首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The D1 dopamine receptor from rat corpus striatum has been purified 200-250-fold by using a newly developed biospecific affinity chromatography matrix based on a derivative of the D1 selective antagonist SCH 23390. This compound, (RS)-5-(4-aminophenyl)-8-chloro-2,3,4,5-tetrahydro-3-methyl-1H-3-benz azepin-7-o l (SCH 39111), possesses high affinity for the D1 receptor and, when immobilized on Sepharose 6B through an extended spacer arm, was able to adsorb digitonin-solubilized D1 receptors. The interaction between the solubilized receptor and the affinity matrix was biospecific. Adsorption of receptor activity could be blocked in a stereoselective fashion [SCH 23390 greater than SCH 23388; (+)-butaclamol greater than (-)-butaclamol]. The elution of [3H]SCH 23390 activity from the gel demonstrated similar stereoselectivity for antagonist ligands. Agonists eluted receptor activity with a rank order of potency consistent with that of a D1 receptor [apomorphine greater than dopamine greater than (-)-epinephrine much greater than LY 171555 greater than serotonin]. SCH 39111-Sepharose absorbed 75-85% of the soluble receptor activity, and after the gel was washed extensively, 35-55% of the absorbed receptor activity could be eluted with 100 microM (+)-butaclamol with specific activities ranging from 250 to 450 pmol/mg of protein. The affinity-purified receptor retains the ligand binding characteristics of a D1 dopamine receptor. This affinity chromatography procedure should prove valuable in the isolation and molecular characterization of the D1 dopamine receptor.  相似文献   

2.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


3.
A critical event determining the functional consequences of G protein-coupled receptor (GPCR) endocytosis is the molecular sorting of internalized receptors between divergent recycling and degradative membrane pathways. The D1 dopamine receptor recycles rapidly and efficiently to the plasma membrane after agonist-induced endocytosis and is remarkably resistant to proteolytic down-regulation. Whereas the mechanism mediating agonist-induced endocytosis of D1 receptors has been investigated in some detail, little is known about how receptors are sorted after endocytosis. We have identified a sequence present in the carboxyl-terminal cytoplasmic domain of the human D1 dopamine receptor that is specifically required for the efficient recycling of endocytosed receptors back to the plasma membrane. This sequence is distinct from previously identified membrane trafficking signals and is located in a proximal portion of the carboxyl-terminal cytoplasmic domain, in contrast to previously identified GPCR recycling signals present at the distal tip. Nevertheless, fusion of this sequence to the carboxyl terminus of a chimeric mutant delta opioid neuropeptide receptor is sufficient to re-route internalized receptors from lysosomal to recycling membrane pathways, defining this sequence as a bona fide endocytic recycling signal that can function in both proximal and distal locations. These results identify a novel sorting signal controlling the endocytic trafficking itinerary of a physiologically important dopamine receptor, provide the first example of such a sorting signal functioning in a proximal portion of the carboxyl-terminal cytoplasmic domain, and suggest the existence of a diverse array of sorting signals in the GPCR superfamily that mediate subtype-specific regulation of receptors via endocytic membrane trafficking.  相似文献   

4.
Pei L  Li S  Wang M  Diwan M  Anisman H  Fletcher PJ  Nobrega JN  Liu F 《Nature medicine》2010,16(12):1393-1395
We report that coupling between dopamine D1 and D2 receptors was markedly increased in postmortem brain of subjects suffering from major depression. Biochemical analyses revealed that D1 and D2 receptors form heterodimers via a direct protein-protein interaction. Administration of an interfering peptide that disrupts the D1-D2 receptor complex substantially reduced immobility in the forced swim test (FST) without affecting locomotor activity, and decreased escape failures in learned helplessness tests in rats.  相似文献   

5.
This review will examine how dopamine, a monoamine neurotransmitter, and adenosine, a neuromodulator, regulate behavioral activation, primarily as reflected by locomotor activity, in rodents. Complex interactions among 2 major types of adenosine receptors (A1AR and A2AAR) and 2 dopamine receptors (D1R and D2R) occur due to physical interactions that alter their ligand-binding properties and subsequent effects on common postreceptor signaling molecules. The output from these interactions in striatum modulates neurotransmission and subsequently influences spontaneous locomotor activity. Caffeine is a nonselective adenosine receptor antagonist that blocks 2 major types of adenosine receptors, A1AR and A2AAR, in the brain. Pharmacologic manipulation of these receptors with drugs such as caffeine offers potential therapeutic benefit for treatment of Parkinson disease.  相似文献   

6.
Several serines present in transmembrane domain V are conserved among members of the G-protein-coupled receptor family that bind catecholamines. Two of these serines that are present in the beta-adrenergic receptor were previously shown by site-directed mutagenesis to affect agonist binding and receptor activation (Strader, C. D., Candelore, M. R., Hill, W. S., Sigal, I. S., and Dixon, R. A. F. (1989) J. Biol. Chem. 264, 13572-13578). We investigated the role of the serines present in transmembrane V of another catecholamine receptor, the dopamine D1 receptor, by site-directed mutagenesis, and the results show that mutations at serines 198, 199, and 202 affect dopamine binding. The substitution of serine 198 or serine 199 by an alanine also affects the binding of several other agonist and antagonist dopaminergic compounds while an alanine substitution at serine 202 has no effect on the binding of these compounds. Moreover, each single serine mutation decreased the maximal cAMP accumulation elicited by a dopamine D1 partial agonist. These results suggest that serines present in transmembrane V of the D1 receptor affect ligand interactions and receptor signal transduction, but not entirely in the manner that would be predicted from the model proposed for the beta-adrenergic receptor.  相似文献   

7.
The importance of the neurotransmitter dopamine (DA) in the nervous system is underscored by its role in a wide variety of physiological and neural functions in both vertebrates and invertebrates. Binding of dopamine to its membrane receptors initiates precise signaling cascades that result in specific cellular responses. Dopamine receptors belong to a super-family of G-protein coupled receptors (GPCRs) that are characterized by seven trans-membrane domains. In mammals, five dopamine receptors have been identified which are grouped into two different categories D1- and D2-like receptors. The interactions of DA receptors with other proteins including specific Gα subunits are critical in deciding the fate of downstream molecular events carried out by effector proteins. In this mini-review we provide a synopsis of known protein-protein interactions of DA receptors and a perspective on the potential synergistic utility of Caenorhabditis elegans as a model eukaryote with a comparatively simpler nervous system to gain insight on the neuronal and behavioral consequences of the receptor interactions.  相似文献   

8.
Solubilization of the D-1 dopamine receptor from rat striatum   总被引:1,自引:0,他引:1  
The D-1 dopamine receptor was extracted from rat striatal membranes with 0.7% sodium cholate and 1 M NaCl. Pretreatment of the membranes with a D-1 specific agonist, inclusion of crude phospholipids in the solubilization buffer, and subsequent removal of the detergent led to a maximal extraction of 48% of the receptor binding sites. The D-1 antagonist, [125I]SCH 23982, bound to single class of sites with a Kd of 1.8 nM and a Bmax of 1.65 pmol/mg protein. The solubilized receptors retained the ability to discriminate between active and inactive enantiomers of agonists and antagonists selective for the D-1 receptor.  相似文献   

9.
The bovine dopamine D2 receptor was purified by wheat-germ-agglutinin-Sepharose chromatography and affinity chromatography, using the D2-receptor-specific agonist N-0434. Purification yields a preparation with a major protein band of 95 kDa. In order to ascertain the identity of this protein, polyclonal antibodies against the dopamine D2 receptor have been raised using synthetic peptides based on the predicted amino acid sequence of the cloned D2 receptor. For the initial screening of these antibodies, three fusion proteins consisting of beta-galactosidase and receptor fragments were constructed. One antiserum reacted strongly with the corresponding D2 receptor fusion protein, both on Western blots and in immunoprecipitation experiments. In each case, recognition was inhibited by competition with free peptide. On Western blots of partially purified receptor preparations from bovine striatum, the antiserum specifically recognized a 95-kDa glycoprotein. From similar preparations, the antiserum precipitated a substantial proportion of active D2 receptor, as determined by a decrease in [3H]spiperone binding in the supernatant. Active receptor could be released from the immunoprecipitate by addition of free peptide. Immunocytochemical analysis of cells transiently transfected with DNA coding for the D2 receptor showed specific staining of transfected cells. The antibody raised against a sequence in the third intracellular loop is able to shift the affinity of the receptor for dopamine from high to low, indicating that the antiserum may be interfering with receptor-GTP-binding-protein interactions.  相似文献   

10.
Human dopamine D(2long) and D(3) receptors were modified by N-terminal addition of SNAP or CLIP forms of O(6)-alkylguanine-DNA-alkyltransferase plus a peptide epitope tag. Cells able to express each of these four constructs only upon addition of an antibiotic were established and used to confirm regulated and inducible control of expression, the specificity of SNAP and CLIP tag covalent labeling reagents, and based on homogenous time-resolved fluorescence resonance energy transfer, the presence of cell surface D(2long) and D(3) receptor homomers. Following constitutive expression of reciprocal constructs, potentially capable of forming and reporting the presence of cell surface D(2long)-D(3) heteromers, individual clones were assessed for levels of expression of the constitutively expressed protomer. This was unaffected by induction of the partner protomer and the level of expression of the partner required to generate detectable cell surface D(2long)-D(3) heteromers was defined. Such homomers and heteromers were found to co-exist and using a reconstitution of function approach both homomers and heteromers of D(2long) and D(3) receptors were shown to be functional, potentially via trans-activation of associated G protein. These studies demonstrate the ability of dopamine D(2long) and D(3) receptors to form both homomers and heteromers, and show that in cells expressing each subtype a complex mixture of homomers and heteromers co-exists at steady state. These data are of potential importance both to disorders in which D(2long) and D(3) receptors are implicated, like schizophrenia and Parkinson disease, and also to drugs exerting their actions via these sites.  相似文献   

11.
Lee FJ  Xue S  Pei L  Vukusic B  Chéry N  Wang Y  Wang YT  Niznik HB  Yu XM  Liu F 《Cell》2002,111(2):219-230
Dopamine D1-like receptors, composed of D1 and D5 receptors, have been documented to modulate glutamate-mediated fast excitatory synaptic neurotransmission. Here, we report that dopamine D1 receptors modulate NMDA glutamate receptor-mediated functions through direct protein-protein interactions. Two regions in the D1 receptor carboxyl tail can directly and selectively couple to NMDA glutamate receptor subunits NR1-1a and NR2A. While one interaction is involved in the inhibition of NMDA receptor-gated currents, the other is implicated in the attenuation of NMDA receptor-mediated excitotoxicity through a PI-3 kinase-dependent pathway.  相似文献   

12.
The dopamine D4 receptor has been shown to play key roles in certain CNS pathologies including addiction to cigarette smoking. Thus, selective D4 ligands may be useful in treating some of these conditions. Previous studies in our laboratory have indicated that the piperazine analog of haloperidol exhibits selective and increased affinity to the DAD4 receptor subtype, in comparison to its piperidine analog. This led to further exploration of the piperazine moiety to identify new agents that are selective at the D4 receptor. Compound 27 (KiD4 = 0.84 nM) was the most potent of the compounds tested. However, it only had moderate selectivity for the D4 receptor. Compound 28 (KiD4 = 3.9 nM) while not as potent, was more discriminatory for the D4 receptor subtype. In fact, compound 28 has little or no binding affinity to any of the other four DA receptor subtypes. In addition, of the 23 CNS receptors evaluated, only two, 5HT1AR and 5HT2BR, have binding affinity constants better than 100 nM (Ki <100 nM). Compound 28 is a potentially useful D4-selective ligand for probing disease treatments involving the D4 receptor, such as assisting smoking cessation, reversing cognitive deficits in schizophrenia and treating erectile dysfunction. Thus, further optimization, functional characterization and evaluation in animal models may be warranted.  相似文献   

13.
It has recently been observed that G protein-coupled receptors (GPCRs) can interact with SH3 domains through polyproline motifs. These interactions appear to be involved in receptor internalization and MAPK signalling. Here we report that the third cytoplasmic loop of the dopamine D3 receptor can interact in vitro with the adaptor protein Grb2. While the amino- and carboxy-terminal SH3 domains of Grb2 separately did not interact with the D3 receptor loop, the interaction is at least partially maintained with a Grb2 mutant for the amino-terminal SH3 domain, but disrupted for a Grb2 mutant with a nonfunctional carboxy-terminal SH3 domain. The data indicate the need of structural integrity of the entire Grb2 protein for the interaction and dominant role of the carboxy-terminal SH3 domain in the interaction. Disruption of the PXXP motifs in the D3 receptor did not affect the interaction with Grb2. These results indicate that GPCRs may contain SH3 ligands that do not contain the postulated minimal consensus sequence PXXP.  相似文献   

14.
15.
A substantial body of evidence shows the capacity of the dopamine D3 receptor to couple functionally to G proteins when expressed in an appropriate milieu in heterologous expression systems. In these systems, activation of D3 receptors inhibits adenylate cyclase, modulates ion flow through potassium and calcium channels, and activates kinases, most notably mitogen-activated protein kinase. Coupling to Gi/Go is implicated in many of these effects, but other G proteins may contribute. Studies with chimeric receptors implicate the third intracellular loop in the mediation of agonist-induced signal transduction. Finally, D3-preferring drugs modulate expression of c-fos in neuronal cultures and brain. Signaling mechanisms of the D3 receptor in brain, however, remain to be definitively determined.  相似文献   

16.
17.
Previously, using artificial cell systems, we identified receptor heteromers between the dopamine D(1) or D(2) receptors and the histamine H(3) receptor. In addition, we demonstrated two biochemical characteristics of the dopamine D(1) receptor-histamine H(3) receptor heteromer. We have now extended this work to show the dopamine D(1) receptor-histamine H(3) receptor heteromer exists in the brain and serves to provide a novel link between the MAPK pathway and the GABAergic neurons in the direct striatal efferent pathway. Using the biochemical characteristics identified previously, we found that the ability of H(3) receptor activation to stimulate p44 and p42 extracellular signal-regulated MAPK (ERK 1/2) phosphorylation was only observed in striatal slices of mice expressing D(1) receptors but not in D(1) receptor-deficient mice. On the other hand, the ability of both D(1) and H(3) receptor antagonists to block MAPK activation induced by either D(1) or H(3) receptor agonists was also found in striatal slices. Taken together, these data indicate the occurrence of D(1)-H(3) receptor complexes in the striatum and, more importantly, that H(3) receptor agonist-induced ERK 1/2 phosphorylation in striatal slices is mediated by D(1)-H(3) receptor heteromers. Moreover, H(3) receptor-mediated phospho-ERK 1/2 labeling co-distributed with D(1) receptor-containing but not with D(2) receptor-containing striatal neurons. These results indicate that D(1)-H(3) receptor heteromers work as processors integrating dopamine- and histamine-related signals involved in controlling the function of striatal neurons of the direct striatal pathway.  相似文献   

18.
多巴胺D3受体(D3R)的神经科学新进展   总被引:6,自引:0,他引:6  
和友  金国章 《生命科学》2005,17(2):170-175
多巴胺(DA)是脑内一种重要的神经递质,通过不同DA受体亚型调控运动功能、认知活动和药物成瘾等生理、病理过程。多巴胺D3受体(D3R)属于D2样受体,但其功能长期不明。近年来,人们对它在神经科学中的意义有了新的认识。首先,D3R的信号通路独特,它被激活后显示细胞增殖效应,但cAMP信号传导途径不明显。其次,D3R基因敲除小鼠研究提示,正常生理状态下D3R仅表现辅助功能:在特定病理条件下,D3R显示出重要的“平衡缓冲作用”,在精神分裂症、帕金森病(PD)治疗中运动障碍副作用LID的发生和毒品复吸等病理过程扮演了重要角色。因此,D3R是一个重要的药物靶标。D3R拮抗剂在精神分裂症治疗中显示了临床前景,D3R激动剂则对PD治疗和毒品复吸防治展示了应用价值。  相似文献   

19.
Homologous desensitization of D(1) dopamine receptors is thought to occur through their phosphorylation leading to arrestin association which interdicts G protein coupling. In order to identify the relevant domains of receptor phosphorylation, and to determine how this leads to arrestin association, we created a series of mutated D(1) receptor constructs. In one mutant, all of the serine/threonine residues within the 3rd cytoplasmic domain were altered (3rdTOT). A second construct was created in which only three of these serines (serines 256, 258, and 259) were mutated (3rd234). We also created four truncation mutants of the carboxyl terminus (T347, T369, T394, and T404). All of these constructs were comparable with the wild-type receptor with respect to expression and adenylyl cyclase activation. In contrast, both of the 3rd loop mutants exhibited attenuated agonist-induced receptor phosphorylation that was correlated with an impaired desensitization response. Sequential truncation of the carboxyl terminus of the receptor resulted in a sequential loss of agonist-induced phosphorylation. No phosphorylation was observed with the most severely truncated T347 mutant. Surprisingly, all of the truncated receptors exhibited normal desensitization. The ability of the receptor constructs to promote arrestin association was evaluated using arrestin-green fluorescent protein translocation assays and confocal fluorescence microscopy. The 3rd234 mutant receptor was impaired in its ability to induce arrrestin translocation, whereas the T347 mutant was comparable with wild type. Our data suggest a model in which arrestin directly associates with the activated 3rd cytoplasmic domain in an agonist-dependent fashion; however, under basal conditions, this is sterically prevented by the carboxyl terminus of the receptor. Receptor activation promotes the sequential phosphorylation of residues, first within the carboxyl terminus and then the 3rd cytoplasmic loop, thereby dissociating these domains and allowing arrestin to bind to the activated 3rd loop. Thus, the role of receptor phosphorylation is to allow access of arrestin to its receptor binding domain rather than to create an arrestin binding site per se.  相似文献   

20.
In modern biomedical technology, development of high performance sensing methods for dopamine (DA) is a critical issue because of its vital role in human metabolism. We report here, a new kind of bioaffinity sensor for DA based on surface plasmon resonance (SPR) using a D(3) dopamine receptor (DA-RC) as a recognition element. A conjugate of DA was synthesized using bovine serum albumin (BSA) protein and was characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The biosensor surface was constructed by the immobilization of the DA-BSA conjugate onto an SPR gold surface by physical adsorption. Atomic force microscopy (AFM) investigations revealed that the DA-BSA conjugate was homogeneously distributed over the sensor surface. Specific interaction of the DA-RC with the immobilized DA-BSA conjugate was studied by SPR. Based on the principle of indirect competitive inhibition, the biosensor could detect DA in a linear dynamic range from 85 pg/ml (ppt) to 700 ng/ml (ppb). The biosensor was highly specific for DA and showed no significant interference from potent interferences such as ascorbic acid (AA), uric acid (UA) and other DA analogues viz., 3,4 dihydroxyphenyl acetic acid (DOPAC) and 3-(3,4 dihydroxyphenyl)-alanine (DOPA). The sensor surface displayed a high level of stability during repeated regeneration and affinity reaction cycles. Since this biosensor is simple, effective and is based on utilization of natural receptor, our study presents an encouraging scope for development of portable detection systems for in-vitro and in-vivo measurement of DA in clinical and medical diagnostics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号