首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Vaccinia virus assembly has been well studied at the ultrastructural level, but little is known about the molecular events that occur during that process. Towards this goal, we have identified the major membrane and core proteins of the intracellular mature virus (IMV). Pure IMV preparations were subjected to Nonidet P-40 (NP-40) and dithiothreitol (DTT) treatment to separate the core proteins from the membrane proteins. These proteins were subsequently separated by two-dimensional (2D) gel electrophoresis, and the major polypeptide spots, as detected by silver staining and 35S labeling, were identified by either matrix-assisted laser desorption/ionization mass spectrometry, N-terminal amino acid sequencing, or immunoprecipitation with defined antibodies. Sixteen major spots that partitioned into the NP-40-DTT-soluble fraction were identified; 11 of these were previously described virally encoded proteins and 5 were cellular proteins, mostly of mitochondrial origin. The core fraction revealed four major spots of previously described core proteins, two of which were also detected in the membrane fraction. Subsequently, the NP-40-DTT-soluble and -insoluble fractions from purified virus preparations, separated by 2D gels, were compared with postnuclear supernatants of infected cells that had been metabolically labeled at late times (6 to 8 h) postinfection. This relatively short labeling period as well as the apparent shutoff of host protein synthesis allowed the selective detection in such postnuclear supernatants of virus-encoded proteins. These postnuclear supernatants were subsequently treated with Triton X-114 or with sodium carbonate to distinguish the membrane proteins from the soluble proteins. We have identified the major late membrane and nonmembrane proteins of the IMV as they occur in the virus as well as in infected cells. This 2D gel map should provide an important reference for future molecular studies of vaccinia virus morphogenesis.  相似文献   

3.
4.
The assembly of the intracellular mature virus (IMV) of vaccinia virus (VV), the prototype member of the poxviridae, is poorly understood and controversial. We have previously proposed that the IMV is composed of a continuous double-membraned cisterna derived from the smooth ER, whereby the genome-containing core is enwrapped by a part of this cisterna. In the present study we characterize a mutant virus in which the synthesis of the major core protein A10L can be conditionally expressed. Without A10L, IMVs are not made; immature viruses (IVs) and regularly stacked membrane structures that contain viral DNA, accumulate instead. By immunolabelling of thawed cryo-sections these stacks contain most of the viral core proteins and low levels of viral membrane proteins. Importantly, the stacked membranes could be labelled with antibodies to an ER marker protein, implying that they are derived from this cellular compartment. By electron tomography (ET) on semi-thin cryo-sections we show that the membranes of the stacks are continuous with the membranes of the IVs. Direct continuities with ER cisternae, to which the stacks are tightly apposed, were, however, not unequivocally seen. Finally, ET revealed how the IV membranes separated to become two-membrane profiles. Taken together, this study shows that VV core proteins and the viral DNA can coassemble onto ER-derived membranes that are continuous with the membranes of the IVs.  相似文献   

5.
The vaccinia virus (VV) I3L gene product is a single-stranded DNA-binding protein made early in infection that localizes to the cytoplasmic sites of viral DNA replication (S. C. Rochester and P. Traktman, J. Virol. 72:2917-2926, 1998). Surprisingly, when replication was blocked, the protein localized to distinct cytoplasmic spots (A. Domi and G. Beaud, J. Gen. Virol. 81:1231-1235, 2000). Here these I3L-positive spots were characterized in more detail. By using an anti-I3L peptide antibody we confirmed that the protein localized to the cytoplasmic sites of viral DNA replication by both immunofluorescence and electron microscopy (EM). Before replication had started or when replication was inhibited with hydroxyurea or cytosine arabinoside, I3L localized to distinct cytoplasmic punctate structures of homogeneous size. We show that these structures are not incoming cores or cytoplasmic sites of VV early mRNA accumulation. Instead, morphological and quantitative data indicate that they are specialized sites where the parental DNA accumulates after its release from incoming viral cores. By EM, these sites appeared as complex, electron-dense structures that were intimately associated with the cellular endoplasmic reticulum (ER). By double labeling of cryosections we show that they contain DNA and a viral early protein, the gene product of E8R. Since E8R is a membrane protein that is able to bind to DNA, the localization of this protein to the I3L puncta suggests that they are composed of membranes. The results are discussed in relation to our previous data showing that the process of viral DNA replication also occurs in close association with the ER.  相似文献   

6.
Vaccinia virus (VV) is a potent immunogen, but the nature of VV proteins involved in the activation of the immune response of the host is not yet known. By screening a lambda gt11 expression library of rabbitpox virus DNA with serum from humans vaccinated against smallpox or with serum from VV-immunized animals, we identified several VV genes that encode highly antigenic viral proteins with molecular masses of 62, 39, 32, 25, 21, and 14 kDa. It was found that VV proteins of 62, 39, 25, and 21 kDa are part of the virus core, while proteins of 32 and 14 kDa are part of the virus envelope. All of these proteins were synthesized at late times postinfection. Proteins of 62 and 25 kDa were produced by cleavage of larger precursors of 95 kDa (p4a) and 28 kDa, respectively. The 21-kDa protein was the result of a cleavage of p4a, presumably at amino acid Gly-697. DNA sequence analysis, in comparison with the known nucleotide sequence of VV, provided identification of the corresponding open reading frames. Expression of the viral genes in Escherichia coli was used to monitor which of the viral antigens elicit immunodominant responses and the location of antigenic domains. Three viral antigens of 62, 39, and 32 kDa exhibited immunodominant characteristics. The most antigenic sites of 62 and 39 kDa were identified at the N terminus (amino acids 132 to 295) and C terminus (last 103 amino acids), respectively. Immunization of mice with the 62-, 39-, or 14-kDa antigenic proteins conferred different degrees of protection from VV challenge. Proteins of 32 and 14 kDa induced cellular proliferative responses in VV-infected mice. Our findings demonstrate the nature of VV proteins involved in the activation of host immune responses after vaccination, provide identification of the viral gene locus, and define structural and immunological properties of these antigenic VV proteins.  相似文献   

7.
Chicken erythroid nuclei were prepared using four published methods. Our findings indicate that nuclei prepared by nitrogen cavitation are less likely to be contaminated with plasma membrane fragments than those made by procedures involving cell disruption by hypotonic lysis. However, globin gene sequences were much less sensitive to DNase I digestion in nuclei prepared by nitrogen cavitation. This suggests that the conformation of chromatin was altered by the cavitation procedure. Analysis of the proteins solubilized during limited DNase I digestion of nuclei prepared by both hypotonic lysis and cavitation revealed no appreciable differences in HMG proteins but a notable difference in the RNP-associated proteins and core histones.Abbreviations HMG high mobility group nonhistone chromosomal protein - RNP ribonucleoprotein - SSC 14 mM sodium citrate buffered saline pH 7.0 - PMSF phenylmethanesulfonyl fluoride - EDTA ethylenediaminetetraacetic acid - DTT dithiothreitol - PBS 10 mM sodium phosphate buffered saline pH 7.2 - NP-40 Nonidet P-40 (octylphenoxypolyethoxyethanol) - SS-DNA single-stranded DNA - RSB reticulocyte standard buffer, 0.01 M NaCl, 0.003 M MgCl2, 0.01 M Tris-HCI, pH 7.4.  相似文献   

8.
Properties of a P70 proteolytic factor of murine leukemia viruses.   总被引:28,自引:0,他引:28  
Y Yoshinaka  R B Luftig 《Cell》1977,12(3):709-719
Murine leukemia viruses, such as Rauscher leukemia virus (RLV), contain a proteolytic factor which becomes activated after detergent treatment of the virus. This factor specifically cleaves P70, the gag precursor polyprotein which is enriched for in preparations of immature virus core subparticles. The factor has been partially purified on Sephadex G-75 columns. It has a molecular weight of 10,000-12,000 daltons but does not coincide in elution position with the major peaks of the viral polypeptides p10 or p12. Under optimal conditions, that is 2% NP-40 (v/v), 10 mM DTT, (pH 7.2) and incubation for 16 hr at 22 degrees C, cleavage of labeled P70 occurs and increasing amounts of the four gag polypeptides p30, p15, p12 and p10 are obtained. The P70 cleavage activity is blocked by TLCK, TAME, CBZ-lysine and other lysyl-containing protease inhibitors. Further, the CBZ-lysine inhibition is reversible, while an inhibition by phenyl-methylsulfonyl fluoride (PMSF) is irreversible. These inhibition studies suggest that a similarity exists between the P70 proteolytic factor and some serine proteases, such as trypsin. The cleavage pattern of P70-rich immature cores treated with trypsin or chymotrypsin is different from that obtained with the P70 proteolytic factor. Thus murine leukemia virions apparently contain a unique, highly specific protease which is present in small amounts and cleaves P70.  相似文献   

9.
董源  汤灵玲  林林  卢山 《生物工程学报》2012,28(9):1130-1138
为提高蛋白质含量检测方法的抗干扰能力,从福林酚试剂法入手,以牛血清白蛋白为标准样品,重新设计制定实验试剂组成与配比等,获得蛋白质含量检测新方法,然后探讨新方法的适用检测波长范围和稳定性,并利用细胞全蛋白裂解液分析它对多种常见干扰物质的包容性。实验发现,新方法不仅能准确检测蛋白质含量,对蛋白质测定液中表面活性剂的耐受浓度,如十二烷基硫酸钠(SDS)、NP-40和TritonX-100分别达到10%、2%和1%;螯合剂乙二胺四乙酸二钠盐(EDTA)和Ethylene glycol bis(2-aminoethyl)tetraacetic acid(EGTA)则分别达25 mmol/L和1 mmol/L;对还原剂二硫苏糖醇(DTT)和β-ME的包容浓度均为1 mmol/L;而含氮化合物硫酸铵与尿素则分别为0.5 mol/L和4 mol/L。与原方法相比较,对常见干扰物质的耐受性有显著提高,说明新方法适用含多种干扰物质的蛋白质溶液,在生命科学研究领域具有广泛应用前景。  相似文献   

10.
A protein kinase was solubilized from whole vaccinia virions by using a solution containing deoxycholate, dithiothreitol, and sodium or potassium chloride. The released enzyme was completely dependent on Mg(2+) and was greatly stimulated by added basic proteins such as protamine or histones. Dithiothreitol was also stimulatory, whereas GTP, CTP, UTP, and P(i) at concentrations equimolar with ATP had little or no effect. Attempts to purify the protein kinase were initially unsuccessful, leading us to consider that either the enzyme was extremely labile or that two readily separable components were required for activity. The observation that the material extracted with NP-40 detergent during the preparation of viral cores stimulated the protein kinase activity of the intact cores supported the second possibility. As the protein kinase, now solubilized from viral cores, was passed through successive DEAE-cellulose columns, it became increasingly dependent for activity on addition of the NP-40 extract. A 30- to 40-fold stimulation of protein kinase activity, which afforded recovery of essentially all starting activity, could be effected by addition of the NP-40 extract to the partially purified enzyme. The NP-40 extract was shown to contain a heat stable, trypsin-sensitive protein, whose action could not be duplicated by cyclic nucleotides.  相似文献   

11.
In HeLa cells the assembly of modified vaccinia virus Ankara (MVA), an attenuated vaccinia virus (VV) strain, is blocked. No intracellular mature viruses (IMVs) are made and instead, immature viruses accumulate, some of which undergo condensation and are released from the cell. The condensed particles may undergo wrapping by membranes of the trans-Golgi network and fusion with the plasma membrane prior to their release (M. W. Carroll and B. Moss, Virology 238:198-211, 1997). The present study shows by electron microscopy (EM), however, that the dense particles made in HeLa cells are also released by a budding process at the plasma membrane. By labeling the plasma membrane with antibodies to B5R, a membrane protein of the extracellular enveloped virus, we show that budding occurs at sites that concentrate this protein. EM quantitation revealed that the cell surface around a budding profile was as strongly labeled with anti-B5R antibody as were the extracellular particles, whereas the remainder of the plasma membrane was significantly less labeled. To test whether budding was a characteristic of MVA infection, HeLa cells were infected with the replication competent VV strains Western Reserve strain (WR) and International Health Department strain-J (IHD-J) and also prepared for EM. EM analyses, surprisingly, revealed for both virus strains IMVs that evidently budded at the cell surface at sites that were significantly labeled with anti-B5R. EM also indicated that budding of MVA dense particles was more efficient than budding of IMVs from WR- or IHD-J-infected cells. This was confirmed by semipurifying [(35)S]methionine-labeled dense particles or extracellular enveloped virus (EEVs) from the culture supernatant of MVA- or IHD-J-infected HeLa cells, respectively, showing that threefold more labeled dense particles were secreted than EEVs. Finally, although the released MVA dense particles contain some DNA, they are not infectious, as assessed by plaque assays.  相似文献   

12.
13.
Layer by layer uncoating of influenza A and B viruses with non-ionic detergent (NP-40) at fixed pH was developed. Treatment of virions with NP-40 at neutral or alkaline pH solubilized the lipoprotein envelope and the surface glycopolypeptides HA1 and HA2, but the internal core structures containing matrix protein M1 remained. Exposition of the cores in acidic media (pH 4,5 and lower) selectively solubilized protein M1 and released viral ribonucleoprotein (RNP). The resulting M1 sedimented in a glycerol gradient with a coefficient of 2.8 S and most probably exists as a monomer of 27,000 Da polypeptide. Neutralization of protein M1 with Tris-HC1 at pH 7.0 did not cause aggregation of M1 polypeptides. The described method of viron layer by layer uncoating with non-ionic detergent at fixed pH is suitable for isolation of subvirus structures and individual viral proteins.  相似文献   

14.
15.
神经末梢突触囊泡释放神经递质过程的调控蛋白   总被引:3,自引:0,他引:3  
神经末梢突触囊泡释放神经递质是一个复杂且受到精细调控的过程,涉及多种蛋白质间的相互作用。位于突触囊泡膜上的突触囊泡蛋白/突触囊泡相关膜蛋白(synaptobrevin/VAMP),与位于突触前膜上的syntaxin和突触小体相关蛋白SNAP-25,三者聚合形成的可溶性N-甲基马来酰胺敏感因子(NSF)附着蛋白受体(SNARE)核心复合物是突触囊泡胞吐过程中的核心成分。本文主要围绕参与空触囊泡胞吐过程,以及调节SNARE核心复合物的形成,解离及其功能的蛋白质,并对突触囊泡胞吐过程的分子模型作一概述。  相似文献   

16.
Detergent-solubilization of hog gastric microsomal membrane proteins followed by affinity chromatography using wheat germ agglutinin or Ricinus communis I agglutinin resulted in the isolation of five glycoproteins with the apparent molecular masses on sodium dodecyl sulfate polyacrylamide gels of (in kDa): 60-80 (two glycoproteins sharing this molecular mass); 125-150; and 190-210. In the nonionic detergent Nonidet P-40 (NP-40), the 94 kDa H+/K(+)-ATPase was recovered exclusively in the lectin-binding fraction; however, in the cationic detergent dodecyltrimethylammonium bromide, most of the ATPase was recovered in the nonbinding fraction. Detection of glycoproteins either by periodic acid-dansyl hydrazine staining of carbohydrate in polyacrylamide gels or by Western blots probed with lectins indicated that the majority of the ATPase molecules are not glycosylated. In addition, in the absence of microsomal glycoproteins, the NP-40-solubilized ATPase does not bind to a lectin column. Taken together, these results suggest that the recovery of NP-40-solubilized ATPase in the lectin-binding fraction is due to its noncovalent interaction with a gastric microsomal glycoprotein. Immunoprecipitation of the ATPase from NP-40-solubilized microsomal membrane proteins resulted in the co-precipitation of a single 60-80 kDa glycoprotein. Characterization of the 60-80 kDa glycoprotein associated with the ATPase revealed that: it is a transmembrane protein; it has an apparent core molecular mass of 32 kDa; and, it has five asparagine-linked oligosaccharide chains. Given its similarity to the glycosylated beta-subunit of the Na+/K(+)-ATPase, this 60-80 kDa gastric microsomal glycoprotein is suggested to be a beta-subunit of the H+/K(+)-ATPase.  相似文献   

17.
The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.  相似文献   

18.
Ohagen A  Gabuzda D 《Journal of virology》2000,74(23):11055-11066
  相似文献   

19.
The difference in membrane (M) protein compositions between the transmissible gastroenteritis coronavirus (TGEV) virion and the core has been studied. The TGEV M protein adopts two topologies in the virus envelope, a Nexo-Cendo topology (with the amino terminus exposed to the virus surface and the carboxy terminus inside the virus particle) and a Nexo-Cexo topology (with both the amino and carboxy termini exposed to the virion surface). The existence of a population of M molecules adopting a Nexo-Cexo topology in the virion envelope was demonstrated by (i) immunopurification of (35)S-labeled TGEV virions using monoclonal antibodies (MAbs) specific for the M protein carboxy terminus (this immunopurification was inhibited only by deletion mutant M proteins that maintained an intact carboxy terminus), (ii) direct binding of M-specific MAbs to the virus surface, and (iii) mass spectrometry analysis of peptides released from trypsin-treated virions. Two-thirds of the total number of M protein molecules found in the virion were associated with the cores, and one-third was lost during core purification. MAbs specific for the M protein carboxy terminus were bound to native virions through the M protein in a Nexo-Cexo conformation, and these molecules were removed when the virus envelope was disrupted with NP-40 during virus core purification. All of the M protein was susceptible to N-glycosidase F treatment of the native virions, which indicates that all the M protein molecules are exposed to the virus surface. Cores purified from glycosidase-treated virions included M protein molecules that completely or partially lost the carbohydrate moiety, which strongly suggests that the M protein found in the cores was also exposed in the virus envelope and was not present exclusively in the virus interior. A TGEV virion structure integrating all the data is proposed. According to this working model, the TGEV virion consists of an internal core, made of the nucleocapsid and the carboxy terminus of the M protein, and the envelope, containing the spike (S) protein, the envelope (E) protein, and the M protein in two conformations. The two-thirds of the molecules that are in a Nexo-Cendo conformation (with their carboxy termini embedded within the virus core) interact with the internal core, and the remaining third of the molecules, whose carboxy termini are in a Nexo-Cexo conformation, are lost during virus core purification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号