首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The process of cellular autolysis was studied in an industrial strain of Penicillium chrysogenum by a range of methods, including assessment of biomass decline, NH+4 release, changes in culture apparent viscosity, and by means of a quantitative assessment of changes in micromorphology using a computerized image analysis system. The pattern of total intracellular proteolytic and beta-1, 3-glucanolytic activity in the culture was also examined. The overall aim was to identify a suitable method, or methods, for examining the extent of autolysis in fungal cultures. Autolysis was studied in submerged batch processes, where DOT was maintained above 40% saturation (non-O2-limited), and, under O2-limited conditions. Both N and O2 limitation promoted extensive culture autolysis. Image analysis techniques were perhaps the most sensitive method of assessing the progress of autolysis in the culture. Autolytic regions within some hyphae were apparent even during growth phase, but became much more widespread as the process proceeded. The early stages of autolysis involved continued energy source consumption, increased carbon dioxide evolution rate, degradation of penicillin, and decreased broth filterability. Later stages involved widespread mycelial fragmentation, with some regrowth (cryptic growth) occurring in non-O2-limited cultures. Intracellular proteolytic activity showed two peaks, one during the growth phase, and the other during autolysis. Autolysis was also associated with a distinct peak in beta-1,3-glucanolytic activity, indicating that degradation of cell wall matrix polymers may be occurring during autolysis in this strain of P. chrysogenum.  相似文献   

2.
Internal pool sizes of glutamine and glutamate in Klebsiella pneumoniae grown under nitrogen limitation or nitrogen sufficiency were measured to study the signal transduction of external nitrogen limitation. K. pneumoniae cells were grown in an anaerobic, ammonium-limited chemostat culture. At a growth rate of 0.217 h−1, the steady state ammonium concentration in the culture was 55 μm, correlating with repression of the nitrogen fixation (nif) genes. At growth rates below 0.138 h−1, the ammonium concentration in the culture dropped below 0.5 μm and the nif genes became derepressed. During the transition from nitrogen sufficiency to nitrogen limitation, the internal glutamine pool in K. pneumoniae decreased by a factor of approximately 6. The glutamate pool, however, remained stable. Similarly, in anaerobic batch cultures with different limiting nitrogen sources, the glutamine pool generally decreased by a factor of 7 to 9 when nif gene derepression was achieved. All the limiting nitrogen sources used resulted in decreased growth rates compared with growth under nitrogen excess, suggesting an inverse relationship between glutamine pool size and doubling time. These studies indicate that K. pneumoniae perceives external nitrogen limitation as internal glutamine limitation. Received: 3 April 2000 / Accepted: 5 June 2000  相似文献   

3.
The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates. Received: 3 December 1998 / Received revision: 23 February 1999 / Accepted: 14 March 1999  相似文献   

4.
Heterotrophic growth of the facultatively chemolithoautotrophic acidophile Thiobacillus acidophilus was studied in batch cultures and in carbon-limited chemostat cultures. The spectrum of carbon sources supporting heterotrophic growth in batch cultures was limited to a number of sugars and some other simple organic compounds. In addition to ammonium salts and urea, a number of amino acids could be used as nitrogen sources. Pyruvate served as a sole source of carbon and energy in chemostat cultures, but not in batch cultures. Apparently the low residual concentrations in the steady-state chemostat cultures prevented substrate inhibition that already was observed at 150 M pyruvate. Molar growth yields of T. acidophilus in heterotrophic chemostat cultures were low. The Y max and maintenance coefficient of T. acidophilus grown under glucose limitation were 69 g biomass · mol–1 and 0.10 mmol · g–1 · h–1, respectively. Neither the Y max nor the maintenance coefficient of glucose-limited chemostat cultures changed when the culture pH was increased from 3.0 to 4.3. This indicates that in T. acidophilus the maintenance of a large pH gradient is not a major energy-requiring process. Significant activities of ribulose-1,5-bisphosphate carboxylase were retained during heterotrophic growth on a variety of carbon sources, even under conditions of substrate excess. Also thiosulphate- and tetrathionate-oxidising activities were expressed under heterotrophic growth conditions.  相似文献   

5.
Pseudomonas oleovorans (ATCC 29347) was grown in batch and chemostat cultures with citrate, hexanoate, heptanoate, octanoate, and nonanoate as single carbon substrates. The growth medium for batch cultures was adjusted such that nitrogen (NH(4)(+)) limitation terminated the exponential-growth phase. During batch cultivation with octanoate or nonanoate the biomass continued to increase after depletion of ammonium due to the accumulation of medium-chain-length poly[(R)-3-hydroxyalkanoates] (mcl-PHAs). Additionally, a significant rate of mcl-PHA accumulation was also observed in the exponential-growth phase of batch cultures. It is well known that the accumulation of reserve materials is strongly dependent on the ratio of nutrients (here of carbon, C, and of nitrogen, N) and that in a batch culture the ratio of C:N is continuously changing. Therefore, we have also investigated the effect of defined ratios of C:N under constant cultivation conditions, namely at a fixed dilution rate (D) in a chemostat fed with different medium C:N ratios. These experiments were performed at a constant D of 0.2 h(-1). The concentration of the nitrogen source in the inflowing medium (N()) was kept constant, while its carbon concentration (C()) was increased stepwise, resulting in an increase of the medium carbon to nitrogen ratio (C()/N() ratio). The culture parameters and the cell composition of steady-state cultures were determined as a function of the C()/N() ratio in the feed medium. Mcl-PHA accumulation was detected during growth with the fatty acids, and three distinct regimes of growth limitation were discovered: In addition to carbon limitation at low, and nitrogen limitation at high C()/N() ratios, an intermediate growth regime of simultaneous limitation by carbon and nitrogen was detected where both substrates were used to completion. The width of this dual-nutrient-limited growth regime was dependent on the change in the yield factors for carbon and nitrogen (Y(X/C), Y(X/N)) measured during single-nutrient-limited growth.  相似文献   

6.
 In order to direct the persistent expression of recombinant human serum albumin (HSA) from the GAL10 promoter in the yeast Saccharomyces cerevisiae, we carried out periodic feeding of galactose during shake-flask cultures. Unexpectedly, the recombinant protein secreted was observed to undergo rapid degradation, which was apparently accelerated by carbon-source feeding. The extracellular degradation of HSA occurred even in the strain deficient in the major vacuolar proteases PrA and PrB, and in the strain lacking the acidic protease Yap3p (involved in the generation of HSA-truncated fragments). Interestingly, the degradation correlated closely with the acidification of extracellular pH and thus was significantly overcome either by buffering the culture medium above pH 5.0 or by adding amino acid-rich supplements to the culture medium, which could prevent the acidification of medium pH during cultivation. Addition of arginine or ammonium salt also substantially minimized the degradation of HSA, even without buffering. The extracellular degradation activity was not detected in the cell-free culture supernatant but was found to be associated with intact cells. The results of the present study strongly suggest that the HSA secreted in S. cerevisiae is highly susceptible to the pH-dependent proteolysis mediated by cell-bound protease(s) whose activity and expression are greatly affected by the composition of the medium. Received: 23 August 1999 / Received revision: 8 November 1999 / Accepted: 12 December 1999  相似文献   

7.
Aims:  To characterize the secretion of proteolytic activities against keratin, collagen and elastin in liquid cultures of Bacillus cereus IZ-06b and IZ-06r isolated from wool.
Methods and Results:  Growth of B. cereus IZ-06b and IZ-06r were characterized in batch culture. Both strains needed an organic nitrogen source, were able to grow on wool or peptone as sole carbon and nitrogen sources, and metabolized glucose, maltose and other simple sugars. Proteolytic activities were investigated in batch cultures grown in peptide-restricted, carbon-sufficient medium. Secretion of proteases was induced by peptide limitation while different proteolytic activities appeared sequentially in the growth medium. When the most available components of the peptone were depleted, collagenolytic and elastolytic proteases were produced. These were later replaced by the production of keratinolytic protease.
Conclusions:  B. cereus can adjust its proteolytic affinity profile in response to the supply of organic nitrogen and sequentially secrete proteases with activities targeted against increasingly inaccessible proteinous substrates as the nutritional availability in the environment deteriorates.
Significance and Impact of the Study:  Peptide-limited, carbon-sufficient growth media containing no proteinous substrates are well suited for protease production in B. cereus while growth conditions can be adjusted to optimize the proteolytic affinity profiles.  相似文献   

8.
Bacillus licheniformis MIR 29 has been isolated and produces extracellular proteases. It is able to grow at temperatures up to 60 °C and at pH values up to 9.0. Casein was the best carbon source for production of a thermostable protease activity which, in some conditions, is 90% extracellular. The synthesis of alkaline protease is not constitutive; different levels of production were found with different carbon and nitrogen sources. Casein was thought to be an inducer of enzyme synthesis. The optimal pH and temperature of the enzyme activity were 12 °C and 60 °C, respectively. The enzyme was stable up to 60 °C in the absence of stabilizers. The protease activity was inhibited with phenylmethylsulphonyl fluoride, indicating a serine-protease activity. The proteolytic activity was lowered by molecules present in the culture supernatant, which include amino acids and peptides, indicating end-product inhibition. Electrophoresis assay on denaturating gels showed two bands with alkaline protease activity, in the 25 to 40-kDa molecular mass range. Received: 7 June 1995/Received revision: 14 September 1995/Accepted: 20 September 1995  相似文献   

9.
10.
Growth and β-galactosidase (β-gal) expression were characterized in the yeast Kluyveromyces lactis strain NRRL Y-1118 growing in aerobic chemostat cultures under carbon, nitrogen or phosphate limitation. In lactose or galactose-limited cultures, β-gal accumulated in amounts equivalent to 10–12% of the total cell protein. The induced β-gal expression was repressed when cells were grown under N- or P-limitation. In lactose medium, enzyme levels were 4–8 times lower than those expressed in C-limited cultures. A similar response was observed when galactose was the carbon source. These results suggest that a galactose-dependent signal (in addition to glucose) may have limited induction when cells were grown in carbon-sufficient cultures. Constitutive β-gal expression was highest in lactate-limited and lowest in glucose-limited media and was also repressed in glucose-sufficient cultures. Other K. lactis strains (NRRL Y-1140 and CBS 2360) also showed glucose repression (although with different sensitivity) under non-inducing conditions. We infer that these strains share a common mechanism of glucose repression independent of the induction pathway. The kinetics of β-gal induction observed in C-limited cultures confirms that β-gal induction is a short-term enzyme adaptation process. Applying a lactose pulse to a lactose-limited chemostat culture resulted in ‘substrate-accelerated death’. Immediately after the pulse, growth was arrested and β-gal was progressively inactivated. Yeast metabolism in C-limited cultures was typically oxidative with the substrate being metabolized solely to biomass and CO2. Cells grown under P- or N-limitation, either with glucose or lactose, exhibited higher rates of sugar consumption than C-limited cells, accumulated intracellular reserve carbohydrates and secreted metabolic products derived from the glycolytic pathway, mainly glycerol and ethanol. Received 16 October 1997/ Accepted in revised form 17 April 1998  相似文献   

11.
The effects of different nutrient limitations on the production of the two enzymes of gramicidin S biosynthesis were studied during continuous culture of Bacillus brevis. Gramicidin S synthetases I and II were produced in the chemostat under carbon, nitrogen, phosphorus or sulphur limitation. The growth rate, rather than the nature of the limitation, was the major controlling factor in regulating the level of the gramicidin S synthetases. Synthetase production was low at high dilution rates (0.45 to 0.50 h-1) but increased as the dilution rate was lowered. The highest specific activities occurred at dilution rates that were different for each type of limitation: 0.40 h-1 for nitrogen, 0.32 h-1 for carbon, 0.24 h-1 for sulphur and 0.20 h-1 for phosphorus. Phosphorus limitation gave the highest specific activities. At low dilution rates (0.10 to 0.15 h-1), enzyme activities were again low. Sporulation occurred under carbon limitation, but at a lower dilution rate than that which supported optimal gramicidin S synthetase formation. The specific productivity of the synthetases in the chemostat was higher than the highest productivity obtained in batch growth.  相似文献   

12.
Nitrogen fixation as well as structural and functional properties of the photosynthetic apparatus were studied with phototrophically grown chemostat cultures of Rhodobacter capsulatus strain 37b4. Illumination was varied between 3,000 and 30,000 lx at a constant dilution rate of D=0.075 h-1. Steady state parameters of growth revealed two forms of limitation, i.e. energy limitation in the range of 3,000 to about 10,000 lx and nitrogen limitation at higher illuminations. Over the entire range of illumination, the specific bacteriochlorophyll content and the amount of total bacteriochlorophyll per photochemical reaction center remained essentially constant. Photophosphorylation activity remained constant up to 20,000 lx but was slightly increased at 30,000 lx. Hydrogen evolution and acetylene reduction activities of cellular nitrogenase were assayed under saturating light conditions with samples taken from cultures growing under steady state conditions. In spite of the apparent constancy of the composition and activity of the photosynthetic apparatus under energy limitation, maximal specific acetylene reduction and hydrogen evolution activities increased by factors of 3 and 8, respectively, when illumination of the culture was raised from 3,000 to about 15,000 lx. Above 15,000 lx, both activities of nitrogenase approached constancy.We, therefore, conclude that neither under energy limitation nor under nitrogen limitation the function of nitrogenase depended on the photosynthetic activities. Moreover, it is suggested that light did not influence nitrogenase activity under conditions of nitrogen limitation, while under conditions of energy limitation light seemed to influence nitrogenase activities indirectly via glutamate consumption of the cells.  相似文献   

13.
The role of hydrolytic enzymes (proteases and chitinase) and oxidative stress in the autolysis and morphology of Blakeslea trispora during β-carotene production from a chemically defined medium in shake flask culture was investigated. The process of cellular autolysis was studied by measuring the changes in biomass dry weight, pH, concentration of β-carotene, specific activity of the hydrolytic enzymes and micromorphology of the fungus using a computerized image analysis system. In addition, the phenomenon of autolysis was associated with high concentrations of reactive oxygen species (ROS). The accumulation of ROS produced during fermentation causes oxidative stress in B. trispora. Oxidative stress was examined in terms of the activities of two key defensive enzymes: catalase (CAT) and superoxide dismutase (SOD). The profile of the specific activities of the above enzymes appeared to correlate with the oxidative stress of the fungus. The high activities of CAT and SOD showed that B. trispora is found under oxidative stress during β-carotene production. The culture began to show signs of autolysis nearly in the growth phase and autolysis increased significantly during the production phase. The morphological differentiation of the fungus was a result of the degradation of the cell membrane by hydrolytic enzymes and oxidative stress. Increased β-carotene production is correlated with intense autolysis of clumps, which has as a consequence the increase of the freely dispersed mycelia.  相似文献   

14.
K O'Connor  W Duetz  B Wind    A D Dobson 《Applied microbiology》1996,62(10):3594-3599
Styrene degradation in Pseudomonas putida CA-3 has previously been shown to be subject to catabolite repression in batch culture. We report here on the catabolite-repressing effects of succinate and glutamate and the effects of a limiting inorganic-nutrient concentration on the styrene degradation pathway of P. putida CA-3 in a chemostat culture at low growth rates (0.05 h-1). Oxidation of styrene and the presence of styrene oxide isomerase and phenylacetaldehyde dehydrogenase activities were used as a measure of the expression of the styrene degradation pathway. Both glutamate and succinate failed to repress the styrene degradation ability under growth conditions of carbon and energy limitation. Lower levels of enzyme activities of the styrene degradation pathway were seen in cells grown on styrene or phenylacetic acid (PAA) under conditions of both ammonia and sulfate limitation than were seen under carbon and energy limitation. Cells grown on PAA under continuous culture oxidize styrene and styrene oxide and possess styrene oxide isomerase and NAD(+)-dependent phenylacetaldehyde dehydrogenase activities. Catabolite repression of styrene metabolism was observed in cells grown on styrene or PAA in the presence of growth-saturating (nonlimiting) concentrations of succinate or glutamate under sulfate limitation.  相似文献   

15.
Bacillus thuringiensis subsp. galleriae, grown in continuous cultures, segregated to spontaneous asporogenic variants replacing the wild-type Spo+ Cry+ strains [Sachidanandham R, Jayaraman K (1993) Appl Microbiol Biotechnol 40:504–507]. Realizing that this was due to specific but unknown nutritional requirements, we undertook further continuous-culture studies to identify growth requirement(s) by pulsing various medium components and growth factors. While carbon, nitrogen and pulses of nutrients exhibited a neutral pulse response, a group of amino acids were shown to improve the stability and volumetric productivity of biomass. The formation of spores and insecticidal crystal proteins was found to be higher with amino acid supplementation. Comparison of carbon-limited steady-state continuous cultures under two different conditions of growth brought forth the stabilizing effects of the amino acid supplementation. Batch experiments carried out with these inputs demonstrated a better carbon utilization, resulting in a higher biomass as well as enhancement of bioinsecticidal activity. Received: 14 May 1996 / Received revision: 9 September 1996 / Accepted: 13 September 1996  相似文献   

16.
The Aspergillus niger strain BO-1 was grown in batch, continuous (chemostat) and fed-batch cultivations in order to study the production of the extracellular enzyme glucoamylase under different growth conditions. In the pH range 2.5–6.0, the specific glucoamylase productivity and the specific growth rate of the fungus were independent of pH when grown in batch cultivations. The specific glucoamylase producivity increased linearly with the specific growth rate in the range 0–0.1 h−1 and was constant in the range 0.1–0.2 h−1. Maltose and maltodextrin were non-inducing carbon sources compared to glucose, and the maximum specific growth rate was 0.19 ± 0.02 h−1 irrespective of whether glucose or maltose was the carbon source. In fed-batch cultivations, glucoamylase titres of up to 6.5 g l−1 were obtained even though the strain contained only one copy of the glaA gene. Received: 5 May 1999 / Received revision: 7 September 1999 / Accepted: 17 September 1999  相似文献   

17.
Recombinant proteins produced in plant suspension cultures are often degraded by endogenous plant proteases when secreted into the medium, resulting in low yields. To generate protease‐deficient tobacco BY‐2 cell lines and to retrieve the sequence information, we cloned four different protease cDNAs from tobacco BY‐2 cells (NtAP, NtCP, NtMMP1, and NtSP), which represent the major catalytic classes. The simultaneous expression of antisense RNAs against these endogenous proteases led to the establishment of cell lines with reduced levels of endogenous protease expression and activity at late stages of the cultivation cycle. One of the cell lines showing reduced proteolytic activity in the culture medium was selected for the expression of the recombinant full‐length IgG1(κ) antibody 2F5, recognizing the gp41 surface protein of HIV‐1. This cell line showed significantly reduced degradation of the 2F5 heavy chain, resulting in four‐fold higher accumulation of the intact antibody heavy chain when compared to transformed wild type cells expressing the same antibody. N‐terminal sequencing data revealed that the antibody has two cleavage sites within the CDR‐H3 and one site at the end of the H4‐framework region. These cleavage sites are found to be vulnerable to serine proteases. The data provide a basis for further improvement of plant cells for the production of recombinant proteins in plant cell suspension cultures.  相似文献   

18.
The growth of Micromonospora echinospora was studied in high and low C/N ratio medium using both batch and continuous culture. Asparagine was consumed rapidly in batch cultures where it served as both a nitrogen and carbon source. Glucose consumption was low suggesting that asparagine functions as the major carbon source under these conditions. The effect of nutrient limitation on the accumulation of storage carbohydrate in batch culture revealed an intimate association between nitrogen limitation and the accumulation of carbonaceous reserves. This study revealed that glycogen constituted the major carbohydrate reserve associated with the onset of sporulation. Intracellular trehalose levels were found to be relatively low and may have been affected by the availability of carbon. Continuous culture studies revealed a correlation between glycogen accumulation and increasing growth rate. It was also found that elevated cellular ATP levels correlated with the increase in glycogen, and reduced glycolytic activity. At the higher growth rates cellular ATP levels were elevated and coincided with reduced activity of the key glycolytic enzyme, phosphofructokinase, suggesting that glycogen can act as a convenient energy reservoir when excess carbon flux dictates.  相似文献   

19.
 A 23-kDa protein with elastinolytic activity was purified from Aspergillus flavus (NRRL 18543) culture filtrates by gel-filtration chromatography. Severe inhibition of the elastinolytic activity by 1,10-phenanthrolene (5 mM) and EDTA (0.8 mM) indicated that the protein belongs to the metallo class of proteases. The isoelectric point was 9.0. Natural substrates susceptible to cleavage by this protease, in addition to elastin, included cottonseed storage protein, collagen, ovalbumin and bovine serum albumin. The 23-kDa protein was thermostable to 70°C and retained its elastinolytic activity in concentrated form at 4°C for 6 months. Elastinolytic activity was initially secreted into the culture medium as a 35-kDa protein, which was subsequently converted to a 23-kDa protein, presumably through autolysis. This putative proteolytic degradation product appears to be identical to the 23-kDa protein recovered from the gel-filtration column. The 23-kDa protease may confer selective advantage to the fungus in the extracellular environment because of its temperature and pH stability and wide range of potential natural protein substrates. Received: 24 October 1995/Received last revision: 27 March 1996/Accepted: 30 March 1996  相似文献   

20.
Lactate transport was investigated in newborn rat muscle cells in culture. The aim was to study the lactate transport function at two stages of cell differentiation in culture: (i) during the proliferative phase characterized by myoblasts and myotubes (MyB/MyT2) obtained after 2–3 seedings, (ii) when myotubes (MyT1) grow old in culture after 8–9 seedings. In both developmental stages MyB/MyT2, lactate was carried following a saturable and sigmoidal velocity curve: the Hill and the Scatchard plot analyses confirmed an allosteric or multisite mechanism of lactate transport with two classes of carriers: one of low and one of high affinity i.e., 8.6 and 0.95 mm, respectively, which are associated with high and low transport capacities (V m ) i.e., 9.1 and 0.67 nm/min/mg, respectively. With MyT1, the velocity curve of lactate transport presented a hyperbolic profile, and the Hill plot analysis gave a Hill number near one suggesting that for cell aging in culture the decrease in cooperativity shows that lactate transport essentially occurs through the low affinity transport system. Inhibitor effects also contributed to evidence for at least two systems of transport. Results obtained from primary cells give evidence for the early activity of lactate transport system at the Myb/MyT2 stage and its evolution during cell aging in culture (MyT1). Sarcolemmal lactate transport in primary cultures of myocytes is accomplished by multiple carriers, neither of which are MCT1 or MCT2 as confirmed by immunoblots. Received: 31 March 1999/Revised: 22 September 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号