (alpha(R)(3)beta(R)(3)gamma(C)). The rotation was found to be similar to that induced by MgATP in Escherichia coli F(1)-ATPase molecules. Our results suggest a possible long range pathway that enables the bound CaATP to induce full rotational motion of gamma but might block transmission of this rotational motion into proton translocation by the F(0) part of the ATP synthase.  相似文献   

13.
(1) Dimethyl sulfoxide (DMSO) markedly inhibited the Vmax of multisite ATPase activity in Escherichia coli F1-ATPase at concentrations greater than 30% (v/v). Vmax/KM was reduced by 2 orders of magnitude in 40% (v/v) DMSO at pH 7.5, primarily due to reduction of Vmax. The inhibition was rapidly reversed on dilution into aqueous buffer. (2) KdATP at the first, high-affinity catalytic site was increased 1500-fold from 2.3 x 10(-10) to 3.4 x 10(-7) M in 40% DMSO at pH 7.5, whereas KdADP was increased 3.2-fold from 8.8 to 28 microM. This suggests that the high-affinity catalytic site presents a hydrophobic environment for ATP binding in native enzyme, that there is a significant difference between the conformation for ADP binding as opposed to ATP binding, and that the ADP-binding conformation is more hydrophilic. (3) Rate constants for hydrolysis and resynthesis of bound ATP in unisite catalysis were slowed approximately 10-fold by 40% DMSO; however, the equilibrium between bound Pi/bound ATP was little changed. The reduction in catalysis rates may well be related to the large increase in KdATP (less constrained site). (4) Significant Pi binding to E. coli F1 could not be detected either in 40% DMSO or in aqueous buffer using a centrifuge column procedure. (5) We infer, on the basis of the measured constants KaATP, K2 (hydrolysis/resynthesis of ATP), k+3 (Pi release), and KdADP and from estimates of k-3 (Pi binding) that delta G for ATP hydrolysis in 40% DMSO-containing pH 7.5 buffer is between -9.2 and -16.8 kJ/mol.  相似文献   

14.
We introduced mutations to test the function of the conserved amino-terminal region of the gamma subunit from the Escherichia coli ATP synthase (F0F1-ATPase). Plasmid-borne mutant genes were expressed in an uncG strain which is deficient for the gamma subunit (gamma Gln-14-->end). Most of the changes, which were between gamma Ile-19 and gamma Lys-33, gamma Asp-83 and gamma Cys-87, or at gamma Asp-165, had little effect on growth by oxidative phosphorylation, membrane ATPase activity, or H+ pumping. Notable exceptions were gamma Met-23-->Arg or Lys mutations. Strains carrying these mutations grew only very slowly by oxidative phosphorylation. Membranes prepared from the strains had substantial levels of ATPase activity, 100% compared with wild type for gamma Arg-23 and 65% for gamma Lys-23, but formed only 32 and 17%, respectively, of the electrochemical gradient of protons. In contrast, other mutant enzymes with similar ATPase activities (including gamma Met-23-->Asp or Glu) formed H+ gradients like the wild type. Membranes from the gamma Arg-23 and gamma Lys-23 mutants were not passively leaky to protons and had functional F0 sectors. These results suggested that substitution by positively charged side chains at position 23 perturbed the energy coupling. The catalytic sites of the mutant enzymes were still regulated by the electrochemical H+ gradient but were inefficiently coupled to H+ translocation in both ATP-dependent H+ pumping and delta mu H+ driven ATP synthesis.  相似文献   

15.
There is now compelling evidence in support of a rotary catalytic mechanism in F1-ATPase, and, by extension, in the intact ATP synthase. Although models have been proposed to explain how protein translocation in F0 results in rotation of the gamma-subunit relative to the alpha 3/beta 3 assembly in F1 [22], these are still speculative. It seems likely that a satisfactory explanation of this mechanism will ultimately depend on structural information on the intact ATP synthase.  相似文献   

16.
H Hanada  T Noumi  M Maeda  M Futai 《FEBS letters》1989,257(2):465-467
We prepared two types of E. coli F1 by slightly different gel filtration procedures of the purified F1: F1(II) contained about 2 mol, and F1(V) about 5 mol of bound adenine nucleotides per mol of the enzyme. Thus F1(II) had more than 2, possibly 3, vacant catalytic sites, while F1(V) had less than one vacant catalytic site. The rate of ATP hydrolysis in uni-site catalysis (in the presence of inorganic phosphate) was about 3-fold higher with F1(II) than with F1(V), suggesting that ADP and inorganic phosphate bound at the catalytic sites of F1(V) changed the kinetics of uni-site catalysis significantly.  相似文献   

17.
18.
Single-site catalysis by F1-ATPase from a thermophilic bacterium PS3 (TF1) was examined by incubating the enzyme with a submolar amount of radioactive ATP. The profile of single-site catalysis by TF1 at 23 degrees C was different from that of beef heart mitochondrial F1-ATPase (MF1). ATP hydrolysis on the enzyme and release of the products was rapid, and subsequent addition of non-radioactive ATP (cold chase) did not promote the hydrolysis of radioactive ATP, indicating that the rate-limiting step was not the step of product release but the step of ATP binding to the enzyme. Thus, the characteristic features of so-called uni-site catalysis were not observed. At 60 degrees C, whether in the presence or absence of phosphate ion, a small amount of bound [alpha, gamma-32P]ATP and cold chase promotion were observed. However, since bound 32P1 was not detected by centrifugal gel filtration, it is not yet certain whether TF1 has typical uni-site characteristics. Based on the hydrolytic turnover rate for single-site catalysis and analysis of the kinetics of steady-state catalysis, it is proposed that single-site catalysis is dominant even in steady-state catalysis at ATP concentrations of less than about 20 microM.  相似文献   

19.
20.
The rate-limiting step in the actomyosin adenosinetriphosphatase cycle   总被引:3,自引:0,他引:3  
We have previously shown that myosin does not have to detach from actin during each cycle of ATP hydrolysis. In the present study, using the A-1 isoenzyme of myosin subfragment 1, we have investigated the nature of the rate-limiting steps in the ATPase cycle. Our results show that, at 15 degrees C, at very low ionic strength, KATPase determined from the double-reciprocal plot of ATPase activity vs. actin concentration is more than 6-fold stronger than KBINDING determined by directly measuring the binding of A-1 myosin subfragment 1 to actin during steady-state ATP hydrolysis. Computer modeling shows that this large difference between KATPase and KBINDING is not compatible with Pi release being the rate-limiting step in the ATPase cycle. If Pi release is not rate limiting, it is possible that the ATP hydrolysis step, itself, is rate limiting. However, this predicts that, at high actin concentration, the value of the initial Pi burst should be close to zero. Therefore, we measured the magnitude of the initial Pi burst in the presence of actin, using both direct measurement and measurement of relative fluorescence magnitude. Our results suggest that the magnitude of the initial Pi burst in the presence of actin is considerably higher than would be expected if the ATP hydrolysis step were the rate-limiting step in the ATPase cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号