首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of mature oligodendrocytes (OLs) to recover from insult is important in repair of damage following demyelination. Since regulation of Ca2+ levels within cells plays a critical role in function and survival, this study investigates the effects of changes in cytoplasmic Ca2+ on the viability of cultured mouse OLs and their ability to maintain membrane sheets. Mature OLs in culture respond rapidly to the calcium ionophore A23187 and promptly return to resting Ca2+ levels when the ionophore is removed. Longer exposure to 0.1–1.0 μM A23187 leads to microtubule disruption, membrane sheet retraction and eventual cell death; nuclear lysis occurs in many of the OLs, as reported by Scolding, et al. (1) for rat OLs. In our cultures, mature OLs were more susceptible to nuclear lysis than were immature OLs or astroglia. Release of intracellular Ca2+ stores with thapsigargin at 5–10 μM also leads to retraction of membrane sheets. Following 6 hours of continuous exposure to thapsigargin, the effects on membrane sheets are reversed over the next 12 hours. After 18 hours of continuous exposure to thapsigargin, only occasional nuclear lysis is observed, but a number of the mature OLs show signs of DNA fragmentation, indicating that apoptotic death is occurring. Our results suggest that mature OLs cannot survive a prolonged influx of extracellular calcium as readily as immature OLs and astroglia, but have mechanisms to withstand similar increases in cytoplasmic Ca2+ following sustained release of intracellular stores. Special issue dedicated to Dr. Marion E. Smith.  相似文献   

2.
The effects of the artificial Ca(2+) buffers EGTA and BAPTA upon histamine-induced Ca(2+) oscillations and calcium waves were studied in HeLa cells. These events were also examined in HeLa cell lines transfected with the intracellular calcium-binding protein calbindin-D28k (CaBP; HeLa-CaBP) or the pCINeo vector alone (HeLa-pCINeo). High concentrations of the Ca(2+) indicators fluo-3 and fura-2 significantly influenced the oscillatory pattern of intracellular Ca(2+) in HeLa-pCINeo cells exposed to 1 microM histamine. Loading cells with low concentrations of the cell-permeant esters of the artificial Ca(2+)-buffers EGTA or BAPTA, resulted in fewer cells with a distinct "baseline" oscillatory pattern, and loading with higher concentrations of BAPTA almost completely abolished them. In HeLa-CaBP cells, stimulation with 1 microM histamine resulted in individual Ca(2+) spikes that had a flattened profile when compared to control cells; peak [Ca(2+)](i) was lowered, the rate of increase in [Ca(2+)](i) was slower and transients were prolonged. When compared to HeLa-pCINeo cells, loading with EGTA or BAPTA, or transfection of CaBP, significantly reduced the propagation velocity (by up to 60%) of Ca(2+) waves induced by exposure to 100 microM histamine. We conclude that intracellular Ca(2+) buffering exerts a significant influence on global Ca(2+) responses in HeLa cells and the propagation of Ca(2+) waves that underlie them. The relative effectiveness of different Ca(2+) buffers, including CaBP, appears to be particularly dependent upon the rapidity of their binding kinetics, with BAPTA being the most effective.  相似文献   

3.
In addition to the important role of abscisic acid (ABA) in abiotic stress signalling, basal and high ABA levels appear to have a negative effect on disease resistance. Using the ABA-deficient sitiens tomato ( Solanum lycopersicum ) mutant and different application methods of exogenous ABA, we demonstrated the influence of this plant hormone on disease progression of Erwinia chrysanthemi . This necrotrophic plant pathogenic bacterium is responsible for soft rot disease on many plant species, causing maceration symptoms mainly due to the production and secretion of pectinolytic enzymes. On wild-type (WT) tomato cv. Moneymaker E. chrysanthemi leaf inoculation resulted in maceration both within and beyond the infiltrated zone of the leaf, but sitiens showed a very low occurrence of tissue maceration, which never extended the infiltrated zone. A single ABA treatment prior to infection eliminated the effect of pathogen restriction in sitiens , while repeated ABA spraying during plant development rendered both WT and sitiens very susceptible. Quantification of E. chrysanthemi populations inside the leaf did not reveal differences in bacterial growth between sitiens and WT. Sitiens was not more resistant to pectinolytic cell-wall degradation, but upon infection it showed a faster and stronger activation of defence responses than WT, such as hydrogen peroxide accumulation, peroxidase activation and cell-wall fortifications. Moreover, the rapid activation of sitiens peroxidases was also observed after application of bacteria-free culture filtrate containing E. chrysanthemi cell-wall-degrading enzymes and was absent during infection with an out E. chrysanthemi mutant impaired in secretion of these extracellular enzymes.  相似文献   

4.
Switching from simple to complex oscillations in calcium signaling   总被引:5,自引:0,他引:5       下载免费PDF全文
We present a new model for calcium oscillations based on experiments in hepatocytes. The model considers feedback inhibition on the initial agonist receptor complex by calcium and activated phospholipase C, as well as receptor type-dependent self-enhanced behavior of the activated G(alpha) subunit. It is able to show simple periodic oscillations and periodic bursting, and it is the first model to display chaotic bursting in response to agonist stimulations. Moreover, our model offers a possible explanation for the differences in dynamic behavior observed in response to different agonists in hepatocytes.  相似文献   

5.
Simulation and modeling is becoming more and more important when studying complex biochemical systems. Most often, ordinary differential equations are employed for this purpose. However, these are only applicable when the numbers of participating molecules in the biochemical systems are large enough to be treated as concentrations. For smaller systems, stochastic simulations on discrete particle basis are more accurate. Unfortunately, there are no general rules for determining which method should be employed for exactly which problem to get the most realistic result. Therefore, we study the transition from stochastic to deterministic behavior in a widely studied system, namely the signal transduction via calcium, especially calcium oscillations. We observe that the transition occurs within a range of particle numbers, which roughly corresponds to the number of receptors and channels in the cell, and depends heavily on the attractive properties of the phase space of the respective systems dynamics. We conclude that the attractive properties of a system, expressed, e.g., by the divergence of the system, are a good measure for determining which simulation algorithm is appropriate in terms of speed and realism.  相似文献   

6.
GABA excites immature neurons and inhibits adult ones, but whether this contributes to seizures in the developing brain is not known. We now report that in the developing, but not the adult, hippocampus, seizures beget seizures only if GABAergic synapses are functional. In the immature hippocampus, seizures generated with functional GABAergic synapses include fast oscillations that are required to transform a naive network to an epileptic one: blocking GABA receptors prevents the long-lasting sequels of seizures. In contrast, in adult neurons, full blockade of GABA(A) receptors generates epileptogenic high-frequency seizures. Therefore, purely glutamatergic seizures are not epileptogenic in the developing hippocampus. We suggest that the density of glutamatergic synapses is not sufficient for epileptogenesis in immature neurons; excitatory GABAergic synapses are required for that purpose. We suggest that the synergistic actions of GABA and NMDA receptors trigger the cascades involved in epileptogenesis in the developing hippocampus.  相似文献   

7.
Vunnam N  Pedigo S 《Biochemistry》2011,50(14):2973-2982
Neural cadherin (N-cadherin) is a calcium-dependent homophilic cell-adhesive molecule and critical for synaptogenesis and synapse maintenance. The extracellular region plays an important role in cadherin-mediated cell adhesion and has five tandemly repeated ectodomains (EC1-EC5) with three calcium-binding sites situated between each of these domains. Adhesive dimer formation is significantly dependent on binding of calcium such that mutations in the calcium-binding sites adversely affect cell adhesion. To investigate the relative significance of the calcium-binding sites at the EC1-EC2 interface in calcium-induced dimerization, we mutated three important amino acids, D134, D136, and D103, in NCAD12, a construct containing EC1 and EC2. Spectroscopic and chromatographic experiments showed that all three mutations affected calcium binding and dimerization. Mutation of D134, a bidentate chelator in site 3, severely impaired the binding of calcium to all three sites. These findings confirm that binding to site 3 is required for binding to occur at site 2 and site 1. Interestingly, while the D103A mutation diminished only the affinity for calcium, it completely eliminated dimerization. Equilibrium dialysis experiments showed a stoichiometry of 3 at 2 mM calcium for D103A, but no dimerization was apparent even at 10 mM calcium. These results indicate that calcium binding alone is not sufficient for dimerization but requires cooperativity between calcium-binding sites. In summary, our findings confirm that the calcium-binding sites are occupied sequentially in the order of site 3, then site 2 and site 1, and that cooperativity between site 2 and site 1 is essential for formation of adhesive dimers by N-cadherin.  相似文献   

8.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

9.

Background

Calcium (Ca2 +) oscillations are ubiquitous signals present in all cells that provide efficient means to transmit intracellular biological information. Either spontaneously or upon receptor ligand binding, the otherwise stable cytosolic Ca2 + concentration starts to oscillate. The resulting specific oscillatory pattern is interpreted by intracellular downstream effectors that subsequently activate different cellular processes. This signal transduction can occur through frequency modulation (FM) or amplitude modulation (AM), much similar to a radio signal. The decoding of the oscillatory signal is typically performed by enzymes with multiple Ca2 + binding residues that diversely can regulate its total phosphorylation, thereby activating cellular program. To date, NFAT, NF-κB, CaMKII, MAPK and calpain have been reported to have frequency decoding properties.

Scope of review

The basic principles and recent discoveries reporting frequency decoding of FM Ca2 + oscillations are reviewed here.

Major conclusions

A limited number of cellular frequency decoding molecules of Ca2 + oscillations have yet been reported. Interestingly, their responsiveness to Ca2 + oscillatory frequencies shows little overlap, suggesting their specific roles in cells.

General significance

Frequency modulation of Ca2 + oscillations provides an efficient means to differentiate biological responses in the cell, both in health and in disease. Thus, it is crucial to identify and characterize all cellular frequency decoding molecules to understand how cells control important cell programs.  相似文献   

10.
The reaction of intracellular Ca(2+) to different agonist stimuli in primary hepatocytes from rainbow trout (Oncorhynchus mykiss) as well as the permanent fish cell line RTL-W1 was investigated systematically. In addition to "classical" agonists such as phenylephrine and ATP, model environmental toxicants like 4-nitrophenol and 3,4-dichloroaniline were used to elucidate possible interactions between toxic effects and Ca(2+) signaling. We report Ca(2+) oscillations in response to several stimuli in RTL-W1 cells and to a lesser extent in primary hepatocytes. Moreover, these Ca(2+) oscillations are amplitude-encoded in contrast to their mammalian counterpart. Bioinformatics and computational analysis were employed to identify key players of Ca(2+) signaling in fish and to determine likely causes for the experimentally observed differences between the Ca(2+) dynamics in fish cells compared to those in mammalian liver cells.  相似文献   

11.
Sea urchin sperm motility is modulated by sperm-activating peptides. One such peptide, speract, induces changes in intracellular free calcium concentration ([Ca2+]i). High resolution imaging of single sperm reveals that speract-induced changes in [Ca2+]i have a complex spatiotemporal structure. [Ca2+]i increases arise in the tail as periodic oscillations; [Ca2+]i increases in the sperm head lag those in the tail and appear to result from the summation of the tail signal transduction events. The period depends on speract concentration. Infrequent spontaneous [Ca2+]i transients were also seen in the tail of unstimulated sperm, again with the head lagging the tail. Speract-induced fluctuations were sensitive to membrane potential and calcium channel blockers, and were potentiated by niflumic acid, an anion channel blocker. 3-isobutyl-1-methylxanthine, which potentiates the cGMP/cAMP-signaling pathways, abolished the [Ca2+]i fluctuations in the tail, leading to a very delayed and sustained [Ca2+]i increase in the head. These data point to a model in which a messenger generated periodically in the tail diffuses to the head. Sperm are highly polarized cells. Our results indicate that a clear understanding of the link between [Ca2+]i and sperm motility will only be gained by analysis of [Ca2+]i signals at the level of the single sperm.  相似文献   

12.
A refined electrochemical model accounting for intracellular calcium oscillations and their interrelations with oscillations of the potential difference across the membrane of the endoplasmic reticulum (ER) or other intracellular calcium stores is established. The ATP dependent uptake of Ca2+ from the cytosol into the ER, the Ca2+ release from the ER through channels following a calcium-induced calcium release mechanism, and a potential-dependent Ca2+ leak flux out of the ER are included in the model and described by plausible rate laws. The binding of calcium to specific proteins such as calmodulin is taken into account. The quasi-electroneutrality condition allows us to express the transmembrane potential in terms of the concentrations of cytosolic calcium and free binding sites on proteins, which are the two independent variables of the model. We include monovalent ions in the model, because they make up a considerable portion in the balance of electroneutrality. As the permeability of the endoplasmic membrane for these ions is much higher than that for calcium ions, we assume the former to be in Nernst equilibrium. A stability analysis of the steady-state solutions (which are unique or multiple depending on parameter values) is carried out and the Hopf bifurcation leading from stable steady states to self-sustained oscillations is analysed with the help of appropriate mathematical techniques. The oscillations obtained by numerical integration exhibit the typical spike-like shape found in experiments and reasonable values of frequency and amplitude. The model describes the process of switching between stationary and pulsatile regimes as well as changes in oscillation frequency upon parameter changes. It turns out that calcium oscillations can arise without a permanent influx of calcium into the cell, when a calcium-buffering system such as calmodulin is included.  相似文献   

13.
A modified method of the return map reconstruction is proposed. The method is applied to the analysis of intracellular calcium oscillations. On the basis of the approach developed, these oscillations are recognized as low-dimensional deterministic chaotic process.  相似文献   

14.
We present a mathematical model for calcium oscillations in the cilia of olfactory sensory neurons. The underlying mechanism is based on direct negative regulation of cyclic nucleotide-gated channels by calcium/calmodulin and does not require any autocatalysis such as calcium-induced calcium release. The model is in quantitative agreement with available experimental data, both with respect to oscillations and to fast adaptation. We give predictions for the ranges of parameters in which oscillations should be observable. Relevance of the model to calcium oscillations in other systems is discussed.  相似文献   

15.
Incorporation of nisin in micro-particles of calcium alginate   总被引:2,自引:0,他引:2  
Nisin was successfully incorporated into a matrix of calcium alginate and ground into micro-particles smaller than 150 μm. Formation of micro-particles and incorporation of nisin was verified by scanning electron microscopy and by the reduction in the inactivation of nisin activity with proteolytic enzymes. Incorporation efficiency was 87–93% and the nisin in the alginate-incorporated form was 100% active against an indicator culture of Lactobacillus curvatus both in MRS broth and reconstituted skim milk.  相似文献   

16.
In non-excitable cells, several kinds of agonist-induced oscillations of cytosolic Ca2+ concentration ([Ca2+]i) are known which differ in their form and generation mechanism. The oscillation source is, as a rule, the regulation of Ca2+ mobilization from intracellular stores through inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) and in some cases through ryanodine receptors (RyR). In the present work, oscillations in single mature adipocytes of mice epididymal fat on the ninth day of cultivation are studied. Cells were stimulated by acetylcholine (ACh) or by fetal bovine serum (FBS). ACh at a concentration of 0.1–5 μM evoked a rise in [Ca2+]i to a peak and subsequent oscillations whose peaks and troughs declined along with increasing amplitude while frequency decreased. In most cells oscillations lasted less than 5 min. The new constant or interspike level exceeded the initial one or was equal to it (at 1 μM ACh). The removal of ACh stopped oscillations immediately. An inhibitor of phospholipase C (U73122) or of IP3R (Xestospongin C) did not affect the pattern of responses, which means that the generation of oscillations does not depend on IP3. At the same time, suppression of responses by ryanodine, which blocks RyR, was observed. Besides, oscillatory responses were abolished by inhibitors of phosphatidylinositol 3-kinase, NO synthase, and cGMP-dependent protein kinase. FBS (1%) initiated oscillations characterized by return of [Ca2+]i after each peak to the baseline level, occurring prior to stimulation, and by maintenance of roughly constant amplitude and frequency (of the order of 1 min−1). Oscillations persisted longer (more than 15 min in 87% of cells) than with ACh. Repeated stimulation of cells by FBS revealed a strongly reduced sensitivity after 1 h of rest, whereas responses to ACh partially restored within 3 min. Investigation of the involvement of IP3R and RyR in FBS-induced oscillations gave completely inverse results relative to ACh and demonstrated a leading role of IP3R without a considerable contribution of RyR and of its activation pathways. With both stimuli, Ca2+ entry through the plasma membrane was necessary only as a support of oscillations. The results show that in adipocytes different agonists can engage distinct subsystems of Ca2+ signaling, each of them generating oscillations with a specific temporal pattern.  相似文献   

17.
Chorea-acanthocytosis (ChAc) is a hereditary neurodegenerative disorder caused by loss of function mutations in the VPS13A gene encoding chorein. Recently, using a gene-targeting technique to delete exons 60-61, we produced a ChAc-model mouse that corresponds to a human disease mutation. In this study, a comparative microarray analysis of gene expression in the striatum revealed an increased level of gephyrin gene expression in the ChAc-model mice compared with wild type mice. Since gephyrin is known as a GABA(A) receptor-anchoring protein, we compared the protein-level expression and localization of gephyrin and the GABA(A) receptor alpha1 (GABRA1) and gamma2 (GABRG2) subunits. Gephyrin and GABRG2 immunoreactivities in the striatum and hippocampus of the ChAc-model mice were significantly higher than those in the wild types. Our results suggest that chorein functional loss may lead to a compensatory upregulation of gephyrin and GABRG2 in the pathologic condition in ChAc.  相似文献   

18.
This is the first study to provide evidence that one function for the surface glycolipid galactocerebroside (GalC) is participation in the opening of Ca2+ channels in oligodendroglia in culture. This glycolipid is a unique differentiation marker for myelin-producing cells; antibodies to GalC have been shown to markedly alter oligodendroglial morphology via disruption of microtubules (Dyer, C. A., and J. A. Benjamins. 1988. J. Neurosci. 8:4307-4318). This study demonstrates that extracellular EGTA blocks anti-GalC-induced disassembly of microtubules in oligodendroglial membrane sheets, demonstrating that an influx of extracellular Ca2+ mediates the cytoskeletal changes. The Ca2+ influx was examined directly by loading oligodendroglia with the fluorescent dye Indo-1 in defined medium, and measuring changes in Ca2+ in individual cells with a laser cytometer. Upon addition of anti-GalC IgG, a marked sustained increase in intracellular Ca2+ occurred in 80% of the oligodendroglia observed. EGTA blocked the increase, indicating the increase is due to an influx of extracellular Ca2+, and not due to release from intracellular stores. The effect is specific, since Ca2+ levels remain normal in oligodendroglia treated with nonimmune IgG; astrocytes do not respond to the anti-GalC. The Ca2+ response in oligodendrocytes is dependent on concentration of antibody and GalC on the oligodendroglial membrane surface. The Ca2+ influx is not mediated by voltage-sensitive Ca2+ channels: it is not blocked by cadmium, and depolarization with K+ does not mimic the response. The kinetics of the response suggest that second messenger-mediated opening of Ca2+ channels is involved.  相似文献   

19.
Zhou YD  Fang XF  Cui ZJ 《Cell calcium》2009,45(1):18-28
UVA is a major bio-active component in solar irradiation, and is shown to have immunomodulatory and anti-inflammatory effects. The detailed molecular mechanism of UVA action in regard to calcium signaling in mast cells, however, is not fully understood. In this study, it was found that UVA induced ROS formation and cytosolic calcium oscillations in individual rat mast cells. Exogenously added H2O2 and hypoxanthine/xanthine oxidase (HX/XOD) mimicked UVA effects on cytosolic calcium increases. Regular calcium oscillation induced by UVA irradiation was inhibited completely by the phosphatidylinositol-specific phospholipase C inhibitor U73122, but U73343 was without effect. Tetrandrine, a calcium entry blocker, or calcium-free buffer abolished UVA-induced calcium oscillations. L-type calcium channel blocker nifedipine and stores-operated calcium channel blocker SK&F96365 had no such inhibitory effect. ROS induction by UVA was abolished after pre-incubation with anti-oxidant NAC or with NAD(P)H oxidase inhibitor DPI; such treatment also made UVA-induced calcium oscillation to disappear. UVA irradiation did not increase mast cell diameter, but it made mast cell structure more granular. Spectral confocal imaging revealed that the emission spectrum of the endogenous fluorophore in single mast cell contained a sizable peak which corresponded to that of NAD(P)H. Taken together, these data suggest that UVA in rat mast cells could activate NAD(P)H oxidase, to produce ROS, which in turn activates phospholipase C signaling, to trigger regular cytosolic calcium oscillation.  相似文献   

20.
We have used RNA interference (RNAi) to knock down the expression of the gamma2 subunit of the GABA(A) receptors (GABA(A)Rs) in pyramidal neurons in culture and in the intact brain. Two hairpin small interference RNAs (shRNAs) for the gamma2 subunit, one targeting the coding region and the other one the 3'-untranslated region (UTR) of the gamma2 mRNA, when introduced into cultured rat hippocampal pyramidal neurons, efficiently inhibited the synthesis of the GABA(A) receptor gamma2 subunit and the clustering of other GABA(A)R subunits and gephyrin in these cells. More significantly, this effect was accompanied by a reduction of the GABAergic innervation that these neurons received. In contrast, the gamma2 shRNAs had no effect on the clustering of postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, postsynaptic density protein 95 (PSD-95) or presynaptic glutamatergic innervation. A gamma2-enhanced green fluorescent protein (EGFP) subunit construct, whose mRNA did not contain the 3'-UTR targeted by gamma2 RNAi, rescued both the postsynaptic clustering of GABA(A)Rs and the GABAergic innervation. Decreased GABA(A)R clustering and GABAergic innervation of pyramidal neurons in the post-natal rat cerebral cortex was also observed after in utero transfection of these neurons with the gamma2 shRNAs. The results indicate that the postsynaptic clustering of GABA(A)Rs in pyramidal neurons is involved in the stabilization of the presynaptic GABAergic contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号