首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
小黑麦抗真菌蛋白组分的分离纯化和性质研究   总被引:3,自引:0,他引:3  
以木霉为指示菌,小黑麦中饲237种子中的蛋白提取物经过分离纯化后,得到了3种主要的抗真菌蛋白组分,经酶活检测鉴定,分别是分子量为30.5 kD的ClassⅡ型几丁质酶,两种分子量为51kD和23 kD的β-1,3-葡聚糖酶。其中几丁质酶的最适反应pH为6.0,最适反应温度为37℃,测定的N末端氨基酸序列与大麦几丁质酶的有很高的同源性。在一定条件下,这3种蛋白组分都有较强的抗木霉活性,并且有明显的协同作用,同时它们对离体易感小麦叶片上白粉菌有很好的生长抑制作用。  相似文献   

2.
Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s).  相似文献   

3.
Chitinase and β-1,3-glucanase purified from pea pods acted synergistically in the degradation of fungal cell walls. The antifungal potential of the two enzymes was studied directly by adding protein preparations to paper discs placed on agar plates containing germinated fungal spores. Protein extracts from pea pods infected with Fusarium solani f.sp. phaseoli, which contained high activities of chitinase and β-1,3-glucanase, inhibited growth of 15 out of 18 fungi tested. Protein extracts from uninfected pea pods, which contained low activities of chitinase and β-1,3-glucanase, did not inhibit fungal growth. Purified chitinase and β-1,3-glucanase, tested individually, did not inhibit growth of most of the test fungi. Only Trichoderma viride was inhibited by chitinase alone, and only Fusarium solani f.sp. pisi was inhibited by β-1,3-glucanase alone. However, combinations of purified chitinase and β-1,3-glucanase inhibited all fungi tested as effectively as crude protein extracts containing the same enzyme activities. The pea pathogen, Fusarium solani f.sp. pisi, and the nonpathogen of peas, Fusarium solani f.sp. phaseoli, were similarly strongly inhibited by chitinase and β-1,3-glucanase, indicating that the differential pathogenicity of the two fungi is not due to differential sensitivity to the pea enzymes. Inhibition of fungal growth was caused by the lysis of the hyphal tips.  相似文献   

4.
The antifungal mechanism of mycoparasitic fungi involves fungal cell wall degrading enzymes such as chitinases. Trichothecium roseum is an important mycoparasitic fungus with significant antifungal ability, but studies on chitinases of T. roseum were poor. Here, we report a novel chitinase cDNA isolated from T. roseum by PCR amplification based on conserved chitinase sequences. Southern blot analysis suggested that a single copy of the gene exists in the genome of T. roseum. The deduced open reading frame of 1,143 nucleotides encodes a protein of 380 amino acids with a calculated molecular weight of 41.6 kDa. The fusion chitinase expressed in Escherichia coli has been purified by single-step chromatography. It has a pI of pH 5.4 and expresses a thermal stability, but is insensitive to pH in a broad pH range. According to expectation, E. coli efficiently yielded a high amount of active chitinase. Remarkably, the fusion chitinase offered high antifungal activity.  相似文献   

5.
Investigation of the crude extracellular chitinase of Bacillus sp. 739, an antagonist of phytopathogenic fungi, discerned a relationship between the chitinase and antifungal activities of this bacterium. Purified chitinase lost its ability to inhibit the growth of micromycetes. The antagonistic (antifungal) activity of crude chitinase was found to be located in a low-molecular-weight fraction of the enzyme, which does not possess chitinase activity. Both crude and purified chitinase were able to lyse the cell walls of intact mycelium. Accordingly, it may be inferred that the antagonistic activity of Bacillus sp. 739 against micromycetes is largely determined by low-molecular-weight nonenzymatic substances whereas the role of chitinase is to utilize chitin, which is ubiquitously present in soil.  相似文献   

6.
Investigation of the crude extracellular chitinase of Bacillussp. 739, an antagonist of phytopathogenic fungi, discerned a relationship between the chitinase and antifungal activities of this bacterium. Purified chitinase lost its ability to inhibit the growth of micromycetes. The antagonistic (antifungal) activity of crude chitinase was found to be located in a low-molecular-weight fraction of the enzyme, which does not possess chitinase activity. Both crude and purified chitinase were able to lyse the cell walls of intact mycelium. Accordingly, it may be inferred that the antagonistic activity of Bacillussp. 739 against micromycetes is largely determined by low-molecular-weight nonenzymatic substances, whereas the role of chitinase is to utilize chitin, which is ubiquitously present in soil.  相似文献   

7.
The production of inexpensive chitinolytic enzymes is an element in the utilization of shellfish-processing waste. In this study, shrimp and crab shell powder, prepared by treating shrimp- and crab-processing waste by boiling and crushing, was used as a substrate for the isolation of an antifungal chitinase-producing microorganism. Bacillus subtilis NPU 001, a strain isolated from soil samples, excreted a chitinase when cultured in a medium containing 2% (w/v) shrimp and crab shell powder as the major carbon source. The chitinase, which was purified by sequential chromatography, had a Mw of 31 kDa and a pI of 5.4. The purified chitinase (2 mg ml−1) inhibited hyphal extension of the fungus Fusarium oxysporum. Compared with other known bacterial chitinases, the unique characteristics of NPU 001 chitinase include antifungal activity against plant-pathogenic fungi and the production of chitotriose as the major enzymatic hydrolysate from colloidal chitin.  相似文献   

8.
9.
Azospirillum is used extensively in rice and other cereal crops as a biofertilizer. There is a substantial opportunity to improve the efficiency of this bacterium through the transfer of genes of agricultural importance from other organisms. Chitinases are antifungal proteins, and expression of chitinase genes in Azospirillum would help to develop strains with potential antifungal activities. So far there are no reports about transfer of plant genes into Azospirillum and their expression. The present study was aimed at expressing an antifungal gene (a rice chitinase) of plant origin in Azospirillum brasilense. A rice chitinase cDNA (RC 7) that codes for a 35 kDa protein was subcloned into a broad host range plasmid pDSK519 under the control of LacZ promoter. The plasmid was mobilized into the nitrogen-fixing bacterium, Azospirillum brasilense strain SP51eFL1, through biparental mating. The conjugation frequency was in the range of 35-40 x 10(-6). The transconjugants grew in nitrogen-free media and fixed gaseous nitrogen in vitro. However, their growth and nitrogen-fixing ability were slightly less than those of the wild-type. Expression of the protein was demonstrated through western blotting of the total cell protein, which detected a 35 kDa band that was immuno-reactive to a barley chitinase antibody. The cell lysates also hydrolyzed various chitin substrates, which resulted in release of free sugars demonstrating the chitinase activity of transconjugants. The expressed protein also had antifungal activity as demonstrated by inhibition of growth of the plant pathogenic fungus, Rhizoctonia solani.  相似文献   

10.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

11.
Streptomyces violaceusniger strain YCED-9 is an antifungal biocontrol agent antagonistic to many different classes of plant pathogenic fungi. We discovered that strain YCED-9 produces three antimicrobial compounds with antifungal activity. These compounds were purified and identified, and included: AFA (Anti-Fusarium Activity), a fungicidal complex of polyene-like compounds similar to guanidylfungin A and active against most fungi except oomycetes; nigericin, a fungistatic polyether; and geldanamycin, a benzoquinoid polyketide highly inhibitory of mycelial growth of Pythium and Phytophthora spp. Antimicrobial assays were developed to estimate the production of each antibiotic independently. Medium composition had differential effects on the production of each metabolite. The hydrolytic enzymes chitinase and β-1,3-glucanase are also produced under induction by colloidal chitin and laminarin, respectively. Fungal cell walls induced the production of both enzymes. A potential for biological control of diseases caused by P. infestans was also suggested by strain YCED-9’s strong in vitro antagonism towards pathogenic isolates of this fungus. Received 27 October 1997/ Accepted in revised form 8 June 1998  相似文献   

12.
A plant pathogenic fungus, Colletotrichum lagenarium, causing watermelon anthracnose, was isolated from naturally infected leaves, stems, and fruits of watermelon. A bacterial strain, MET0908, showing a potent antifungal activity against C. lagenarium, was isolated from soil. An antifungal protein was purified by 30% ammonium sulfate saturation and concentrated using Centricon 10, DEAE-Sepharose(TM) Fast Flow column and Sephacryl S-100 gel filtration chromatography. The molecular weight of the purified protein was estimated as 40 kDa by SDS-PAGE. The purified protein was stable at 80 degrees C for 20 min and exhibited a broad spectrum of antifungal activity against various plant pathogenic fungi. Confocal microscopy image analysis and scanning electron microscopy showed that the protein acted on the cell wall of C. lagenarium. The purified antifungal protein exhibited beta-1,3-glucanase activity. The N-terminal amino acid sequence of the purified protein was determined as Ser-Lys-Ile-x-Ile-Asn-Ile-Asn-Ile-x-Gln-Ala-Pro-Ala-Pro-x-Ala. A search of the sequence with NCBI BLAST showed no significant homology with any known proteins, suggesting that the purified protein may be novel.  相似文献   

13.
【目的】地衣芽孢杆菌MY75菌株的几丁质酶基因的异源表达,并对表达蛋白的特性进行研究。【方法】制备MY75菌株培养上清粗蛋白,利用酶谱分析确定具有几丁质酶活的蛋白分子量。将该蛋白进行飞行时间质谱分析,确定其部分氨基酸序列,设计PCR引物对MY75菌株的几丁质酶基因进行克隆及异源表达。对表达蛋白的最适反应温度及pH,温度耐受性及金属离子对酶活力的影响等特性进行了研究,并测定了表达蛋白对真菌孢子萌发的抑制活性和对甜菜夜蛾幼虫的杀虫增效作用。【结果】酶谱分析证明MY75菌株培养上清液中仅含有一种55kDa的几丁质酶。将该编码基因chiMY克隆及序列分析后发现,基因长度为1797bp,编码599个氨基酸。在大肠杆菌中异源表达的几丁质酶ChiMY蛋白的分子量为67kDa。质谱分析证明,55kDa蛋白与67kDa蛋白序列相同。ChiMY最适pH和最适温度分别为7.0和50°C,为中性几丁质酶。Li+,Na+,和Mg2+离子对表达蛋白的酶活力具有促进作用,Mn2+,Cr3+,Zn2+和Ag+离子则能显著抑制酶活力,Cu2+和Fe3+离子完全抑制酶活性。生物测定的结果显示,异源表达的MY75几丁质酶能够抑制小麦赤霉及黑曲霉的孢子萌发,并且对苏云金芽孢杆菌的杀虫活力具有增效作用。【结论】地衣芽孢杆菌MY75菌株中仅有一种55kDa几丁质酶,其编码基因能够在大肠杆菌中大量表达,表达蛋白分子量与野生型蛋白之间有显著差异,由此证明MY75菌株中存在着几丁质酶的剪切加工过程。明确了地衣芽孢杆菌几丁质酶ChiMY具有抑制真菌活性及杀虫增效作用。上述全部研究结论在国内首次报道。  相似文献   

14.
The strain ANU 6277 was isolated from laterite soil and identified as Streptomyces sp. closely related to Streptomyces albidoflavus cluster by 16S rRNA analysis. The cultural, morphological and physiological characters of the strain were recorded. The strain exhibited resistance to chloramphenicol, penicillin and streptomycin. It had the ability to produce enzymes such as amylase and chitinase. A bioactive compound was isolated from the strain at stationary phase of culture and identified as 3-phenylpropionic acid (3-PPA) by FT-IR, EI-MS, 1H NMR and 13C NMR spectral studies. It exhibited antimicrobial activity against different bacteria like Bacillus cereus, B. subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, P. flourescens, Staphylococcus aureus and some fungi including Aspergillus flavus, A. niger, Candida albicans, Fusarium oxysporum, F. udum and Penicillium citrinum. The antifungal activity of 3-PPA of the strain was evaluated in in vivo and in vitro conditions against Fusarium udum causing wilt disease in pigeon pea. The compound 3-PPA is an effective antifungal agent when compared to tricyclozole (fungicide) to control wilt caused by F. udum, but it exhibited less antifungal activity than carbendazim.  相似文献   

15.
16.
【目的】构建增强抑制真菌能力兼杀虫的苏云金芽胞杆菌多功能生防菌株。【方法】将含有组成型高效表达启动子、地衣芽胞杆菌chi MY基因的重组质粒p DM,转化进杀虫活性高且有一定抑菌活性的Bt519-1菌株。酶谱分析方法确认Bt519(p DM)组成型异源表达几丁质酶。室内测定工程菌株抑菌谱,计算抑菌效率,确定最敏感的植物病原真菌,进行植物盆栽病害防治的应用潜力评价。将不同浓度的Bt粗酶液灌入甜椒幼苗根部,12 h后接种辣椒疫霉孢子液,接种2 d后开始观察,记录发病株数。自7 d起调查植株发病情况统计并分析防治效果。【结果】SDS-PAGE及酶谱分析证明,Bt519(p DM)能够特异表达68 k D蛋白,该蛋白为异源几丁质酶Chi MY。抑菌谱测定证明,工程菌抑制效率达到90%以上的有5种真菌,其中最明显的是辣椒疫霉。盆栽实验证明,Bt519(p DM)7 d的防效为73.2%。工程菌株对棉铃虫的半致死浓度(LC50)为121.26 mg/L。【结论】Bt519(p DM)是一株有应用潜力的生防菌株。  相似文献   

17.
Two novel classes of antifungal proteins were isolated from radish seeds. The first class consists of two homologous proteins (Rs-AFP1 and Rs-AFP2) that were purified to homogeneity. They are highly basic oligomeric proteins composed of small (5-kDa) polypeptides that are rich in cysteine. Both Rs-AFPs have a broad antifungal spectrum and are among the most potent antifungal proteins hitherto characterized. In comparison with many other plant antifungal proteins, the activity of the Rs-AFPs is less sensitive to the presence of cations. Moreover, their antibiotic activity shows a high degree of specificity to filamentous fungi. The amino-terminal regions of the Rs-AFPs show homology with the derived amino acid sequences of two pea genes specifically induced upon fungal attack, to gamma-thionins and to sorghum alpha-amylase inhibitors. The radish 2S storage albumins were identified as the second novel class of antifungal proteins. All isoforms inhibit growth of different plant pathogenic fungi and some bacteria. However, their antimicrobial activities are strongly antagonized by cations.  相似文献   

18.
Detoxification of the pea phytoalexin pisatin via demethylation, mediated by a cytochrome P-450 monooxygenase, is thought to be important for pathogenicity of the fungus Nectria haematococca on pea. To isolate a fungal gene encoding pisatin demethylating activity (pda), we transformed Aspergillus nidulans with a genomic library of N. haematococca DNA constructed in a cosmid which carried the A. nidulans trpC gene. Transformants were selected for Trp+ and then screened for pda. One transformant among 1250 tested was Pda+ and was less sensitive to pisatin in culture than Pda- A. nidulans. The cosmid containing the gene (PDA) conferring this activity was recovered by phage lambda packaging of transformant genomic DNA. When A. nidulans was transformed with the cloned cosmid, 98% of the Trp+ transformants were Pda+. RNA blots probed with a 3.35 kb subclone carrying PDA indicated that the gene is expressed constitutively in A. nidulans but is inducible by pisatin in N. haematococca.  相似文献   

19.
A method for the study of fungal growth inhibition by plant proteins   总被引:5,自引:0,他引:5  
A bioassay is described for the study of inhibitory activity of plant proteins on fungal growth. Fungal spores were germinated in liquid growth medium and pipetted into wells of a microtitre plate. Fungal growth was followed spectrophotometrically. The bioassay was tested using crude protein extracts from plant tissues known to have high activities of chitinase and beta-1,3-glucanase, and with purified enzymes. Crude protein preparations and combinations of the purified enzymes produced a temporary reduction of growth but no permanent growth inhibition.  相似文献   

20.
Chitinases are enzymes that degrade chitin, a polysaccharide found in the exoskeleton of insects, fungi, yeast, and internal structures of other vertebrates. Although chitinases isolated from bacteria, fungi and plants have been reported to have antifungal or insecticide activities, chitinases from insects with these activities have been seldomly reported. In this study, a leaf-cutting ant Atta sexdens DNA fragment containing 1623 base pairs was amplified and cloned into a vector to express the protein (AsChtII-C4B1) in Pichia pastoris. AsChtII-C4B1, which contains one catalytic domain and one carbohydrate-binding module (CBM), was secreted to the extracellular medium and purified by ammonium sulfate precipitation followed by nickel column chromatography. AsChtII-C4B1 showed maximum activity at pH 5.0 and 55 °C when tested against colloidal chitin substrate and maintained >60% of its maximal activity in different temperatures during 48 h. AsChtII-C4B1 decreased the survival of Spodoptera frugiperda larvae fed with an artificial diet that contained AsChtII-C4B1. Our results have indicated that AsChtII-C4B1 has a higher effect on larva-pupa than larva-larva molts. AsChtII-C4B1 activity targets more specifically the growth of filamentous fungus than yeast. This work describes, for the first time, the obtaining a recombinant chitinase from ants and the characterization of its insecticidal and antifungal activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号