首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Met tyrosine kinase receptor and its ligand, hepatocyte growth factor (HGF), play important roles in normal development and in tumor growth and metastasis. HGF-dependent signaling requires proteolysis from an inactive single-chain precursor into an active alpha/beta-heterodimer. We show that the serine protease-like HGF beta-chain alone binds Met, and report its crystal structure in complex with the Sema and PSI domain of the Met receptor. The Met Sema domain folds into a seven-bladed beta-propeller, where the bottom face of blades 2 and 3 binds to the HGF beta-chain 'active site region'. Mutation of HGF residues in the area that constitutes the active site region in related serine proteases significantly impairs HGF beta binding to Met. Key binding loops in this interface undergo conformational rearrangements upon maturation and explain the necessity of proteolytic cleavage for proper HGF signaling. A crystallographic dimer interface between two HGF beta-chains brings two HGF beta:Met complexes together, suggesting a possible mechanism of Met receptor dimerization and activation by HGF.  相似文献   

2.
Hepatocyte growth factor (HGF) binds to its target receptor tyrosine kinase, Met, as a single-chain form (pro-HGF) or as a cleaved two-chain disulfide-linked α/β-heterodimer. However, only two-chain HGF stimulates Met signaling. Proteolytic cleavage of the Arg(494)-Val(495) peptide bond in the zymogen-like pro-HGF results in allosteric activation of the serine protease-like β-chain (HGF β), which binds Met to initiate signaling. We use insights from the canonical trypsin-like serine protease activation mechanism to show that isolated peptides corresponding to the first 7-10 residues of the cleaved N terminus of the β-chain stimulate Met phosphorylation by pro-HGF to levels that are ~25% of those stimulated by two-chain HGF. Biolayer interferometry data demonstrate that peptide VVNGIPTR (peptide V8) allosterically enhances pro-HGF β binding to Met, resulting in a K(D)(app) of 1.6 μm, only 8-fold weaker than the Met/HGF β-chain affinity. Most notably, in vitro cell stimulation with peptide V8 in the presence of pro-HGF leads to Akt phosphorylation, enhances cell survival, and facilitates cell migration between 75 and 100% of that found with two-chain HGF, thus revealing a novel approach for activation of Met signaling that bypasses proteolytic processing of pro-HGF. Peptide V8 is unable to enhance Met binding or signaling with HGF proteins having a mutated activation pocket (D672N). Furthermore, Gly substitution of the N-terminal Val residue in peptide V8 results in loss of all activity. Overall, these findings identify the activation pocket of the serine protease-like β-chain as a "hot spot" for allosteric regulation of pro-HGF and have broad implications for developing selective allosteric activators of serine proteases and pseudoproteases.  相似文献   

3.
4.
Hepatocyte growth factor (HGF), a plasminogen-related growth factor, is the ligand for Met, a receptor tyrosine kinase implicated in development, tissue regeneration, and invasive tumor growth. HGF acquires signaling activity only upon proteolytic cleavage of single-chain HGF into its alpha/beta heterodimer, similar to zymogen activation of structurally related serine proteases. Although both chains are required for activation, only the alpha-chain binds Met with high affinity. Recently, we reported that the protease-like HGF beta-chain binds to Met with low affinity (Stamos, J., Lazarus, R. A., Yao, X., Kirchhofer, D., and Wiesmann, C. (2004) EMBO J. 23, 2325-2335). Here we demonstrate that the zymogen-like form of HGF beta also binds Met, albeit with 14-fold lower affinity than the protease-like form, suggesting optimal interactions result from conformational changes upon cleavage of the single-chain form. Extensive mutagenesis of the HGF beta region corresponding to the active site and activation domain of serine proteases showed that 17 of the 38 purified two-chain HGF mutants resulted in impaired cell migration or Met phosphorylation but no loss in Met binding. However, reduced biological activities were well correlated with reduced Met binding of corresponding mutants of HGF beta itself in assays eliminating dominant alpha-chain binding contributions. Moreover, the crystal structure of HGF beta determined at 2.53 A resolution provides a structural context for the mutagenesis data. The functional Met binding site is centered on the "active site region" including "triad" residues Gln(534) [c57], Asp(578) [c102], and Tyr(673) [c195] and neighboring "activation domain" residues Val(692), Pro(693), Gly(694), Arg(695), and Gly(696) [c214-c219]. Together they define a region that bears remarkable resemblance to substrate processing regions of serine proteases. Models of HGF-dependent Met receptor activation are discussed.  相似文献   

5.
Dysregulation of hepatocyte growth factor (HGF)-induced signaling via its receptor tyrosine kinase Met results in tumor progression and metastasis. To initiate signaling, pro-HGF must be proteolytically activated to reveal a secondary Met binding site within the serine protease-like β-chain of HGF. Although HGF/Met is a large complex, we sought to discover relatively small antagonists that might interfere with this critical Met binding region. Pools of disulfide-constrained random peptide libraries displayed on phage were selected for binding to HGF, ultimately resulting in a disulfide-constrained 15-mer peptide (VNWVCFRDVGCDWVL) termed HB10, which bound to the recombinant human HGF β-chain (HGF β) and competitively inhibited binding to Met with an IC50 of 450 nM. In MDA-MB435 cells, HB10 reduced HGF-dependent Met phosphorylation by 70%, and phosphorylation of downstream kinases AKT and ERK1/ERK2 by 74% and 69%, respectively. Addition of HB10 also inhibited HGF-dependent migration of these cells with an IC50 of ∼ 20 μM. The 2D 1H-NMR structure of HB10 revealed a β-hairpin loop stabilized by the disulfide bond and cross-strand pairing of Trp3 and Trp13. HGF β mutants deficient in Met binding also have reduced HB10 binding, suggesting an overlapping binding site. Notably HB10 did not inhibit full length HGF binding to Met. Thus steric hindrance of the interaction between HGF β domain binding to Met is sufficient for inhibiting full-length HGF-dependent Met signaling and cell migration that is consistent with a noncompetitive inhibitory mechanism of Met signal transduction.  相似文献   

6.
The tyrosine kinase Met, the product of the c-met proto-oncogene and the receptor for hepatocyte growth factor/scatter factor (HGF/SF), mediates signals critical for cell survival and migration. The human pathogen Listeria monocytogenes exploits Met signaling for invasion of host cells via its surface protein InlB. We present the crystal structure of the complex between a large fragment of the human Met ectodomain and the Met-binding domain of InlB. The concave face of the InlB leucine-rich repeat region interacts tightly with the first immunoglobulin-like domain of the Met stalk, a domain which does not bind HGF/SF. A second contact between InlB and the Met Sema domain locks the otherwise flexible receptor in a rigid, signaling competent conformation. Full Met activation requires the additional C-terminal domains of InlB which induce heparin-mediated receptor clustering and potent signaling. Thus, although it elicits a similar cellular response, InlB is not a structural mimic of HGF/SF.  相似文献   

7.
Ligand dependent activity of receptor tyrosine kinases is critical for modulatingdownstream signaling and cell proliferation. In normal cellular context, hepatocytegrowth factor (HGF) regulates MET kinase activation and mediates cell proliferation,migration and motility. Recent elucidation of the MET extracellular domain suggests thatthe Sema domain, which bears structural similarity to other Semaphorins and Plexinfamily members, plays a critical role in ligand mediated receptor activation.Overexpression of MET which is observed in many cancers leads to ligand independentreceptor dimerization and activation. Evidence to support a role for the Sema domain incancer and therapeutic implications of targeting the Met Sema domain are discussed inthis review.  相似文献   

8.
Overexpression of hepatocyte growth factor (HGF) and its receptor Met often occurs in carcinoma cells, leading to establishment of an HGF/Met autocrine loop. Therefore, disruption of the HGF/Met autocrine loop may lead to down-regulation of tumorigenesis. To study the HGF/Met interaction, we have developed a cell-free system to detect HGF binding to a Met fusion protein, Met-IgG, using a modified enzyme-linked immunosorbent assay methodology. Since we previously showed that HGF can be purified by copper(II) affinity chromatography, we further explored the effect of copper(II) on the HGF/Met interaction. The divalent metal cations copper(II) and zinc(II) significantly inhibited HGF binding to immobilized Met-IgG with IC(50) values of 230-270 microM, respectively, whereas manganese(II) and magnesium(II) were less inhibitory with 20-60-fold higher IC(50) values. Incubation of 1 mM copper(II) with HGF resulted in nondenaturing and denaturing gel-mobility shifts, indicating that copper(II) binds directly to HGF. This interaction occurs at the N terminus of HGF, as incubation of 1 mM copper(II) with both HGF and the HGF derivative NK1 yielded similar results on SDS-PAGE. HGF-induced activation of Met and cell scattering were inhibited upon addition of HGF in the presence of 1 mM and 500 microM copper(II), respectively. Chemical protonation with diethyl pyrocarbonate of HGF histidine residues impeded the ability of 500 microM copper(II) to inhibit the binding of HGF to immobilized Met-IgG. Based on the NK1 domain structure, we propose that copper(II) may interact with HGF via the histidine residues in either N-terminal or kringle domains. The inhibition of HGF/Met interaction and subsequent downstream cellular functions may be through direct interference by copper(II), such as a change in charge or an induced local conformational change. This putative copper(II) binding domain may be the basis for developing potential inhibitors of HGF/Met binding and downstream functions and could lead to novel strategies for anti-cancer treatment.  相似文献   

9.
Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.  相似文献   

10.
Hepatocyte growth factor (HGF), the ligand for the receptor tyrosine kinase c-Met, is composed of an alpha-chain containing four Kringle domains (K1-K4) and a serine protease domain-like beta-chain. Receptor activation by HGF is contingent upon prior proteolytic conversion of the secreted inactive single chain form (pro-HGF) into the biologically active two chain form by a single cleavage at the Arg(494)-Val(495) bond. By screening a panel of serine proteases we identified two new HGF activators, plasma kallikrein and coagulation factor XIa (FXIa). The concentrations of kallikrein and FXIa to cleave 50% (EC(50)) of (125)I-labeled pro-HGF during a 4-h period were 10 and 17 nm. Unlike other known activators, both FXIa and kallikrein processed pro-HGF by cleavage at two sites. Using N-terminal sequencing they were identified as the normal cleavage site Arg(494)-Val(495) and the novel site Arg(424)-His(425) located in the K4 domain of the alpha-chain. The identity of this unusual second cleavage site was firmly established by use of the double mutant HGF(R424A/R494E), which was completely resistant to cleavage by kallikrein and FXIa. Experiments with another mutant form, HGF(Arg(494) --> Glu), indicated that cleavage at the K4 site was independent of a prior cleavage at the primary, kinetically preferred Arg(494)-Val(495) site. The cleavage at the K4 site had no obvious consequences on HGF function, because it was fully capable of phosphorylating the c-Met receptor of A549 cells. This may be explained by the disulfide bond network in K4, which holds the cleaved alpha-chain together. In conclusion, the ability of plasma kallikrein and FXIa to activate pro-HGF in vitro raises the possibility that mediators of inflammation and blood coagulation may also regulate processes that involve the HGF/c-Met pathway, such as tissue repair and angiogenesis.  相似文献   

11.
The Listeria monocytogenes surface protein InlB binds to the extracellular domain of the human receptor tyrosine kinase Met, the product of the c-met proto-oncogene. InlB binding activates the Met receptor, leading to uptake of Listeria into normally nonphagocytic host cells. The N-terminal half of InlB (InlB321) is sufficient for Met binding and activation. The complex between this Met-binding domain of InlB and various constructs of the Met ectodomain was characterized by size exclusion chromatography and dynamic light scattering, and structural models were built using small-angle X-ray scattering and small-angle neutron scattering. Although most receptor tyrosine kinase ligands induce receptor dimerization, InlB321 consistently binds the Met ectodomain with a 1:1 stoichiometry. A construct comprising the Sema and PSI domains of Met, although sufficient to bind the physiological Met ligand hepatocyte growth factor/scatter factor, does not form a complex with InlB321 in solution, highlighting the importance of Met Ig domains for InlB binding. Small-angle X-ray scattering and small-angle neutron scattering measurements of ligand and receptor, both free and in complex, reveal an elongated shape for the receptor. The four Ig domains form a bent, rather than a fully extended, conformation, and InlB321 binds to Sema and the first Ig domain of Met, in agreement with the recent crystal structure of a smaller Met fragment in complex with InlB321. These results call into question whether receptor dimerization is the basic underlying event in InlB321-mediated Met activation and demonstrate differences in the mechanisms by which the physiological ligand hepatocyte growth factor/scatter factor and InlB321 bind and activate the Met receptor.  相似文献   

12.
Decorin, a member of the small leucine-rich proteoglycan gene family, impedes tumor cell growth by down-regulating the epidermal growth factor receptor. Decorin has a complex binding repertoire, thus, we predicted that decorin would modulate the bioactivity of other tyrosine kinase receptors. We discovered that decorin binds directly and with high affinity (Kd = ∼1.5 nM) to Met, the receptor for hepatocyte growth factor (HGF). Binding of decorin to Met is efficiently displaced by HGF and less efficiently by internalin B, a bacterial Met ligand. Interaction of decorin with Met induces transient receptor activation, recruitment of the E3 ubiquitin ligase c-Cbl, and rapid intracellular degradation of Met (half-life = ∼6 min). Decorin suppresses intracellular levels of β-catenin, a known downstream Met effector, and inhibits Met-mediated cell migration and growth. Thus, by antagonistically targeting multiple tyrosine kinase receptors, decorin contributes to reduction in primary tumor growth and metastastic spreading.  相似文献   

13.
The leukemia inhibitory factor (LIF) receptor comprises the low affinity binding chain gp190 and the high affinity converter gp130. The ectodomain of gp190 is among the most complex in the hematopoietin receptor family, because it contains two typical cytokine receptor homology domains separated by an immunoglobulin-like (Ig-like) domain. Human and murine gp190 proteins share 76% homology, but murine gp190 binds human LIF with a much higher affinity, a property attributed to the Ig-like domain. Using alanine-scanning mutagenesis of the Ig-like domain, we mapped a LIF binding site at its carboxyl terminus, mainly involving residue Phe-328. Mutation of selected residues into their orthologs in the murine receptor (Q251E and N321D) significantly increased the affinity for human LIF. Interestingly, these residues, although localized at both the amino and carboxyl terminus, make a spatially unique LIF binding site in a structural model of the Ig-like module. These results demonstrate definitively the role of the Ig-like domain in LIF binding and the potential to modulate receptor affinity in this family with very limited amino acid changes.  相似文献   

14.
Depending on the target cells and culture conditions, scatter factor/hepatocyte growth factor (SF/HGF) mediates several distinct activities, i.e., cell motility, proliferation, invasiveness, tubular morphogenesis, angiogenesis, or cytotoxicity. A small isoform of SF/HGF encoded by a natural splice variant, which consists of the NH2-terminal hairpin structure and the first two kringle domains but not the protease homology region, induces cell motility but not mitogenesis. Two types of SF/HGF receptors have recently been discovered in epithelial cells, the high affinity c-Met receptor tyrosine kinase, and low affinity/high capacity binding sites, which are probably located on heparan sulfate proteoglycans. In the present study, we have addressed the question whether the various biological activities of SF/HGF are transduced into cells by a single type of receptor. We have here examined MDCK epithelial cells transfected with a hybrid cDNA encoding the ligand binding domain of the nerve growth factor (NGF) receptor and the membrane-spanning and tyrosine kinase domains of the Met receptor. We demonstrate that all biological effects of SF/HGF upon epithelial cells such as the induction of cell motility, proliferation, invasiveness, and tubular morphogenesis can now be triggered by the addition of NGF. Thus, it is likely that all known biological signals of SF/HGF are transduced through the receptor tyrosine kinase encoded by the c-Met protooncogene.  相似文献   

15.
Hepatocyte growth factor (HGF) is essential for embryogenesis, tissue regeneration and tumour malignancy through the activation of its receptor, c‐Met. We previously demonstrated that HGF α‐chain hairpin–loop, K1 domain and β‐chain are required for c‐Met signalling. The sequential phosphorylation of tyrosine residues, from c‐Met kinase domain to multidocking regions, is required for HGF‐signalling transduction. Herein, we provide evidence that the disconcerted activation of c‐Met tyrosine regions fails to induce biological functions. When human cells were incubated with ‘mouse HGF’, kinase domain activation (i.e. phospho‐Tyr‐1230/34/35) became evident, but the multidocking site (i.e. Tyr‐1349) was not phosphorylated, resulting in unsuccessful induction of migration and mitogenesis. The binding ability of mouse HGF α‐chain, or of β‐chain, to human c‐Met was lower than that of human HGF, as evidenced by HGF–chimera assay. Notably, only four amino acid positions in HGF α‐chain hairpin–loop and K1 domain and six positions in β‐chain differed between human HGF and mouse HGF. The human‐specific amino acids (such as Gln‐95 in hairpin–loop, Arg‐134 in K1 domain and Cys‐561 in β‐chain) may be important for accurate c‐Met assembly and signalling transduction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The extracellular protease urokinase is known to be crucially involved in morphogenesis, tissue repair and tumor invasion by mediating matrix degradation and cell migration. Hepatocyte growth factor/scatter factor (HGF/SF) is a secretory product of stromal fibroblasts, sharing structural motifs with enzymes of the blood clotting cascade, including a zymogen cleavage site. HGF/SF promotes motility, invasion and growth of epithelial and endothelial cells. Here we show that HGF/SF is secreted as a single-chain biologically inactive precursor (pro-HGF/SF), mostly found in a matrix-associated form. Maturation of the precursor into the active alpha beta heterodimer takes place in the extracellular environment and results from a serum-dependent proteolytic cleavage. In vitro, pro-HGF/SF was cleaved at a single site by nanomolar concentrations of pure urokinase, generating the active mature HGF/SF heterodimer. This cleavage was prevented by specific urokinase inhibitors, such as plasminogen activator inhibitor type-1 and protease nexin-1, and by antibodies directed against the urokinase catalytic domain. Addition of these inhibitors to HGF/SF responsive cells prevented activation of the HGF/SF precursor. These data show that urokinase acts as a pro-HGF/SF convertase, and suggest that some of the growth and invasive cellular responses mediated by this enzyme may involve activation of HGF/SF.  相似文献   

17.
Kirchhofer D  Peek M  Lipari MT  Billeci K  Fan B  Moran P 《FEBS letters》2005,579(9):1945-1950
Hepsin, a type II transmembrane serine protease, is highly upregulated in prostate cancer and promotes tumor progression and metastasis. We generated a soluble form of hepsin comprising the entire extracellular domain to show that it efficiently converts single-chain hepatocyte growth factor (pro-HGF) into biologically active two-chain HGF. Hepsin activity was potently inhibited by soluble forms of the bi-Kunitz domain inhibitors HAI-1B (IC(50) 21.1+/-2.7 nM) and HAI-2 (IC(50) 1.3+/-0.3 nM). Enzymatic assays with HAI-1B Kunitz domain mutants (R260A and K401A) further demonstrated that inhibition was due to Kunitz domain-1. The results suggest a functional link between hepsin and the HGF/Met pathway, which may contribute to tumor progression.  相似文献   

18.
Shen Y  Naujokas M  Park M  Ireton K 《Cell》2000,103(3):501-510
The Listeria monocytogenes surface protein InlB promotes bacterial entry into mammalian cells. Here, we identify a cellular surface receptor required for InlB-mediated entry. Treatment of mammalian cells with InlB protein or infection with L. monocytogenes induces rapid tyrosine phosphorylation of Met, a receptor tyrosine kinase (RTK) for which the only known ligand is Hepatocyte Growth Factor (HGF). Like HGF, InlB binds to the extracellular domain of Met and induces "scattering" of epithelial cells. Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes. InlB is a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.  相似文献   

19.
Hepatocyte growth factor/scatter factor (HGF) and its receptor tyrosine kinase Met are key regulators of epithelial motility and morphogenesis. Recent studies indicate that the HGF/Met pathway also plays a role in B cell differentiation, whereas uncontrolled Met signaling may lead to B cell neoplasia. These observations prompted us to explore HGF/Met signaling in B cells. In this study, we demonstrate that HGF induces strong tyrosine phosphorylation of the proto-oncogene product c-Cbl in B cells and increases Cbl association with the Src family tyrosine kinases Fyn and Lyn, as well as with phosphatidylinositol-3 kinase and CrkL. In addition, we demonstrate that c-Cbl mediates HGF-induced ubiquitination of Met. This requires the juxtamembrane tyrosine Y1001 (Y2) of Met, but not the multifunctional docking site (Y14/15) or any additional C-terminal tyrosine residues (Y13-16). In contrast to wild-type c-Cbl, the transforming mutants v-Cbl and 70Z/3 Cbl, which lack the ubiquitin ligase RING finger domain, suppress Met ubiquitination. Our findings identify c-Cbl as a negative regulator of HGF/Met signaling in B cells, mediating ubiquitination and, consequently, proteosomal degradation of Met, and suggest a role for Cbl in Met-mediated tumorigenesis.  相似文献   

20.
Semaphorins are cell surface and soluble signals that control axonal guidance. Recently, semaphorin receptors (plexins) have been discovered and shown to be widely expressed. Their biological activities outside the nervous system and the signal transduction mechanism(s) they utilize are largely unknown. Here, we show that in epithelial cells, Semaphorin 4D (Sema 4D) triggers invasive growth, a complex programme that includes cell#150;cell dissociation, anchorage-independent growth and branching morphogenesis. Interestingly, the same response is also controlled by scatter factors through their tyrosine kinase receptors, which share striking structural homology with plexins in their extracellular domain. We found that in cells expressing the endogenous proteins, Plexin B1 (the Sema 4D Receptor) and Met (the Scatter Factor 1/ Hepatocyte Growth Factor Receptor) associate in a complex. In addition, binding of Sema 4D to Plexin B1 stimulates the tyrosine kinase activity of Met, resulting in tyrosine phosphorylation of both receptors. Finally, cells lacking Met expression do not respond to Sema 4D unless exogenous Met is expressed. This work identifies a novel biological function of semaphorins and suggests the involvement of an unexpected signalling mechanism, namely, the coupling of a plexin to a tyrosine kinase receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号