首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of a cardiovascular stent depends on many factors, such as its ability to sustain the compression applied by the vessel wall, minimal longitudinal contraction when it is expanded, and its ability to flex when navigating tortuous blood vessels. The long-term reaction of the tissue to the stent is also device dependant; in particular some designs provoke in-stent restenosis (i.e., regrowth of the occlusion around the stent). The mechanism of restenosis is thought to involve injury or damage to the vessel wall due to the high stresses generated around the stent when it expands. Because of this, the deflection of the tissue between the struts of the stent (called prolapse or "draping") has been used as a measure of the potential of a stent to cause restenosis. In this paper, uniaxial and biaxial experiments on human femoral artery and porcine aortic vascular tissue are used to develop a hyperelastic constitive model of vascular tissue suitable for implementation in finite-element analysis. To analyze prolapse, four stent designs (BeStent 2, Medtronic AVE; NIROYAL, Boston Scientific; VELOCITY, Cordis; TETRA, Guidant) were expanded in vitro to determine their repeating-unit dimensions. This geometric data was used to generate a finite element model of the vascular tissue supported within a repeating-unit of the stent. Under a pressure of 450 mm Hg (representing the radial compression of the vessel wall), maximum radial deflection of 0.253 mm, 0.279 mm, 0.348 mm and 0.48 mm were calculated for each of the four stents. Stresses in the vascular wall were highest for the VELOCITY stent. The method is proposed as a way to compare stents relative to their potential for restenosis and as a basis for a biomechanical design of a stent repeating-unit that would minimize restenosis.  相似文献   

2.
Stenting of curved arteries is generally perceived to be more challenging than straight vessels. Conceptually implanting multiple shorter stents rather than a single longer stent into such a curved artery represents a promising concept, but little is known about the impact of such an approach. The objective of this study is to evaluate the effectiveness of using a multiple segment stent rather than a single long stent to dilate a curved artery using the finite element method. A double segment stent (DSS) and a single segment stent (SSS) were modeled. The stents were compared when expanded into a model of a curved artery. The model predicts that the DSS provides higher flexibility, more conformity, and lower recoil in comparison to the SSS. The volume of arterial tissue experiencing high levels of stress due to stent implantation is also reduced for the DSS. It is suggested that a multiple segment stenting system is a potential solution to the problem of higher rates of in-stent restenosis in curved arteries and mechanically challenging environments.  相似文献   

3.
Wu W  Qi M  Liu XP  Yang DZ  Wang WQ 《Journal of biomechanics》2007,40(13):3034-3040
Carotid angioplasty and stenting (CAS) has emerged as an effective alternative to carotid endarterectomy, and nitinol stents are commonly used in CAS. To evaluate biomechanical properties of nitinol carotid stents and their interactions with carotid arteries, a finite element method (FEM) model was built which is composed of a stenotic carotid tissue, a segmented-design nitinol stent and a sheath. Two different stents were considered to show the influence of stent design on the stent-vessel interactions. Results show that the superelastic stents were delivered into the stenotic vessel lumen through the sheath and self-expanded in the internal and common carotid artery. The stent with shorter struts may have better clinical results and the different stent designs can cause different carotid vessel geometry changes. This FEM can provide a convenient way to test and improve biomechanical properties of existing carotid stents and give clues for new nitinol carotid stent designs.  相似文献   

4.

Purpose

While animal models are widely used to investigate the development of restenosis in blood vessels following an intervention, computational models offer another means for investigating this phenomenon. A computational model of the response of a treated vessel would allow investigators to assess the effects of altering certain vessel- and stent-related variables. The authors aimed to develop a novel computational model of restenosis development following an angioplasty and bare-metal stent implantation in an atherosclerotic vessel using agent-based modeling techniques. The presented model is intended to demonstrate the body’s response to the intervention and to explore how different vessel geometries or stent arrangements may affect restenosis development.

Methods

The model was created on a two-dimensional grid space. It utilizes the post-procedural vessel lumen diameter and stent information as its input parameters. The simulation starting point of the model is an atherosclerotic vessel after an angioplasty and stent implantation procedure. The model subsequently generates the final lumen diameter, percent change in lumen cross-sectional area, time to lumen diameter stabilization, and local concentrations of inflammatory cytokines upon simulation completion. Simulation results were directly compared with the results from serial imaging studies and cytokine levels studies in atherosclerotic patients from the relevant literature.

Results

The final lumen diameter results were all within one standard deviation of the mean lumen diameters reported in the comparison studies. The overlapping-stent simulations yielded results that matched published trends. The cytokine levels remained within the range of physiological levels throughout the simulations.

Conclusion

We developed a novel computational model that successfully simulated the development of restenosis in a blood vessel following an angioplasty and bare-metal stent deployment based on the characteristics of the vessel cross-section and stent. A further development of this model could ultimately be used as a predictive tool to depict patient outcomes and inform treatment options.  相似文献   

5.

Background  

The success of stent implantation in the restoration of blood flow through areas of vascular narrowing is limited by restenosis. Several recent studies have suggested that the local geometric environment created by a deployed stent may influence regional blood flow characteristics and alter distributions of wall shear stress (WSS) after implantation, thereby rendering specific areas of the vessel wall more susceptible to neointimal hyperplasia and restenosis. Stents are most frequently implanted in curved vessels such as the coronary arteries, but most computational studies examining blood flow patterns through stented vessels conducted to date use linear, cylindrical geometric models. It appears highly probable that restenosis occurring after stent implantation in curved arteries also occurs as a consequence of changes in fluid dynamics that are established immediately after stent implantation.  相似文献   

6.

Development and application of advanced mechanical models of soft tissues and their growth represent one of the main directions in modern mechanics of solids. Such models are increasingly used to deal with complex biomedical problems. Prediction of in-stent restenosis for patients treated with coronary stents remains a highly challenging task. Using a finite element method, this paper presents a mechanistic approach to evaluate the development of in-stent restenosis in an artery following stent implantation. Hyperelastic models with damage, verified with experimental results, are used to describe the level of tissue damage in arterial layers and plaque caused by such intervention. A tissue-growth model, associated with vessel damage, is adopted to describe the growth behaviour of a media layer after stent implantation. Narrowing of lumen diameter with time is used to quantify the development of in-stent restenosis in the vessel after stenting. It is demonstrated that stent designs and materials strongly affect the stenting-induced damage in the media layer and the subsequent development of in-stent restenosis. The larger the artery expansion achieved during balloon inflation, the higher the damage introduced to the media layer, leading to an increased level of in-stent restenosis. In addition, the development of in-stent restenosis is directly correlated with the artery expansion during the stent deployment. The correlation is further used to predict the effect of a complex clinical procedure, such as stent overlapping, on the level of in-stent restenosis developed after percutaneous coronary intervention.

  相似文献   

7.

Background

Carotid angioplasty and stenting (CAS) may currently be recommended especially in younger patients with a high-grade carotid artery stenosis. However, evidence is accumulating that in-stent restenosis (ISR) could be an important factor endangering the long-term efficacy of CAS. The aim of this study was to investigate the influence of inflammatory serum markers and procedure-related factors on ISR as diagnosed with duplex sonography.

Methods

We analyzed 210 CAS procedures in 194 patients which were done at a single university hospital between May 2003 and June 2010. Periprocedural C-reactive protein (CRP) and leukocyte count as well as stent design and geometry, and other periprocedural factors were analyzed with respect to the occurrence of an ISR as diagnosed with serial carotid duplex ultrasound investigations during clinical long-term follow-up.

Results

Over a median of 33.4 months follow-up (IQR: 14.9–53.7) of 210 procedures (mean age of 67.9±9.7 years, 71.9% male, 71.0% symptomatic) an ISR of ≥70% was detected in 5.7% after a median of 8.6 months (IQR: 3.4–17.3). After multiple regression analysis, leukocyte count after CAS-intervention (odds ratio (OR): 1.31, 95% confidence interval (CI): 1.02–1.69; p = 0.036), as well as stent length and width were associated with the development of an ISR during follow-up (OR: 1.25, 95% CI: 1.05–1.65, p = 0.022 and OR: 0.28, 95% CI: 0.09–0.84, p = 0.010).

Conclusions

The majority of ISR during long-term follow-up after CAS occur within the first year. ISR is associated with periinterventional inflammation markers and influenced by certain stent characteristics such as stent length and width. Our findings support the assumption that stent geometry leading to vessel injury as well as periprocedural inflammation during CAS plays a pivotal role in the development of carotid artery ISR.  相似文献   

8.
Treatment of stenosed coronary arteries by balloon angioplasty and stenting results in arterial injury including severe damage to the endothelium at the site of treatment and initiates a complex cascade of inflammatory processes that may lead to the development of in-stent restenosis (ISR). Many clinical and biological factors involved in the progression of restenotic lesions have been studied in detail over the past few years but the mystery behind the pathophysiological mechanisms of this disease is still unresolved. In the present work, the effects of re-endothelialization and nitric oxide release on neointimal growth are investigated in-silico using a two dimensional multi-scale model of ISR. The effect of stent deployment depths on the development of ISR is studied as a function of time after stenting. Two dimensional domains were prepared by deploying bare metal stent struts at three different deployment depths into the tissue. Shear stress distribution on endothelial cells, obtained by blood flow simulations, was translated into nitric oxide production that keeps the smooth muscle cells in quiescent state. The cellular growth trends were plotted as a function of time and the data indicate a positive correlation between the neointimal growths and strut deployment depths in the presence of a functional endothelium, in qualitative agreement with in-vivo data. Additionally, no ISR is observed if a functional endothelium appears much earlier.  相似文献   

9.
Numerical investigation of the intravascular coronary stent flexibility   总被引:4,自引:0,他引:4  
Nowadays stent therapy is widely adopted to treat atherosclerotic vessel diseases. The high commercial value of these devices and the high prototypation costs require the use of finite element analyses, instead of classical trial and error technique, to design and verify new models. In this paper, we explore the advantages of the finite element method (FEM) in order to investigate new generation stent performance in terms of flexibility. Indeed, the ability of the stent to bend in order to accommodate curvatures and angles of vessels during delivery is one of the most significant prerequisites for optimal stent performance. Two different FEM models, resembling two new generation intravascular stents, were developed. The main model dimensions were obtained by means of a stereo microscope, analyzing one Cordis BX-Velocity and one Carbostent Sirius coronary stent. Bending tests under displacement control in the unexpanded and expanded configuration were carried out. The curvature index, defined as the ratio between the sum of rotation angles at the extremes and the length of the stent, yielded comparative information about the capability of the device to be delivered into tortuous vessels and to conform to their contours. Results, expressed in terms of the bending moment-curvature index, demonstrated a different response for the two models. In particular the Cordis model showed a higher flexibility. Lower flexibility in the expanded configurations for both models was detected. However this flexibility depends on how the contact takes place between the different parts of the struts.  相似文献   

10.
BACKGROUND: Coronary artery stenting is particularly useful during percutaneous coronary intervention for long lesions previously associated with a low procedural success rate and a high complication rate of dissection and occlusion. Current treatment options include implantation of a single long stent, multiple contiguous stents, or 'spot' stenting. However, multiple stent implantation may result in sections of overlapping stent or gaps of unstented segments and is an independent predictor of restenosis. The early and intermediate clinical outcome of single and multiple long stent (>/= 30 mm) implantation is not established. METHODS AND RESULTS: The authors retrospectively identified 123 consecutive patients who had undergone stenting using one or more long coronary stents. Baseline clinical data, procedural outcomes and completed clinical follow-up to 52 weeks were obtained by case-note review. The majority (69%) required intervention for stable coronary disease. Seventy-seven per cent of lesions were either type B2 or C and only 2% were in saphenous vein grafts. The procedural success rate was 94%. A total of 15 major events occurred in 13 patients (11%). Ten acute events occurred and five events were during the follow-up period from 30 days to 52 weeks. Two patients died, one from uncontrolled bleeding secondary to the use of antithrombotic agents and one at four weeks due to sudden death. One patient had a postprocedural infarct. Two patients required in-hospital repeat revascularization for acute vessel closure and eight required revascularization during follow-up (three cases of occlusion/thrombosis and five cases of restenosis). CONCLUSIONS: The use of long coronary stents (>/= 30 mm) for the treatment of long diffuse native vessel disease, saphenous vein graft disease and long coronary dissections is associated with a reasonable procedural success rate and acceptable early and intermediate-term clinical outcomes.  相似文献   

11.
Carotid artery stenting (CAS) has emerged as a minimally invasive alternative to endarterectomy but its use in clinical treatment is limited due to the post-stenting complications. Haemodynamic actors, related to blood flow in the stented vessel, have been suggested to play a role in the endothelium response to stenting, including adverse reactions such as in-stent restenosis and late thrombosis. Accessing the flow-related shear forces acting on the endothelium in vivo requires space and time resolutions which are currently not achievable with non-invasive clinical imaging techniques but can be obtained from image-based computational analysis. In this study, we present a framework for accurate determination of the wall shear stress (WSS) in a mildly stenosed carotid artery after the implantation of a stent, resembling the commercially available Acculink (Abbott Laboratories, Abbott Park, Illinois, USA). Starting from angiographic CT images of the vessel lumen and a micro-CT scan of the stent, a finite element analysis is carried out in order to deploy the stent in the vessel, reproducing CAS in silico. Then, based on the post-stenting anatomy, the vessel is perfused using a set of boundary conditions: total pressure is applied at the inlet, and impedances that are assumed to be insensitive to the presence of the stent are imposed at the outlets. Evaluation of the CAS outcome from a geometrical and haemodynamic perspective shows the presence of atheroprone regions (low time-average WSS, high relative residence time) colocalised with stent malapposition and stent strut interconnections. Stent struts remain unapposed in the ostium of the external carotid artery disturbing the flow and generating abnormal shear forces, which could trigger thromboembolic events.  相似文献   

12.
Coronary stenting (stent implantation) has evolved over the last 5 years with changes in stent design, stent material and the implantation technique. The use of high-pressure balloon inflation (HP), intravascular ultrasound (IVUS) and appropriate antiplatelet therapy have contributed to the abolishment of the need for subsequent anticoagulation, allowing extended stent applications. We compared results in three groups of patients having stent implantation throughout the period of evolution: group A: no IVUS, no HP, with subsequent anticoagulation treatment (n 3 434); group B: no IVUS, yes HP, without subsequent anticoagulation treatment (n 3 192); and group C: yes IVUS, yes HP, without subsequent anticoagulation treatment (n 3 588). The primary success rates were comparable in all groups. There was a clear change in indications for stenting in groups B and C compared with group A (elective stenting: group A 3 32%; group B 3 66%; group C 3 69%; P < 0.0001), in reference vessel size (group A 3 3.22 3 0.37 mm; group B 3 2.92 3 0.56 mm; group C 3 2.98 3 0.57 mm; P < 0.0001), and for presence of type B2 and C lesions (group A 3 57%; group B 3 72%; group C 3 74%; P < 0.001). The complication rate significantly decreased in group C (group A 3 3.6%; group B 3 4.1%; group C 3 1.2%; P < 0.001) and the mean patient hospital stay decreased to 2 days in groups B and C due to the abolition of the need for anticoagulant treatment. The angiographic restenosis rate increased in groups B and C (group A 3 20%; group B 3 34%; group C 3 32%; P < 0.001). The need for a repeat procedure increased as stenting of more complex lesions and smaller vessels was attempted: target lesion revascularization (TLR) was performed in 16% of patients in group A (73/434), in 18% of group B (35/192) and in 22% of group C (129/588) (P 3 0.04 for A versus C). Major cardiac events (MACE) occurred in 142 patients in group A (33%), 60 patients in group B (31%) and in 181 patients in group C (30%). The evolving technique of coronary stenting has expanded the spectrum of indications and range of coronary vessels attempted, and decreased the complication rates and hospital stay. However, in less-favorable subsets, additional improvements are needed to affect the long-term outcome.  相似文献   

13.
经皮经腔血管成形术(PTA)已广泛用于外周动脉疾病(PAD)的治疗。然而,该技术存在血管壁弹性回缩和内膜增生等不足。PTA术后植入金属裸支架(BMS)虽然可以减少血管壁弹性回缩,但由此引起的支架内再狭窄(ISR)又成为治疗中的一个突出问题。药物洗脱支架(DES)被用来解决狭窄问题,但晚期支架内血栓形成(LST)、内皮化延迟和必须长期抗血小板治疗等问题也随之而来。在这样的背景下,药物涂层球囊(DCB)获得了快速发展。DCB作为非支架方案,可将所携载的活性药物转移至病变段血管壁,对ISR或原发病变均有较好的治疗效果。本文简要介绍了DCB的发展历史,并通过实验室研究、动物实验和临床试验,从机制上阐述涂层技术、涂层药物、赋形剂等对DCB功效和安全性的影响以及DCB在PAD治疗中的应用进展。  相似文献   

14.
Bifurcation stenoses are one of the most complex categories for endovascular treatment as such lesion requires that the lumen of both a great vessel and a lateral branch be recovered. Introduction of drug-coated stents into clinical practice has changed surgical approaches in this type of an atherosclerotic lesion. The use of two drug-coated endoprostheses or more within the afflicted segment to stent a great vessel or lateral branch does not increase a risk for restenosis. The considerable opportunities of endovascular technologies and the absence of a unified surgical approach in this type of lesion generate a need for systematizing the experience accumulated. The purpose of the present study is to develop an algorithm of bifurcation stenting in different types of X-ray anatomy and morphology of a coronary lesion.  相似文献   

15.
The success of vascular stents in the restoration of blood flow is limited by restenosis. Recent data generated from computational fluid dynamics (CFD) models suggest that stent geometry may cause local alterations in wall shear stress (WSS) that have been associated with neointimal hyperplasia and subsequent restenosis. However, previous CFD studies have ignored histological evidence of vascular straightening between circumferential stent struts. We tested the hypothesis that consideration of stent-induced vascular deformation may more accurately predict alterations in indexes of WSS that may subsequently account for histological findings after stenting. We further tested the hypothesis that the severity of these alterations in WSS varies with the degree of vascular deformation after implantation. Steady-state and time-dependent simulations of three-dimensional CFD arteries based on canine coronary artery measurements of diameter and blood flow were conducted, and WSS and WSS gradients were calculated. Circumferential straightening introduced areas of high WSS between stent struts that were absent in stented vessels of circular cross section. The area of vessel exposed to low WSS was dependent on the degree of circumferential vascular deformation and axial location within the stent. Stents with four vs. eight struts increased the intrastrut area of low WSS in vessels, regardless of cross-sectional geometry. Elevated WSS gradients were also observed between struts in vessels with polygonal cross sections. The results obtained using three-dimensional CFD models suggest that changes in vascular geometry after stent implantation are important determinants of WSS distributions that may be associated with subsequent neointimal hyperplasia.  相似文献   

16.
Cardiovascular stent design and vessel stresses: a finite element analysis   总被引:19,自引:0,他引:19  
Intravascular stents of various designs are currently in use to restore patency in atherosclerotic coronary arteries and it has been found that different stents have different in-stent restenosis rates. It has been hypothesized that the level of vascular injury caused to a vessel by a stent determines the level of restenosis. Computational studies may be used to investigate the mechanical behaviour of stents and to determine the biomechanical interaction between the stent and the artery in a stenting procedure. In this paper, we test the hypothesis that two different stent designs will provoke different levels of stress within an atherosclerotic artery and hence cause different levels of vascular injury. The stents analysed using the finite-element method were the S7 (Medtronic AVE) and the NIR (Boston Scientific) stent designs. An analysis of the arterial wall stresses in the stented arteries indicates that the modular S7 stent design causes lower stress to an atherosclerotic vessel with a localized stenotic lesion compared to the slotted tube NIR design. These results correlate with observed clinical restenosis rates, which have found higher restenosis rates in the NIR compared with the S7 stent design. Therefore, the testing methodology outlined here is proposed as a pre-clinical testing tool, which could be used to compare and contrast existing stent designs and to develop novel stent designs.  相似文献   

17.

Background

In-stent restenosis (ISR) remains a common life-threatening complication and some studies have shown that pioglitazone can reduce the incidence of ISR in patients with drug-eluting stents (DES) implantation. We conducted a meta-analysis to assess the effect of pioglitazone in preventing ISR after DES implantation.

Methods

Randomized controlled trials (RCTs) investigating the effects of pioglitazone for ISR after DES implantation were identified by systematic searches of multiple online databases and manual searches of related reference lists of identified trials through May 2014. The primary endpoint was the rate of ISR. Secondary endpoints included minimum lumen diameter, percentage stenosis of stented vessels, late loss, in-stent neointimal volume, target vessel revascularization (TVR), target lesion revascularization, myocardial infarction, stent thrombosis and death.

Results

Five studies, comprising 255 pioglitazone-treated patients and 245 controls, were identified in the current meta-analysis. Pioglitazone did not significantly reduce the rate of ISR (P = 0.20) with low heterogeneity (I2 = 13.3%, P = 0.32). For the secondary outcomes, pioglitazone did not substantially affect the pooled estimates of these endpoints except late loss (P = 0.01) and TVR (P = 0.04).

Conclusions

The limited evidence indicates that pioglitazone does not demonstrate markedly beneficial effect in patients subjected to coronary DES implantation. However, the results should be interpreted with care given the small sample size. Further large-scale RCTs are needed.  相似文献   

18.
The paper analyzes the immediate and long-term results of point stenting in patients with extended (more than 30 mm) coronary stenoses and compares them with those obtained by routine stenting. The study included 177 patients with varying extent stenoses who underwent traditional implantation of intracoronary stents. Thirty-seven patients undergone the so-called point stenting formed a separate group. There was no significant difference in clinical and angiographic success rates between the patients of all three groups. Significant difference was also absent in subacute stent thrombosis between the patients of Groups 2 and 3 and those of the point stenting group. Thus, acute or subacute stent thrombosis was noted in 4 (2.3%) patients from the routine stenting groups, all the patients being from Groups 2 and 3, and in 2 (5.4%) from the point stenting group. No significant difference was found in the incidence of recurrent angina pectoris (restenosis) between Groups 1 and 2 and between Groups 2 and 3. At the same time, recurrent angina (restenosis) significantly more frequently developed in the patients of Group 3 than those of Group 1. As compared with Groups 2 and 3 patients, there was no significant difference in the incidence of recurrent angina (restenosis).  相似文献   

19.
The paper analyzes the immediate and long-term results of point stenting in patients with extended (more than 30 mm) coronary stenoses and compares them with those obtained by routine stenting. The study included 177 patients with varying extent stenoses who underwent traditional implantation of intracoronary stents. Thirty-seven patients undergone the so-called point stenting formed a separate group. There was no significant difference in clinical and angiographic success rates between the patients of all three groups. Significant difference was also absent in subacute stent thrombosis between the patients of Groups 2 and 3 and those of the point stenting group. Thus, acute or subacute stent thrombosis was noted in 4 (2.3%) patients from the routine stenting groups, all the patients being from Groups 2 and 3, and in 2 (5.4%) from the point stenting group. No significant difference was found in the incidence of recurrent angina pectoris (restenosis) between Groups 1 and 2 and between Groups 2 and 3. At the same time, recurrent angina (restenosis) significantly more frequently developed in the patients of Group 3 than those of Group 1. As compared with Groups 2 and 3 patients, there was no significant difference in the incidence of recurrent angina (restenosis).  相似文献   

20.
Polyvinyl alcohol (PVA) cryogel covered stents may reduce complications from thrombosis and restenosis by decreasing tissue prolapse. Finite element analysis was employed to evaluate the effects of PVA cryogel layers of varying thickness on tissue prolapse and artery wall stress for two common stent geometries and two vessel diameters. Additionally, several PVA cryogel covered stents were fabricated and imaged with an environmental scanning electron microscope. Finite element results showed that covered stents reduced tissue prolapse up to 13% and artery wall stress up to 29% with the size of the reduction depending on the stent geometry, vessel diameter, and PVA cryogel layer thickness. Environmental scanning electron microscope images of expanded covered stents showed the PVA cryogel to completely cover the area between struts without gaps or tears. Overall, this work provides both computational and experimental evidence for the use of PVA cryogels in covered stents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号