首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Olivier NB  Chen MM  Behr JR  Imperiali B 《Biochemistry》2006,45(45):13659-13669
In Campylobacter jejuni 2,4-diacetamido-2,4,6-trideoxy-alpha-d-glucopyranose, termed N,N'-diacetylbacillosamine (Bac2,4diNAc), is the first carbohydrate in the glycoprotein N-linked heptasaccharide. With uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) as a starting point, two enzymes of the general protein glycosylation (Pgl) pathway in C. jejuni (PglF and PglE) have recently been shown to modify this sugar nucleotide to form UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-d-glycopyranose (UDP-4-amino-sugar) [Schoenhofen, I. C., et al. (2006) J. Biol. Chem. 281, 723-732]. PglD has been proposed to catalyze the final step in N,N'-diacetylbacillosamine synthesis by N-acetylation of the UDP-4-amino-sugar at the C4 position. We have cloned, overexpressed, and purified PglD from the pgl locus of C. jejuni NCTC 11168 and identified it as the acetyltransferase that modifies the UDP-4-amino-sugar to form UDP-N,N'-diacetylbacillosamine, utilizing acetyl-coenzyme A as the acetyl group donor. The UDP-N,N'-diacetylbacillosamine product was purified from the reaction by reverse phase C18 HPLC and the structure determined by NMR analysis. Additionally, the full-length PglF was overexpressed and purified in the presence of detergent as a GST fusion protein, allowing for derivation of kinetic parameters. We found that the UDP-4-amino-sugar was readily synthesized from UDP-GlcNAc in a coupled reaction using PglF and PglE. We also demonstrate the in vitro biosynthesis of the complete heptasaccharide lipid-linked donor by coupling the action of eight enzymes (PglF, PglE, PglD, PglC, PglA, PglJ, PglH, and PglI) in the Pgl pathway in a single reaction vessel.  相似文献   

2.
Campylobacter jejuni is highly unusual among bacteria in forming N-linked glycoproteins. The heptasaccharide produced by its pgl system is attached to protein Asn through its terminal 2,4-diacetamido-2,4,6-trideoxy-d-Glc (QuiNAc4NAc or N,N'-diacetylbacillosamine) moiety. The crucial, last part of this sugar's synthesis is the acetylation of UDP-2-acetamido-4-amino-2,4,6-trideoxy-d-Glc by the enzyme PglD, with acetyl-CoA as a cosubstrate. We have determined the crystal structures of PglD in CoA-bound and unbound forms, refined to 1.8 and 1.75 A resolution, respectively. PglD is a trimer of subunits each comprised of two domains, an N-terminal alpha/beta-domain and a C-terminal left-handed beta-helix. Few structural differences accompany CoA binding, except in the C-terminal region following the beta-helix (residues 189-195), which adopts an extended structure in the unbound form and folds to extend the beta-helix upon binding CoA. Computational molecular docking suggests a different mode of nucleotide-sugar binding with respect to the acetyl-CoA donor, with the molecules arranged in an "L-shape", compared with the "in-line" orientation in related enzymes. Modeling indicates that the oxyanion intermediate would be stabilized by the NH group of Gly143', with His125' the most likely residue to function as a general base, removing H+ from the amino group prior to nucleophilic attack at the carbonyl carbon of acetyl-CoA. Site-specific mutations of active site residues confirmed the importance of His125', Glu124', and Asn118. We conclude that Asn118 exerts its function by stabilizing the intricate hydrogen bonding network within the active site and that Glu124' may function to increase the pKa of the putative general base, His125'.  相似文献   

3.
Helicobacter pylori and Campylobacter jejuni have been shown to modify their flagellins with pseudaminic acid (Pse), via O-linkage, while C. jejuni also possesses a general protein glycosylation pathway (Pgl) responsible for the N-linked modification of at least 30 proteins with a heptasaccharide containing 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose, a derivative of bacillosamine. To further define the Pse and bacillosamine biosynthetic pathways, we have undertaken functional characterization of UDP-alpha-D-GlcNAc modifying dehydratase/aminotransferase pairs, in particular the H. pylori and C. jejuni flagellar pairs HP0840/HP0366 and Cj1293/Cj1294, as well as the C. jejuni Pgl pair Cj1120c/Cj1121c using His(6)-tagged purified derivatives. The metabolites produced by these enzymes were identified using NMR spectroscopy at 500 and/or 600 MHz with a cryogenically cooled probe for optimal sensitivity. The metabolites of Cj1293 (PseB) and HP0840 (FlaA1) were found to be labile and could only be characterized by NMR analysis directly in aqueous reaction buffer. The Cj1293 and HP0840 enzymes exhibited C6 dehydratase as well as a newly identified C5 epimerase activity that resulted in the production of both UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose and UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. In contrast, the Pgl dehydratase Cj1120c (PglF) was found to possess only C6 dehydratase activity generating UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose. Substrate-specificity studies demonstrated that the flagellar aminotransferases HP0366 and Cj1294 utilize only UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose as substrate producing UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, a precursor in the Pse biosynthetic pathway. In contrast, the Pgl aminotransferase Cj1121c (PglE) utilizes only UDP-2-acetamido-2,6-dideoxy-alpha-D-xylo-4-hexulose producing UDP-4-amino-4,6-dideoxy-alpha-D-GlcNAc (UDP-2-acetamido-4-amino-2,4,6-trideoxy-alpha-D-glucopyranose), a precursor used in the production of the Pgl glycan component 2,4-diacetamido-2,4,6-trideoxy-alpha-D-glucopyranose.  相似文献   

4.
UDP-N,N′-diacetylbacillosamine (UDP-diNAcBac) is a unique carbohydrate produced by a number of bacterial species and has been implicated in pathogenesis. The terminal step in the formation of this important bacterial sugar is catalyzed by an acetyl-CoA (AcCoA)-dependent acetyltransferase in both N- and O-linked protein glycosylation pathways. This bacterial acetyltransferase is a member of the left-handed β-helix family and forms a homotrimer as the functional unit. Whereas previous endeavors have focused on the Campylobacter jejuni acetyltransferase (PglD) from the N-linked glycosylation pathway, structural characterization of the homologous enzymes in the O-linked glycosylation pathways is lacking. Herein, we present the apo-crystal structures of the acetyltransferase domain (ATD) from the bifunctional enzyme PglB (Neisseria gonorrhoeae) and the full-length acetyltransferase WeeI (Acinetobacter baumannii). Additionally, a PglB-ATD structure was solved in complex with AcCoA. Surprisingly, this structure reveals a contrasting binding mechanism for this substrate when compared with the AcCoA-bound PglD structure. A comparison between these findings and the previously solved PglD crystal structures illustrates a dichotomy among N- and O-linked glycosylation pathway enzymes. Based upon these structures, key residues in the UDP-4-amino and AcCoA binding pockets were mutated to determine their effect on binding and catalysis in PglD, PglB-ATD, and WeeI. Last, a phylogenetic analysis of the aforementioned acetyltransferases was employed to illuminate the diversity among N- and O-linked glycosylation pathway enzymes.  相似文献   

5.
Surface glycan switching is often observed when micro-organisms transition between different biotic and abiotic niches, including biofilms, although the advantages of this switching to the organism are not well understood. Bacillus cereus grown in a biofilm-inducing medium has been shown to synthesize an unusual cell wall polysaccharide composed of the repeating subunit →6)Gal(α1–2)(2-R-hydroxyglutar-5-ylamido)Fuc2NAc4N(α1–6)GlcNAc(β1→, where galactose is linked to the hydroxyglutarate moiety of FucNAc-4-amido-(2)-hydroxyglutarate. The molecular mechanism involved in attaching 2-hydroxyglutarate to 4-amino-FucNAc has not been determined. Here, we show two genes in B. cereus ATCC 14579 encoding enzymes involved in the synthesis of UDP-FucNAc-4-amido-(2)-oxoglutarate (UDP-Yelosamine), a modified UDP-sugar not previously reported to exist. Using mass spectrometry and real time NMR spectroscopy, we show that Bc5273 encodes a C4″-aminotransferase (herein referred to as Pat) that, in the presence of pyridoxal phosphate, transfers the primary amino group of l-Glu to C-4″ of UDP-4-keto-6-deoxy-d-GlcNAc to form UDP-4-amino-FucNAc and 2-oxoglutarate. Pat also converts 4-keto-xylose, 4-keto-glucose, and 4-keto-2-acetamido-altrose to their corresponding UDP-4-amino-sugars. Bc5272 encodes a carboxylate-amine ligase (herein referred as Pyl) that, in the presence of ATP and Mg(II), adds 2-oxoglutarate to the 4-amino moiety of UDP-4-amino-FucNAc to form UDP-Yelosamine and ADP. Pyl is also able to ligate 2-oxoglutarate to other 4-amino-sugar derivatives to form UDP-Yelose, UDP-Solosamine, and UDP-Aravonose. Characterizing the metabolic pathways involved in the formation of modified nucleotide sugars provides a basis for understanding some of the mechanisms used by bacteria to modify or alter their cell surface polysaccharides in response to changing growth and environmental challenges.  相似文献   

6.
Sf6 belongs to the Podoviridae family of temperate bacteriophages that infect gram-negative bacteria by insertion of their double-stranded DNA. They attach to their hosts specifically via their tailspike proteins. The 1.25 A crystal structure of Shigella phage Sf6 tailspike protein (Sf6 TSP) reveals a conserved architecture with a central, right-handed beta helix. In the trimer of Sf6 TSP, the parallel beta helices form a left-handed, coiled-beta coil with a pitch of 340 A. The C-terminal domain consists of a beta sandwich reminiscent of viral capsid proteins. Further crystallographic and biochemical analyses show a Shigella cell wall O-antigen fragment to bind to an endorhamnosidase active site located between two beta-helix subunits each anchoring one catalytic carboxylate. The functionally and structurally related bacteriophage, P22 TSP, lacks sequence identity with Sf6 TSP and has its active sites on single subunits. Sf6 TSP may serve as an example for the evolution of different host specificities on a similar general architecture.  相似文献   

7.
The solution structure of the 48-kDa IIA(Man)-HPr complex of the mannose branch of the Escherichia coli phosphotransferase system has been solved by NMR using conjoined rigid body/torsion angle-simulated annealing on the basis of intermolecular nuclear Overhauser enhancement data and residual dipolar couplings. IIA(Man) is dimeric and has two symmetrically related binding sites per dimer for HPr. A convex surface on HPr, formed primarily by helices 1 and 2, interacts with a deep groove at the interface of the two subunits of IIA(Man). The interaction surface on IIA(Man) is predominantly helical, comprising helix 3 from the subunit that bears the active site His-10 and helices 1, 4, and 5 from the other subunit. The total buried accessible surface area at the protein-protein interface is 1450 A(2). The binding sites on the two proteins are complementary in terms of shape and distribution of hydrophobic, hydrophilic, and charged residues. The active site histidines, His-10 of IIA(Man) and His-15 (italics indicate HPr residues) of HPr, are in close proximity. An associative transition state involving a pentacoordinate phosphoryl group with trigonal bipyramidal geometry bonded to the N-epsilon2 atom of His-10 and the N-delta1 atom of His-15 can be readily formed with negligible displacement in the backbone coordinates of the residues immediately adjacent to the active site histidines. Comparing the structures of complexes of HPr with three other structurally unrelated phosphotransferase system proteins, enzymes I, IIA(glucose), and IIA(mannitol), reveals a number of common features that provide a molecular basis for understanding how HPr specifically recognizes a wide range of diverse proteins.  相似文献   

8.
R M Gould  B V Plapp 《Biochemistry》1990,29(23):5463-5468
Molecular modeling of alcohol dehydrogenase suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degrees C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD+ and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver beta enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD+ complex limiting for turnover with ethanol.  相似文献   

9.
Fructose-6-phosphate aldolase from Escherichia coli is a member of a small enzyme subfamily (MipB/TalC family) that belongs to the class I aldolases. The three-dimensional structure of this enzyme has been determined at 1.93 A resolution by single isomorphous replacement and tenfold non-crystallographic symmetry averaging and refined to an R-factor of 19.9% (R(free) 21.3%). The subunit folds into an alpha/beta barrel, with the catalytic lysine residue on barrel strand beta 4. It is very similar in overall structure to that of bacterial and mammalian transaldolases, although more compact due to extensive deletions of additional secondary structural elements. The enzyme forms a decamer of identical subunits with point group symmetry 52. Five subunits are arranged as a pentamer, and two ring-like pentamers pack like a doughnut to form the decamer. A major interaction within the pentamer is through the C-terminal helix from one monomer, which runs across the active site of the neighbouring subunit. In classical transaldolases, this helix folds back and covers the active site of the same subunit and is involved in dimer formation. The inter-subunit helix swapping appears to be a major determinant for the formation of pentamers rather than dimers while at the same time preserving importing interactions of this helix with the active site of the enzyme. The active site lysine residue is covalently modified, by forming a carbinolamine with glyceraldehyde from the crystallisation mixture. The catalytic machinery is very similar to that of transaldolase, which together with the overall structural similarity suggests that enzymes of the MipB/TALC subfamily are evolutionary related to the transaldolase family.  相似文献   

10.
The solution structure of the cytoplasmic B domain of the mannitol (Mtl) transporter (II(Mtl)) from the mannitol branch of the Escherichia coli phosphotransferase system has been solved by multidimensional NMR spectroscopy with extensive use of residual dipolar couplings. The ordered IIB(Mtl) domain (residues 375-471 of II(Mtl)) consists of a four-stranded parallel beta-sheet flanked by two helices (alpha(1) and alpha(3)) on one face and helix alpha(2) on the opposite face with a characteristic Rossmann fold comprising two right-handed beta(1)alpha(1)beta(2) and beta(3)alpha(2)beta(4) motifs. The active site loop is structurally very similar to that of the eukaryotic protein tyrosine phosphatases, with the active site cysteine (Cys-384) primed in the thiolate state (pK(a) < 5.6) for nucleophilic attack at the phosphorylated histidine (His-554) of the IIA(Mtl) domain through stabilization by hydrogen bonding interactions with neighboring backbone amide groups at positions i + 2/3/4 from Cys-384 and with the hydroxyl group of Ser-391 at position i + 7. Modeling of the phosphorylated state of IIB(Mtl) suggests that the phosphoryl group can be readily stabilized by hydrogen bonding interactions with backbone amides in the i + 2/4/5/6/7 positions as well as with the hydroxyl group of Ser390 at position i + 6. Despite the absence of any significant sequence identity, the structure of IIB(Mtl) is remarkably similar to the structures of bovine protein tyrosine phosphatase (which contains two long insertions relative to IIB(Mtl)) and the cytoplasmic B component of enzyme II(Chb), which fulfills an analogous role to IIB(Mtl) in the N,N'-diacetylchitobiose branch of the phosphotransferase system. All three proteins utilize a cysteine residue in the nucleophilic attack of a phosphoryl group covalently bound to another protein.  相似文献   

11.
N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU) is an essential bacterial enzyme with both an acetyltransferase and a uridyltransferase activity which have been mapped to the C-terminal and N-terminal domains, respectively. GlmU performs the last two steps in the synthesis of UDP-N-acetylglucosamine (UDP-GlcNAc), which is an essential precursor in both the peptidoglycan and the lipopolysaccharide metabolic pathways. GlmU is therefore an attractive target for potential antibiotics. Knowledge of its three-dimensional structure would provide a basis for rational drug design. We have determined the crystal structures of Streptococcus pneumoniae GlmU (SpGlmU) in apo form at 2.33 A resolution, and in complex with UDP-N-acetyl glucosamine and the essential co-factor Mg(2+) at 1.96 A resolution. The protein structure consists of an N-terminal domain with an alpha/beta-fold, containing the uridyltransferase active site, and a C-terminal domain with a long left-handed beta-sheet helix (LbetaH) domain. An insertion loop containing the highly conserved sequence motif Asn-Tyr-Asp-Gly protrudes from the left-handed beta-sheet helix domain. In the crystal, S. pneumoniae GlmU forms exact trimers, mainly through contacts between left-handed beta-sheet helix domains. UDP-N-acetylglucosamine and Mg(2+) are bound at the uridyltransferase active site, which is in a closed form. We propose a uridyltransferase mechanism in which the activation energy of the double negatively charged phosphorane transition state is lowered by charge compensation of Mg(2+) and the side-chain of Lys22.  相似文献   

12.
A 1.9-A molecular structure of the microsomal cytochrome P450 2B4 with the specific inhibitor 4-(4-chlorophenyl)imidazole (CPI) in the active site was determined by x-ray crystallography. In contrast to the previous experimentally determined 2B4 structure, this complex adopted a closed conformation similar to that observed for the mammalian 2C enzymes. The differences between the open and closed structures of 2B4 were primarily limited to the lid domain of helices F through G, helices B' and C, the N terminus of helix I, and the beta(4) region. These large-scale conformational changes were generally due to the relocation of conserved structural elements toward each other with remarkably little remodeling at the secondary structure level. For example, the F' and G' helices were maintained with a sharp turn between them but are placed to form the exterior ceiling of the active site in the CPI complex. CPI was closely surrounded by residues from substrate recognition sites 1, 4, 5, and 6 to form a small, isolated hydrophobic cavity. The switch from open to closed conformation dramatically relocated helix C to a more proximal position. As a result, heme binding interactions were altered, and the putative NADPH-cytochrome P450 reductase binding site was reformed. This suggests a structural mechanism whereby ligand-induced conformational changes may coordinate catalytic activity. Comparison of the 2B4/CPI complex with the open 2B4 structure yields insights into the dynamics involved in substrate access, tight inhibitor binding, and coordination of substrate and redox partner binding.  相似文献   

13.
The x-ray crystal structures of the human liver X receptor beta ligand binding domain complexed to sterol and nonsterol agonists revealed a perpendicular histidinetryptophan switch that holds the receptor in its active conformation. Hydrogen bonding interactions with the ligand act to position the His-435 imidazole ring against the Trp-457 indole ring, allowing an electrostatic interaction that holds the AF2 helix in the active position. The neutral oxysterol 24(S),25-epoxycholesterol accepts a hydrogen bond from His-435 that positions the imidazole ring of the histidine above the pyrrole ring of the tryptophan. In contrast, the acidic T0901317 hydroxyl group makes a shorter hydrogen bond with His-435 that pulls the imidazole over the electron-rich benzene ring of the tryptophan, possibly strengthening the electrostatic interaction. Point mutagenesis of Trp-457 supports the observation that the ligand-histidine-tryptophan coupling is different between the two ligands. The lipophilic liver X receptor ligand-binding pocket is larger than the corresponding steroid hormone receptors, which allows T0901317 to adopt two distinct conformations. These results provide a molecular basis for liver X receptor activation by a wide range of endogenous neutral and acidic ligands.  相似文献   

14.
Almond A  Sheehan JK 《Glycobiology》2000,10(3):329-338
Glycosaminoglycan-protein interactions are biologically important and require an appreciation of glycan molecular shape in solution, which is presently unavailable. In previous studies we found strong similarity between aqueous molecular dynamics (MD) simulations and published x-ray diffraction refinements of hyaluronan. We have applied a similar approach here to chondroitin and dermatan, attempting to clarify some of the issues raised by the x-ray diffraction literature relating to chondroitin and dermatan sulfate. We predict that chondroitin has the same beta(1-->4) linkage conformation as hyaluronan, and that their average beta(1-->3) conformations differ. This is explained by changes in hydrogen-bonding across this linkage, resulting from its axial hydroxyl, causing a different sampling of left-handed helices in chondroitin (2.5- to 3.5-fold) as compared with hyaluronan (3.0- to 4.0-fold). Few right-handed helices, which lack intramolecular hydrogen-bonds, were sampled during our MD simulations. Thus, we propose that the 8-fold helix observed in chondroitin-6-sulfate, represented in the literature as an 8(3) helix (right-handed), though it has never been refined, is more likely to be 8(5) (left-handed) helix. Molecular dynamics simulations implied that (4)C(1) and (2)S(O), but not (1)C(4), forms of iduronate could be used in refinements of dermatan x-ray fiber diffraction patterns. Current models of 8-fold dermatan sulfate chains containing (4)C(1) iduronate refine to right-handed helices, which possess no intramolecular hydrogen-bonds. However, MD simulations predict that models containing (2)S(O) iduronate could provide better (8(5) helix) starting structures for refinement. Thus, the 8-fold dermatan sulfate refinement (8(3) helix) could be in error.  相似文献   

15.
Helicobacter pylori flagellin is heavily glycosylated with the novel sialic acid-like nonulosonate, pseudaminic acid (Pse). The glycosylation process is essential for assembly of functional flagellar filaments and consequent bacterial motility. Because motility is a key virulence factor for this and other important pathogens, the Pse biosynthetic pathway offers potential for novel therapeutic targets. From recent NMR analyses, we determined that the conversion of UDP-alpha-D-Glc-NAc to the central intermediate in the pathway, UDP-4-amino-4,6-dideoxy-beta-L-AltNAc, proceeds by formation of UDP-2-acetamido-2,6-dideoxy-beta-L-arabino-4-hexulose by the dehydratase/epimerase PseB (HP0840) followed with amino transfer by the aminotransferase, PseC (HP0366). The central role of PseC in the H. pylori Pse biosynthetic pathway prompted us to determine crystal structures of the native protein, its complexes with pyridoxal phosphate alone and in combination with the UDP-4-amino-4,6-dideoxy-beta-L-AltNAc product, the latter being converted to the external aldimine form in the active site of the enzyme. In the binding site, the AltNAc sugar ring adopts a 4C1 chair conformation, which is different from the predominant 1C4 form found in solution. The enzyme forms a homodimer where each monomer contributes to the active site, and these structures have permitted the identification of key residues involved in stabilization, and possibly catalysis, of the beta-L-arabino intermediate during the amino transfer reaction. The essential role of Lys183 in the catalytic event was confirmed by site-directed mutagenesis. This work presents for the first time a nucleotide-sugar aminotransferase co-crystallized with its natural ligand, and, in conjunction with the recent functional characterization of this enzyme, these results will assist in elucidating the aminotransferase reaction mechanism within the Pse biosynthetic pathway.  相似文献   

16.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

17.
K G Peri  E B Waygood 《Biochemistry》1988,27(16):6054-6061
In Escherichia coli, N-acetylglucosamine (nag) metabolism is joined to glycolysis via three specific enzymes that are the products of the nag operon. The three genes of the operon, nagA, nagB, and nagE, were found to be carried by a colicin plasmid, pLC5-21, from a genomic library of E. coli [Clarke, L., & Carbon, J. (1976) Cell (Cambridge, Mass.) 9,91-99]. The nagE gene that codes for enzyme IIN-acetylglucosamine of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) was sequenced. The nagE sequence is preceded by a catabolite gene activator protein binding site and ends in a putative rho-independent termination site. The amino acid sequence determined from this DNA sequence shows 44% homology to enzymes IIglucose and IIIglucose of the PTS. Enzyme IIN-acetylglucosamine, which has 648 amino acids and a molecular weight of 68,356, contains a histidine at residue 569 which is homologous to the active site of IIIglc. Sequence homologies with enzymes IIglucose, II beta-glucoside, and IIsucrose indicate that residues His-190, His-213, and His-295 of enzyme IInag are also conserved and that His-190 is probably the second active site histidine. Other sequence homologies among these enzymes II suggest that they contain several sequence transpositions. Preliminary models of the enzymes II are proposed.  相似文献   

18.
The conversion of cholesterol to 7alpha-hydroxycholesterol catalyzed by cytochrome P450 7A1 (CYP7A1) initiates the major pathway for cholesterol elimination in mammals. In the present work we focused on identification of determinants of the CYP7A1 substrate specificity inside the active site using a homology model with a novel P450-fold, site-directed mutagenesis, and substrate-binding and kinetic studies. Forty-one mutants, encompassing twenty-six amino acid residues, were generated and characterized, and of these, seven residues appear to determine cholesterol binding in the active site. In addition, four cholesterol derivatives were used as active site probes in the wild type and the seven mutant enzymes, and the spectral binding constants and products were analyzed. It was concluded that Asn288 in the I helix plays a key role in the P450-cholesterol contacts by hydrogen bonding to the steroid 3beta-hydroxyl, while Val280 and Ala284 are beside and the Trp283 is above the steroid nucleus orienting the cholesterol molecule. Leu360 and Ala358 between the K helix and the beta1-4 strand and Leu485 in the beta4 sheet-turn appear to define the size of the active site over the heme pyrrole ring A, thus limiting the orientation and size of the substrate at the steroid A ring. Additionally, the A358V mutant was found to form two new products, one being 7beta-hydroxycholesterol. Our data indicate that a tight fit of cholesterol in the enzyme active site is in part responsible for the high efficiency of cholesterol turnover by CYP7A1.  相似文献   

19.
Morphinone reductase (MR) catalyzes the NADH-dependent reduction of alpha/beta unsaturated carbonyl compounds in a reaction similar to that catalyzed by Old Yellow Enzyme (OYE1). The two enzymes are related at the sequence and structural levels, but key differences in active site architecture exist which have major implications for the reaction mechanism. We report detailed kinetic and solution NMR data for wild-type MR and two mutant forms in which residues His-186 and Asn-189 have been exchanged for alanine residues. We show that both residues are involved in the binding of the reducing nicotinamide coenzyme NADH and also the binding of the oxidizing substrates 2-cyclohexen-1-one and 1-nitrocyclohexene. Reduction of 2-cyclohexen-1-one by FMNH(2) is concerted with proton transfer from an unknown proton donor in the active site. NMR spectroscopy and flavin reoxidation studies with 2-cyclohexen-1-one are consistent with His-186 being unprotonated in oxidized, reduced, and ligand-bound MR, suggesting that His-186 is not the key proton donor required for the reduction of 2-cyclohexen-1-one. Hydride transfer is decoupled from proton transfer with 1-nitrocyclohexene as oxidizing substrate, and unlike with OYE1 the intermediate nitronate species produced after hydride transfer from FMNH(2) is not converted to 1-nitrocyclohexane. The work highlights key mechanistic differences in the reactions catalyzed by MR and OYE1 and emphasizes the need for caution in inferring mechanistic similarities in structurally related proteins.  相似文献   

20.
There is increasing evidence that in several fungi, rhamnose-containing glycans are involved in processes that affect host-pathogen interactions, including adhesion, recognition, virulence, and biofilm formation. Nevertheless, little is known about the pathways for the synthesis of these glycans. We show that rhamnose is present in glycans isolated from the rice pathogen Magnaporthe grisea and from the plant pathogen Botryotinia fuckeliana. We also provide evidence that these fungi produce UDP-rhamnose. This is in contrast to bacteria where dTDP-rhamnose is the activated form of this sugar. In bacteria, formation of dTDP-rhamnose requires three enzymes. Here, we demonstrate that in fungi only two genes are required for UDP-Rha synthesis. The first gene encodes a UDP-glucose-4,6-dehydratase that converts UDP-glucose to UDP-4-keto-6-deoxyglucose. The product was shown by time-resolved (1)H NMR spectroscopy to exist in solution predominantly as a hydrated form along with minor amounts of a keto form. The second gene encodes a bifunctional UDP-4-keto-6-deoxyglucose-3,5-epimerase/-4-reductase that converts UDP-4-keto-6-deoxyglucose to UDP-rhamnose. Sugar composition analysis and gene expression studies at different stages of growth indicate that the synthesis of rhamnose-containing glycans is under tissue-specific regulation. Together, our results provide new insight into the formation of rhamnose-containing glycans during the fungal life cycle. The role of these glycans in the interactions between fungal pathogens and their hosts is discussed. Knowledge of the metabolic pathways involved in the formation of rhamnose-containing glycans may facilitate the development of drugs to combat fungal diseases in humans, as to the best of our knowledge mammals do not make these types of glycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号