首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carboxylesterases (CXEs) catalyse the hydrolysis of xenobiotics and natural products radically altering their biological activities. Whereas the substrate selectivity of animal CXEs, such as porcine liver esterase (PLE) have been well studied, the respective enzymes in plants have yet to be defined and their activities determined. Using Arabidopsis thaliana (At) as a source, five representative members of the alpha/beta hydrolase AtCXE family of proteins have been cloned, expressed and the purified recombinant proteins assayed for esterase activity with xenobiotic substrates. Two members, AtCXE5 and AtCXE18 were found to be active carboxylesterases, though AtCXE5 proved to be highly unstable as a soluble protein. AtCXE18 and the previously characterised S-formylglutathione hydrolase from Arabidopsis (AtSFGH) were assayed against a series of esters based on methylumbelliferone in which the acyl moiety was varied with respect to size and conformation. The same series was used to assay crude esterase preparation from Arabidopsis plants and the results compared with those obtained with the commonly used PLE. With straight chain esters, AtCXE18 behaved like PLE, but the Arabidopsis hydrolases proved less tolerant of branched chain acyl components than the mammalian enzyme. While none of the enzyme preparations accurately reflected all the activities determined with crude Arabidopsis protein extracts, the plant enzymes proved more useful than PLE in predicting the hydrolysis of the more sterically constrained esters.  相似文献   

2.
The relationships of sterase- and lipase-like proteins with three signaling molecules (salicylic acid, jasmonic acid, and ethylene) expressed during plant–pathogen interactions were studied. We isolated two carboxylesterase (AtCXE) genes, AtCXE8 and AtCXE9, from Arabidopsis thaliana. The AtCXE8 and AtCXE9 proteins possess carboxylesterase motifs (-GXSXG-) and catalytic triads (Ser, Asp, and His). We demonstrated that recombinant AtCXE8 and AtCXE9 proteins have both enzymatic activity and specific activity for p-nitrophenyl butyrate (C4) in vitro. Moreover, the enzymatic activity of recombinant AtCXE8 was twofold higher than that of AtCXE9. To gain a better understanding of the endogenous role of the AtCXE8 gene in Arabidopsis, we identified an enhancer trap T-DNA mutant (AtCXE8_KO) and used it to show that the AtCXE8 gene was induced in response to fungal infection. AtCXE8_KO plants were also more susceptible to infections than wild-type Col-0 plants. Moreover, overexpression of the AtCXE8 gene in transgenic Arabidopsis plants led to enhanced disease resistance against B. cinerea. Taken together, our data indicate that AtCXE8 plays a role in promoting resistance to fungal invasion.  相似文献   

3.
Activity-based protein profiling represents a powerful methodology to probe the activity state of enzymes under various physiological conditions. Here we present the development of a para-nitrophenol phosphonate activity-based probe with structural similarities to the potent agrochemical paraoxon. We demonstrate that this probes labels distinct serine hydrolases with the carboxylesterase CXE12 as the predominant target in Arabidopsis thaliana. The designed probe features a distinct labeling pattern and therefore represents a promising chemical tool to investigate physiological roles of selected serine hydrolases such as CXE12 in plant biology.  相似文献   

4.
Gleason C  Foley RC  Singh KB 《PloS one》2011,6(3):e17245
Herbicides that mimic the natural auxin indole-3-acetic acid are widely used in weed control. One common auxin-like herbicide is dicamba, but despite its wide use, plant gene responses to dicamba have never been extensively studied. To further understand dicamba's mode of action, we utilized Arabidopsis auxin-insensitive mutants and compared their sensitivity to dicamba and the widely-studied auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The mutant axr4-2, which has disrupted auxin transport into cells, was resistant to 2,4-D but susceptible to dicamba. By comparing dicamba resistance in auxin signalling F-box receptor mutants (tir1-1, afb1, afb2, afb3, and afb5), only tir1-1 and afb5 were resistant to dicamba, and this resistance was additive in the double tir1-1/afb5 mutant. Interestingly, tir1-1 but not afb5 was resistant to 2,4-D. Whole genome analysis of dicamba-induced gene expression showed that 10 hours after application, dicamba stimulated many stress-responsive and signalling genes, including those involved in biosynthesis or signalling of auxin, ethylene, and abscisic acid (ABA), with TIR1 and AFB5 required for the dicamba-responsiveness of some genes. Research into dicamba-regulated gene expression and the selectivity of auxin receptors has provided molecular insight into dicamba-regulated signalling and could help in the development of novel herbicide resistance in crop plants.  相似文献   

5.
Plants resistant to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) were produced through the genetic engineering of a novel detoxification pathway into the cells of a species normally sensitive to 2,4-D. We cloned the gene for 2,4-D monooxygenase, the first enzyme in the plasmid-encoded 2,4-D degradative pathway of the bacterium Alcaligenes eutrophus, into a cauliflower mosaic virus 35S promoter expression vector and introduced it into tobacco plants by Agrobacterium-mediated transformation. Transgenic tobacco plants expressing the highest levels of the monooxygenase enzyme exhibited increased tolerance to 2,4-D in leaf disc and seed germination assays, and young plants survived spraying with levels of herbicide up to eight times the usual field application rate. The introduction of the gene for 2,4-D monooxygenase into broad-leaved crop plants, such as cotton, should eventually allow 2,4-D to be used as an inexpensive post-emergence herbicide on economically important dicot crops.  相似文献   

6.
7.
8.
9.
10.
Liu H  Wang X  Zhang H  Yang Y  Ge X  Song F 《Gene》2008,420(1):57-65
Serine carboxypeptidase-like proteins (SCPLs) comprise a large family of protein hydrolyzing enzymes that play roles in multiple cellular processes. During the course of study aimed at elucidating the molecular basis of induced immunity in rice, a gene, OsBISCPL1, encoding a putative SCPL, was isolated and identified. OsBISCPL1 contains a conserved peptidase S10 domain, serine active site and a signal peptide at N-terminus. OsBISCPL1 is expressed ubiquitously in rice, including roots, stems, leaves and spikes. Expression of OsBISCPL1 in leaves was significantly up-regulated after treatments with benzothiadiazole, salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid, and also up-regulated in incompatible interactions between rice and the blast fungus, Magnaporthe grisea. Transgenic Arabidopsis plants with constitutive expression of OsBISCPL1 were generated and disease resistance assays indicated that the OsBISCPL1-overexpressing plants showed an enhanced disease resistance against Pseudomonas syringae pv. tomato and Alternaria brassicicola. Expression levels of defense-related genes, e.g. PR1, PR2, PR5 and PDF1.2, were constitutively up-regulated in transgenic plants as compared with those in wild-type plants. Furthermore, the OsBISCPL1-overexpressing plants also showed an increased tolerance to oxidative stress and up-regulated expression of oxidative stress-related genes. The results suggest that the OsBISCPL1 may be involved in regulation of defense responses against pathogen infection and oxidative stress.  相似文献   

11.
Changes in the amino acid content of Zea mays and Sorghum hnlcpemr by treatments with amitrole (3-amino-l,2,4-triazole) are reported. The evidence suggests that inhibition of histidine biosynthesis is probably not the mechanism of amitrole action in young seedling plants. Reductions in glycine and serine content of treated plants were observed. Results are discussed in relation to current theories on mechanisms of herbicide action.  相似文献   

12.
Induction of glutathione S-transferases in Arabidopsis by herbicide safeners   总被引:13,自引:0,他引:13  
Herbicide safeners increase herbicide tolerance in cereals but not in dicotyledenous crops. The reason(s) for this difference in safening is unknown. However, safener-induced protection in cereals is associated with increased expression of herbicide detoxifying enzymes, including glutathione S-transferases (GSTs). Treatment of Arabidopsis seedlings growing in liquid medium with various safeners similarly resulted in enhanced GST activities toward a range of xenobiotics with benoxacor, fenclorim, and fluxofenim being the most effective. Safeners also increased the tripeptide glutathione content of Arabidopsis seedlings. However, treatment of Arabidopsis plants with safeners had no effect on the tolerance of seedlings to chloroacetanilide herbicides. Each safener produced a distinct profile of enhanced GST activity toward different substrates suggesting a differential induction of distinct isoenzymes. This was confirmed by analysis of affinity-purified GST subunits by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. AtGSTU19, a tau class GST, was identified as a dominant polypeptide in all samples. When AtGSTU19 was expressed in Escherichia coli, the recombinant enzyme was highly active toward 1-chloro-2,4-dinitrobenzene, as well as chloroacetanilide herbicides. Immunoblot analysis confirmed that AtGSTU19 was induced in response to several safeners. Differential induction of tau GSTs, as well as members of the phi and theta classes by safeners, was demonstrated by RNA-blot analysis. These results indicate that, although Arabidopsis may not be protected from herbicide injury by safeners, at least one component of their detoxification systems is responsive to these compounds.  相似文献   

13.
The abnormal inflorescence meristem1 (aim1) mutation affects inflorescence and floral development in Arabidopsis. After the transition to reproductive growth, the aim1 inflorescence meristem becomes disorganized, producing abnormal floral meristems and resulting in plants with severely reduced fertility. The derived amino acid sequence of AIM1 shows extensive similarity to the cucumber multifunctional protein involved in beta-oxidation of fatty acids, which possesses l-3-hydroxyacyl-CoA hydrolyase, l-3-hydroxyacyl-dehydrogenase, d-3-hydroxyacyl-CoA epimerase, and Delta(3), Delta(2)-enoyl-CoA isomerase activities. A defect in beta-oxidation has been confirmed by demonstrating the resistance of the aim1 mutant to 2,4-diphenoxybutyric acid, which is converted to the herbicide 2,4-D by the beta-oxidation pathway. In addition, the loss of AIM1 alters the fatty acid composition of the mature adult plant.  相似文献   

14.
Carboxylesterase activities toward pesticide esters in crops and weeds   总被引:1,自引:0,他引:1  
Proteins were extracted from maize, rice, sorghum, soybean, flax and lucerne; the weeds Abutilon theophrasti, Echinochloa crus-galli, Phalaris canariensis, Setaria faberii, Setaria viridis, Sorghum halepense and the model plant Arabidopsis thaliana and assayed for carboxylesterase activity toward a range of xenobiotics. These included the pro-herbicidal esters clodinafop-propargyl, fenoxaprop-ethyl, fenthioprop-ethyl, methyl-2,4-dichlorophenoxyacetic acid (2,4-d-methyl), bromoxynil-octanoate, the herbicide-safener cloquintocet-mexyl and the pyrethroid insecticide permethrin. Highest activities were recorded with alpha-naphthyl acetate and methylumbelliferyl acetate. Esters of p-nitrophenol were also readily hydrolysed, with turnover declining as the chain length of the acyl component increased. Activities determined with model substrates were much higher than those observed with pesticide esters and were of limited value in predicting the relative rates of hydrolysis of the crop protection agents. Substrate preferences with the herbicides were typically 2,4-d-methyl>clodinafop-propargyl>fenthioprop-ethyl, fenoxaprop-ethyl and bromoxynil-octanoate. Isoelectric focussing in conjunction with staining for esterase activity using alpha-naphthyl acetate as substrate confirmed the presence of multiple carboxylesterase isoenzymes in each plant, with major qualitative differences observed between species. The presence of serine hydrolases among the resolved isoenzymes was confirmed through their selective inhibition by the organophosphate insecticide paraoxon. Our studies identify potentially exploitable differences between crops and weeds in their ability to bioactivate herbicides by enzymic hydrolysis and also highlight the usefulness of Arabidopsis as a plant model to study xenobiotic biotransformation.  相似文献   

15.
H Habe  K Kasuga  H Nojiri  H Yamane    T Omori 《Applied microbiology》1996,62(12):4471-4477
We obtained the DNA fragments encoding 2-hydroxy-6-oxo-7-methylocta-2,4-dienoic acid (HOMODA) hydrolase in the cumene (isopropylbenzene) degrader Pseudomonas fluorescens strain IP01 via PCR using two synthesized oligonucleotides corresponding to the conserved regions within known meta-cleavage compound hydrolases. Following colony hybridization using the amplified DNA as a probe, a 4.5-kb HindIII fragment was isolated from P. fluorescens IP01. After determining the nucleotide sequence of this fragment, three open reading frames (ORF11 [cumH], ORF12 [cumD], and ORF13) were identified. The deduced amino acid sequence of ORF12 showed homology with meta-cleavage compound hydrolases encoded by the tod, dmp, xyl, and bph operons. Although the product of ORF12 was found to exhibit HOMODA and 2-hydroxy-6-oxohepta-2,4-dienoic acid (HOHDA) hydrolase activities, it did not exhibit 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) hydrolase activity. The deduced amino acid sequence of ORF11 showed 40.4% homology with the sequence of todX in Pseudomonas putida F1 (Y. Wang, M. Ralings, D. T. Gibson, D. Labbé, H. Bergeron, R. Brousseau, and P. C. K. Lau, Mol. Gen. Genet. 246:570-579, 1995). The nucleotide sequence of ORF13 and its flanking region showed strong homology (91.0%) with IS52 from Pseudomonas savastanoi (Y. Yamada, P.-D. Lee, and T. Kosuge, Proc. Natl. Acad. Sci. USA 83:8263-8267, 1982). By characterization of cumH and cumD, the entire cum gene cluster from the cumene-degrader P. fluorescens IP01 (cumA1A2A3A4BCEGFHD) has been identified.  相似文献   

16.
Electrophysiological measurements were made on root tip cells in the elongation zone of diclofop-methyl-resistant (SR4/84) and -susceptible (SRS2) biotypes of annual ryegrass (Lolium rigidum Gaud.) from Australia. The phytotoxic action of diclofop-methyl (methyl 2-[4-(2′,4′-dichlorophenoxy)phenoxy]propanoate) on susceptible whole plants was completely reversed by a simultaneous application of 2,4-dichlorophenoxyacetic acid (dimethylamine salt). The phytotoxic acid metabolite, diclofop (50 micromolar), depolarized membrane potentials of both biotypes to a steady-state level within 10 to 15 minutes. Repolarization of the membrane potential occurred only in the resistant biotype following removal of diclofop. The resistant biotype has an intrinsic ability to reestablish the electrogenic membrane potential, whereas the susceptible biotype required an exogeneous source of IAA to induce partial repolarization. Both biotypes were susceptible to depolarization by carbonylcyanide-m-chlorophenylhy-drazone (CCCP), and their membrane potentials recovered upon removal of CCCP. A 15-minute pretreatment with p-chloromercuribenzenesulphonic acid (PCMBS) blocked the depolarizing action of diclofop in both biotypes. However, PCMBS had no effect on the activity of CCCP. The action of diclofop appears to involve a site-specific interaction at the plasmalemma in both Lolium biotypes to cause the increased influx of protons into sensitive cells. The differential response of membrane depolarization and repolarization to diclofop treatment may be a significant initial reaction in the eventual phytotoxic action of the herbicide.  相似文献   

17.
CoA is required for many synthetic and degradative reactions in intermediary metabolism and is the principal acyl carrier in prokaryotic and eukaryotic cells. CoA is synthesized in five steps from pantothenate, and recently, the CoA biosynthetic genes of Arabidopsis have all been identified and characterized. Here, we demonstrate the biochemical and physiological characterization of a pyrophosphatase from Arabidopsis thaliana , called AtCoAse (locus tag At5g45940), cleaving CoA to 4'-phosphopantetheine and 3',5'-adenosine-diphosphate in the presence of Mg2+/Mn2+ ions. The CoA cleaving enzyme is a member of the Nudix hydrolases, pyrophosphatases that hydrolyze nucleoside diphosphates, already described as CoAse and now further characterized in detail by us. Mutagenesis of residues of the so-called Nudix and NuCoA motifs drastically reduced the hydrolase activity. AtCoAse is not absolute specific for CoA, and in the presence of Mn2+ ions, a minor hydrolyzing activity was observed with NADH as substrate. The AtCoAse expression is ubiquitous, strongly in flower and unaffected by abiotic stress. The immunohistochemical localization indicates that the AtCoAse protein is observed in the cytoplasm of distinct cells types from different heterotrophic Arabidopsis tissues, mainly restricted to the vascular elements of the root and shoot and in flower and developing embryo. Transgenic Arabidopsis plants, with increased AtCoAse expression, show altered growth rates and development, expanding their live cycle far away from the wild-type.  相似文献   

18.
19.
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1 function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.  相似文献   

20.
Activity-based proteomics is a methodology that is used to quantify the catalytically active subfraction of enzymes present in complex mixtures such as lysates or living cells. To apply this approach for in-cell selectivity profiling of inhibitors of serine proteases, we designed a novel activity-based probe (ABP). This ABP consists of (i) a fluorophosphonate-reactive group, directing the probe toward serine hydrolases or proteases and (ii) an alkyne functionality that can be specifically detected at a later stage with an azide-functionalized reporter group through a Cu(I)-catalyzed coupling reaction ("click chemistry"). This novel ABP was shown to label the active site of several serine proteases with greater efficiency than a previously reported fluorophosphonate probe. More importantly, our probe was cell-permeable and achieved labeling of enzymes within living cells with efficiency similar to that observed for the corresponding lysate fraction. Several endogenous serine hydrolases whose activities were detected upon in-cell labeling were identified by two-dimensional gel and MS analyses. As a proof of principle, cell-permeable inhibitors of an endogenous serine protease (prolyl endopeptidase) were assessed for their potency and specificity in competing for the in situ labeling of the selected enzyme. Altogether these results open new perspectives for safety profiling studies in uncovering potential cellular "side effects" of drugs (unanticipated off-target inhibition or activation) that may be overlooked by standard selectivity profiling methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号