首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid length changes were applied (within 0.2 ms or 0.4 ms) to single isometrically contracted glycerol extracted muscle fibres of the dorsal longitudinal muscle ofLethocerus maximus suspended in an Ca2+ and ATP containing solution at 20–23‡ C. Force transients and the fibre stiffness were measured during and after rapid length changes. At length changesbelow 0.5% of the initial fibre length (∼ 2.4 Μm sarcomere length) the mechanical transients were characterized as follows: (1) After stretch and after release the force regains at least partly the value of tension before the length change within a quick phase of tension recovery. The quick phase induced by stretch was nearly completed within 1–2 ms. (2) A pulse in length of 1.5 ms duration, i.e., a stretch followed by a release to the initial length or a release followed by a stretch to the initial length, was applied to the fibre. The force transient induced by this procedure regains after the second length change the value of the isometric tension before the procedure. (3) The stiffness was constant during each length change of the “pulse” and was equal during the first and the second length changes. These findings are predicted by the muscle contraction model of Huxley and Simmons (1971): The identical force before and after a length pulse may indicate that the rotation of cross bridges after the first length change is followed by a rotation into the original position after the second length change. The constancy of the stiffness during the length changes may indicate a Hookean elastic element of the cross bridge. The similarity of the stiffness during the first and the second length changes, i.e., before and after the quick phase, gives evidence that the quick phases after stretch and after release are not accompanied by a change in the net number of attached cross bridges. If stretches ofmore than 0.5% of the initial length were applied, the mechanical transient of the muscle fibre changed as follows: (1) An ultra fast tension decay phase (duration < 0.4 ms) was observed in addition to the slower decay phase induced by the smaller stretches. (2) If the initial stretch was followed by a release to the initial length, no fast recovery phase was observed, which returns the force to the value before the stretch. The reduced tension value persists for a longer period in time than 10 ms. (3) If the muscle was stretched and released repetitively an ultra fast quick phase was induced only by the first stretch. (4) The stiffness increased during stretch, but was found to be the same in the isometrically contracting muscle and after the quick tension decay phase following a large stretch. These findings indicate that the contraction model of Huxley and Simmons has to be extended by a further process additional to cross bridge rotation in case of large stretches (> 0.5%L ini). The findings are taken to indicate a rapid detachment and reattachment of overstrained cross bridges, i.e., a cross bridge slippage induced by large stretches.  相似文献   

2.
Series elasticity in frog sartorius muscle during release and stretch   总被引:1,自引:0,他引:1  
When a stretch is applied to an isolated muscle during tetanic stimulation, the force developed is higher than the maximal isometric tension (Po). This force puts the series elastic component (SEC) under tension and in a domain which is not well defined in terms of tension-extension curve. In the present work, an attempt was made to determine the stiffness of the SEC for tensions greater than Po, using the sartorius muscle of the frog. For this purpose, rapid releases and stretches of different amplitudes were given during maximal isometric contractions. Plotting normalized tension (P/Po) against normalized length changes (negative or positive extensions, delta L/Lo.10(2] produced a tension-extension curve. The slopes of the linear part of each relationship on both sides of Po indicated an increase in SEC stiffness when the muscle was rapidly stretched. Furthermore, the transient character of the increase in stiffness was studied by measuring SEC stiffness during rapid releases applied at various time intervals after stretches: the muscle was found to be stiffer as the time interval was shorter. The results are discussed in terms of (i) non-linear behaviour of the passive and active parts of the SEC, (ii) enhancement of storage and release of potential energy.  相似文献   

3.
The time course of force generation and the time course of muscle stiffness were measured in rabbit soleus muscles during eccentric contraction to understand the underlying basis for the force loss in these muscles. Muscles were activated for 600 msec every 10 sec for 30 min. Soleus muscles contracting isometrically maintained constant tension throughout the treatment period, while muscles subjected to eccentric contraction rapidly dropped tension generation by 75% within the first few minutes and then an additional 10% by the end of 30 min. This indicated a dramatic loss in force-generating ability throughout the 30 min treatment period. To estimate the relative number of cross-bridges attached during the isometric force generation phase immediately preceding each eccentric contraction, stiffness was measured during a small stretch of a magnitude equal to 1.5% of the fiber length. Initially, muscle stiffness exceeded 1300 g/mm and, as eccentric treatment progressed, stiffness decreased to about 900 g/mm. Thus, while muscle stiffness decreased by only 30% over the 30 min treatment period, isometric force decreased by 85%. In isometrically activated muscles, stiffness remained constant throughout the treatment period. These data indicate that, while soleus muscles decreased their force generating capability significantly, there were a number of cross-bridges still attached that were not generating force. In summary, the loss of force generating capacity in the rabbit soleus muscle appears to be related to a fundamental change in myosin cross-bridge properties without the more dramatic morphological changes observed in other eccentric contraction models. These results are compared and contrasted with the observations made on muscles composed primarily of fast fibers.  相似文献   

4.
Length-force relations, both active and passive, and twitch contraction characteristics were quantified for left medial gastrocnemius muscles of four young, four adult, and four old male Wistar rats. Muscle and bundle optimum length and muscle weight were also determined and subsequently used for calculation of a number of morphological characteristics of the muscles. Fiber optimum length was derived from muscle bundle optimum length. Generally, physiological characteristics remained constant during growth. There was no change either in active tension at muscle optimum length or in active working range relative to fiber optimum length, relative passive fiber stiffness, active force relative to passive force at optimum length, twitch contraction time and twitch half relaxation time at optimum length. A number of morphological changes, however, did take place in the medial gastrocnemius muscle during growth. Fiber optimum length increased but only by about 2 mm from youth to old age, whereas muscle optimum length increased by approximately 14 mm, presumably owing to extensive hypertrophy of the muscle fibers during growth. The priority for force of the medial gastrocnemius muscle (defined as the quotient of physiological cross-sectional area of a muscle and the cubed root of its volume, a measure independent of architecture and dimensions of muscles) increased during growth. This increase indicates that during growth the muscle shifts relatively more towards force generation than towards excursion generation. These findings are discussed in view of existing scaling theories.  相似文献   

5.
Force responses to fast ramp stretches of various amplitude and velocity, applied during tetanic contractions, were measured in single intact fibers from frog tibialis anterior muscle. Experiments were performed at 14 degrees C at approximately 2.1 microm sarcomere length on fibers bathed in Ringer's solution containing various concentrations of 2,3-butanedione monoxime (BDM) to greatly reduce the isometric tension. The fast tension transient produced by the stretch was followed by a period, lasting until relaxation, during which the tension remained constant to a value that greatly exceeded the isometric tension. The excess of tension was termed "static tension," and the ratio between the force and the accompanying sarcomere length change was termed "static stiffness." The static stiffness was independent of the active tension developed by the fiber, and independent of stretch amplitude and stretching velocity in the whole range tested; it increased with sarcomere length in the range 2.1-2.8 microm, to decrease again at longer lengths. Static stiffness increased well ahead of tension during the tetanus rise, and fell ahead of tension during relaxation. These results suggest that activation increased the stiffness of some sarcomeric structure(s) outside the cross-bridges.  相似文献   

6.
During the development of force deficits by repeated stretches, velocity-sensitive changes in the extra force produced during and after subsequent stretching has not been studied. In the present study, repeated dorsiflexion of the foot of rats with maximally contracting plantar flexor muscles was performed at two angular velocities [0.87 (slow muscle stretch) and 10.47rads(-1) (fast muscle stretch)] to examine the active force of the muscles during and following dorsiflexion. Dorsiflexion was performed 30 times with a rest period of 3min between the stretches to minimize muscle fatigue. The ability of rat plantar flexor muscles to produce additional force during the stretch was not velocity sensitive. In contrast, repeated dorsiflexion with fast muscle stretches, but not with slow muscle stretches, resulted in an increase in the force decay with time following the stretches (i.e. increased stress relaxation), as indicated by a change in the time constant of force decay during stress relaxation. Apparently, the stress-relaxation of rat plantar flexor muscles is sensitive to angular velocity of ankle movements; repeated fast, but not slow dorsiflexion, alters the stress relaxation process of active skeletal muscles exposed to stretches which create a force deficit. The change in time constant of force decay during stress relaxation in response to a series of repeated stretches might provide information on the sarcomere length distribution in skeletal muscles.  相似文献   

7.
The thiadiazinon derivative EMD 57033 has been found previously in cardiac muscle to increase isometric force generation without a proportional increase in fiber ATPase, thus causing a reduction in tension cost. To analyze the mechanism by which EMD 57033 affects the contractile system, we studied its effects on isometric force, isometric fiber ATPase, the rate constant of force redevelopment (k(redev)), active fiber stiffness, and its effect on Fo, which is the force contribution of a cross-bridge in the force-generating states. We used chemically skinned fibers of the rabbit psoas muscle. It was found that with 50 microM EMD 57033, isometric force increases by more than 50%, whereas Kredev, active stiffness, and isometric fiber ATPase increase by at most 10%. The results show that EMD 57033 causes no changes in cross-bridge turnover kinetics and no changes in active fiber stiffness that would result in a large enough increase in occupancy of the force-generating states to account for the increase in active force. However, plots of force versus length change recorded during stretches and releases (T plots) indicate that in the presence of EMD 57033 the y(o) value (x axis intercept) for the cross-bridges becomes more negative while its absolute value increases. This might suggest a larger cross-bridge strain as the basis for increased active force. Analysis of T plots with and without EMD 57033 shows that the increase in cross-bridge strain is not due to a redistribution of cross-bridges among different force-generating states favoring states of larger strain. Instead, it reflects an increased cross-bridge strain in the main force-generating state. The direct effect of EMD 57033 on the force contribution of cross-bridges in the force-generating states represents an alternative mechanism for a positive inotropic intervention.  相似文献   

8.
The tension-time area is an estimation of the work performed by contracting motor units. The relationship between tension and frequency of stimulation and between tension-time area and frequency have been studied on 148 single motor units of the rat medial gastrocnemius muscle, under isometric conditions. Motor units were classified as fast fatigable (FF), fast resistant to fatigue (FR) or slow (S). Trains of stimuli of increasing frequency and constant duration were used. For all motor units a half of the maximum tetanic tension corresponded to lower frequencies compared to frequencies at a half of the maximum tension-time area. Moreover, the slopes of tension-frequency and area-frequency curves (change of tension or area per 1 Hz rise in frequency) were higher for slow than for fast motor units. The tension-time area per one pulse was calculated for different frequencies of stimulation. For slow units the maximum area per pulse corresponded to significantly lower frequencies than for fast ones, especially of FF type. However, for all three types of motor units this optimal frequency corresponded to sub-fused tetani with a tension of about 75% of the maximum tension, and with the fusion index slightly over 0.90. The absolute values of the maximum tension-time area per pulse revealed that in one contraction within the tetanus, slow units are generating greater work than FR units. The work performed by FF units is nearly two times larger than for S units, although the tension of slow units is over eight times lower. The presented results reveal that the contraction of slow motor units is much more effective than was suggested based on their low tension.  相似文献   

9.
Airway smooth muscle exhibits the property of length adaptation, which enables it to optimize its contractility to the mechanical conditions under which it is activated. Length adaptation has been proposed to result from a dynamic modulation of contractile and cytoskeletal filament organization, in which the cell structure adapts to changes in cell shape at different muscle lengths. Changes in filament organization would be predicted to alter muscle stiffness and extensibility. We analyzed the effects of tracheal muscle length at the time of contractile activation on the stiffness and extensibility of the muscle during subsequent stretch over a constant range of muscle lengths. Muscle strips were significantly stiffer and less extensible after contractile activation at a short length than after activation at a long length, consistent with the prediction of a shorter, thicker array of the cytoskeletal filaments at a short muscle length. Stretch beyond the length of contractile activation resulted in a persistent reduction in stiffness, suggesting a stretch-induced structural rearrangement. Our results support a model in which the filament organization of airway smooth muscle cells is plastic and can be acutely remodeled to adapt to the changes in the external physical environment.  相似文献   

10.
A state-variable model for skeletal muscle, termed the "Distribution-Moment Model," is derived from A. F. Huxley's 1957 model of molecular contraction dynamics. The state variables are the muscle stretch and the three lowest-order moments of the bond-distribution function (which represent, respectively, the contractile tissue stiffness, the muscle force, and the elastic energy stored in the contractile tissue). The rate equations of the model are solved under various conditions, and compared to experimental results for the cat soleus muscle subjected to constant stimulation. The model predicts several observed effects, including yielding of the muscle force in constant velocity stretches, different "force-velocity relations" in isotonic and isovelocity experiments, and a decrease of peak force below the isometric level in small-amplitude sinusoidal stretches. Chemical energy and heat rates predicted by the model are also presented.  相似文献   

11.
Single frog skeletal muscle fibers were attached to a servo motor and force transducer by knotting the tendons to pieces of wire at the fiber insertions. Small amplitude, high frequency sinusoidal length changes were then applied during tetani while fibers contracted both isometrically and isotonically at various constant velocities. The amplitude of the resulting force oscillation provides a relative measure of muscle stiffness. It is shown from an analysis of the transient force responses observed after sudden changes in muscle length applied both at full and reduced overlap and during the rising phase of short tetani that these responses can be explained on the basis of varying numbers of cross bridges attached at the time of the length step. Therefore, the stiffness measured by the high frequency length oscillation method is taken to be directly proportional to the number of cross bridges attached to thin filament sites. It is found that muscle stiffness measured in this way falls with increasing shortening velocity, but not as rapidly as the force. The results suggest that at the maximum velocity of shortening, when the external force is zero, muscle stiffness is still substantial. The findings are interpreted in terms of a specific model for muscle contraction in which the maximum velocity of shortening under zero external load arises when a force balance is attained between attached cross bridges some of which are aiding and others opposing shortening. Other interpretations of these results are also discussed.  相似文献   

12.
Equatorial x-ray diffraction pattern intensities (I10 and I11), fiber stiffness and sarcomere length were measured in single, intact muscle fibers under isometric conditions and during constant velocity (ramp) shortening. At the velocity of unloaded shortening (Vmax) the I10 change accompanying activation was reduced to 50.8% of its isometric value, I11 reduced to 60.7%. If the roughly linear relation between numbers of attached bridges and equatorial signals in the isometric state also applies during shortening, this would predict 51-61% attachment. Stiffness (measured using 4 kHz sinusoidal length oscillations), another putative measure of bridge attachment, was 30% of its isometric value at Vmax. When small step length changes were applied to the preparation (such as used for construction of T1 curves), no equatorial intensity changes could be detected with our present time resolution (5 ms). Therefore, unlike the isometric situation, stiffness and equatorial signals obtained during ramp shortening are not in agreement. This may be a result of a changed crossbridge spatial orientation during shortening, a different average stiffness per attached crossbridge, or a higher proportion of single headed crossbridges during shortening.  相似文献   

13.
The purpose of the present study was to evaluate active muscle stiffness with the stretch reflex according to changes (in 110-ms period after stretching) in torque and fascicle length during slower angular velocity (peak angular velocity of 100 deg·s−1) in comparison with active muscle stiffness without the stretch reflex (in 60-ms period after stretching) during slower and faster (peak angular velocity of 250 deg·s−1) angular velocities. Active muscle stiffness in the medial gastrocnemius muscle was calculated according to changes in estimated muscle force and fascicle length with slower and faster stretching during submaximal isometric contractions (10–90% maximal voluntary contractions). Active muscle stiffness significantly increased for both angular velocities and analyzed periods as torque levels exerted became higher. The effects of angular velocities and the interaction between angular velocities and torque levels were not significantly different between 250 deg·s−1 (in 60-ms period after stretching) and 100 deg·s−1 (in 110-ms period after stretching) conditions. The effects of the analyzed periods and the interaction between analyzed periods and torque levels were not significantly different between the analyzed periods (60-ms and 110-ms periods after stretching) for the 100 deg·s−1 condition. Furthermore, active muscle stiffness measured during the same angular velocity had significant correlations between those calculated in the different analyzed periods, whereas those under 250 deg·s−1 (60-ms period after stretching) did not correlate with those under 100 deg·s−1 (110-ms period after stretching). These results suggest that active muscle stiffness is not influenced by the stretch reflex.  相似文献   

14.
In this study, we investigated the effects of activation and stretch on the passive force-sarcomere length relationship in skeletal muscle. Single fibres from the lumbrical muscle of frogs were placed at varying sarcomere lengths on the descending limb of the force-sarcomere length relationship, and tetanic contractions, active stretches and passive stretches (amplitudes of ca 10% of fibre length at a speed of 40% fibre length/s) were performed. The passive forces following stretch of an activated fibre were higher than the forces measured after isometric contractions or after stretches of a passive fibre at the corresponding sarcomere length. This effect was more pronounced at increased sarcomere lengths, and the passive force-sarcomere length relationship following active stretch was shifted upwards on the force axis compared with the corresponding relationship obtained following isometric contractions or passive stretches. These results provide strong evidence for an increase in passive force that is mediated by a length-dependent combination of stretch and activation, while activation or stretch alone does not produce this effect. Based on these results and recently published findings of the effects of Ca2+ on titin stiffness, we propose that the observed increase in passive force is caused by the molecular spring titin.  相似文献   

15.
PURPOSE: The purpose of this experiment was to evaluate the effects of both muscle length and moment arm (MA) on the electromyographic (EMG) and force output of the triceps surae (TS) muscle. RELEVANCE: It is well recognized that changes in muscle length affect both the muscle's force generating capacity as well as its twitch speed. This relationship is well established in animal preparations. Contrary to animal experiments where length can be directly manipulated in isolated muscles, human experiments require that all muscle length changes be secondary to changes in a joint angle. Such experimental manipulations therefore produce changes in not only muscle length, but also in the muscle's MA. The relative effect of muscle length and MA changes on muscle EMG has not been determined in previous experiments. METHODS: This study was executed in two phases. First, using fresh human cadaver lower limbs, data were gathered describing the relationship between knee and ankle angle changes for maintenance of a constant TS muscle length, while its MA at the ankle joint has been changed. In the second phase of the study, results obtained from phase one were applied to 10 healthy adult human subjects to measure the EMG (surface and fine wire) activity of TS at three different conditions: when both length and MA were shortened, when muscle length was decreased given a constant MA and when MA was shortened given a constant muscle length. RESULTS: A significant increase in muscle activity was found as both the length and MA of TS muscle were shortened. A similar pattern of increased muscle activity was observed when the MA was shortened given a constant muscle length. No significant change in TS activity was found when muscle length was shortened, given a constant MA at the ankle joint. CONCLUSIONS: The findings of this study indicate that changes in the Achilles tendon MA predominate over the muscle length variations in determining the level of TS activity when generating plantar flexion torque.  相似文献   

16.
Weakly attached cross-bridges in relaxed frog muscle fibers.   总被引:1,自引:1,他引:0       下载免费PDF全文
Tension responses due to small, rapid length changes (completed within 40 microseconds) were obtained from skinned single frog muscle fiber segments (4-10 mm length) incubated in relaxing and rigor solutions at various ionic strengths. The first 2 ms of these responses can be described with a linear model in which the fiber is regarded as a rod, composed of infinitesimally small, identical segments, containing one undamped elastic element and two or three damped elastic elements and a mass in series. Rigor stiffness changed less than 10% in a limited range, 40-160 mM, of ionic strength conditions. Equatorial x-ray diffraction patterns show a similar finding for the filament spacing and intensity ratio I(11)/I(10). Relaxed fibers became stiffer under low ionic strength conditions. This stiffness increment can be correlated with a decreasing filament spacing and (an increased number of) weakly attached cross-bridges. Under low ionic strength conditions an additional recovery (1 ms time constant) became noticeable which might reflect characteristics of weakly attached cross-bridges.  相似文献   

17.
Muscle geometry of the unipennate medial gastrocnemius (GM) muscle of the rat was examined with photographic techniques during isometric contractions at different muscle lengths. It was found that the length of fibers in different regions of GM differs significantly, and proximal aponeurosis length varies significantly from distal aponeurosis length; the angle of the aponeurosis with the muscular action differs significantly among regions at short muscle lengths (full contraction). These data support the idea that the unipennate GM cannot be represented by a parallelogram in a two-dimensional analysis. As the muscle shortens, the area of the mid-longitudinal plane of the GM decreases by 24%, a decrease that may be explained by assuming fiber diameter to increase in all directions. The angle between fiber and aponeurosis is determined by more than fiber length. Hence, such important assumptions as a parallelogram with constant area and fiber angle γ changes determined by fiber length changes, freqently used in the theoretical analysis of the morphological mechanism of unipennate muscle contraction, do not hold for the unipennate GM of the rat. Length of the sarcomere within the mid-longitudinal plane of GM varies from 1.92 to 2.14 μm among the different muscle regions at muscle optimum length (length at which force production is highest), whereas shortening to 6 mm less than optimum length produces a range of sarcomere lengths from 0.89 to 1.52 μm. These data suggest that fibers located in different regions of the GM reach their optimum and slack lengths at various muscle lengths. © 1993 Wiley-Liss, Inc.  相似文献   

18.
Studies on skinned fibers and single motor units have indicated that slow-twitch fibers are stiffer than fast-twitch fibers. This suggests that skeletal muscles with different motor unit compositions may have different short-range stiffness (SRS) properties. Furthermore, the natural recruitment of slow before fast motor units may result in an SRS-force profile that is different from electrical stimulation. However, muscle architecture and the mechanical properties of surrounding tissues also contribute to the net SRS of a muscle, and it remains unclear how these structural features each contribute to the SRS of a muscle. In this study, the SRS-force characteristics of cat medial gastrocnemius muscle were measured during natural activation using the crossed-extension reflex, which activates slow before fast motor units, and during electrical activation, in which all motor units are activated synchronously. Short, rapid, isovelocity stretches were applied using a linear puller to measure SRS across the range of muscle forces. Data were collected from eight animals. Although there was a trend toward greater stiffness during natural activation, this trend was small and not statistically significant across the population of animals tested. A simple model, in which the slow-twitch fibers were assumed to be 30% stiffer than the fast-twitch fibers, was used to simulate the experimental results. Experimental and simulated results show that motor unit composition or firing rate has little effect on the SRS property of the cat MG muscle, suggesting that architectural features may be the primary determinant of SRS.  相似文献   

19.
This research focuses on an in vitro investigation of the stiffness changes of contracted airway smooth muscles (ASM) subjected to external longitudinal oscillations. ASM tissues were dissected from excised pig tracheas and stimulated by a chemical stimulus (acetylcholine, 10(-3) M) to produce maximum contractions. The tissues were then systematically excited with external oscillations. Various frequencies, amplitudes and durations were used in the experiments to determine stiffness changes in response to these variations. Force changes were recorded to reflect the muscle stiffness changes. Two stiffness definitions were used to quantify the results, dynamic stiffness to reflect variations during oscillation and static stiffness to reflect the net effect of oscillation. Under isometric contractions, these two stiffnesses were determined before, during and after oscillations. Incorporating an empirical stiffness equation, a two-dimensional finite element model (FEM) was developed to generalize the tissue responses to oscillation. The main outcomes from this work are: the dynamic stiffness has the tendency to decrease as the frequency and/or amplitude of external oscillation increases; the static stiffness has the tendency of decreasing with an increase in the frequency and/or amplitude of excitation until it reaches almost a constant value for frequencies at and above 25 Hz. The difference in the behavior of the dynamic and static stiffness changes may be attributed to the effect of elasticity and mass inertia that are involved in the dynamic motion. The findings of this research are in agreement with the hypothesis that oscillations exert a direct action on the contractile processes by causing an increased rate of actin-myosin detachments.  相似文献   

20.
The measurement of damping of low-amplitude limb oscillations permits to evaluate the energy losses in passive human skeletal muscle during small length changes. The attenuation curve for the limb oscillations is quite different from the classical attenuation curve in the presence of viscous damping. Energy losses per oscillation cycle are practically frequency independent. Thus the damping properties of passive muscles at joint angular velocities up to 100% are due mostly to the velocity-independent resistance of "dry friction" type. The value of this "friction" is about 0.07 N per sm2 of muscle cross-section. The passive muscle also has marked thixotropy, as its resistance to small amplitude low velocity stretches strongly depends on time between stretches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号