首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The product of the cdc2 gene encodes the p34cdc2 protein kinase that controls entry of yeast cells into S phase and mitosis. In higher eukaryotes, at least two cdc2 -like genes appear to be involved in these processes. A cdc2 homologous gene has previously been isolated from alfalfa and shown to complement a fission yeast cdc2 ts mutant. Here the isolation of cdc2MsB , a cognate cdc2 gene from alfalfa ( Medicago sativa ) is reported. Southern blot analysis shows that cdc2MsA and cdc2MsB are present as single copy genes in different tetraploid Medicago species. cdc2MsB encodes a slightly larger mRNA (1.5 kb) than cdc2MsA (1.4 kb). Both genes were found to be expressed at similar steady state levels in different alfalfa organs. Expression levels of both cdc2Ms genes correlate with the proliferative state of the organs. Complementation studies revealed that in contrast to cdc2MsA, cdc2MsB was not able to rescue a cdc2 ts fission yeast mutant. cdc2MsB was also unable to rescue a G2/M-arrested cdc28 ts budding yeast mutant which could be rescued by expression of the cdc2MsA gene. Conversely, cdc2MsB but not cdc2MsA was found to complement the G1/S block of another cdc28 ts budding yeast mutant. These results suggest that cdc2MsA and cdc2MsB function at different control points in the cell cycle.  相似文献   

2.
Using probes obtained by PCR amplification, we have cloned Drosophila cDNAs encoding structural homologs of the p34cdc2 cell cycle kinase. Southern blot experiments and in situ hybridization to polytene chromosomes demonstrated that the isolated cDNAs, were derived from two distinct genes, Dm cdc2 (31E) and Dm cdc2c (92F). Northern blot and in situ hybridization experiments revealed that these two genes are coexpressed during embryogenesis and that expression is correlated with cell proliferation. However, despite the similarity in structure and expression, the two gene products differed in functional assays in yeasts. Expression of Dm cdc2 in Schizosaccharomyces pombe and Saccharomyces cerevisiae rescued cell cycle arrest caused by mutations in cdc2+ and CDC28, the genes encoding the p34cdc2 kinase homologs of these yeasts. In contrast, the Dm cdc2c gene product did not restore cell cycle progression. Thus, in addition to the identification of a functional homolog in Drosophila, our results indicate the presence of a closely related cognate of the p34cdc2 cell cycle kinase.  相似文献   

3.
T Hirayama  Y Imajuku  T Anai  M Matsui  A Oka 《Gene》1991,105(2):159-165
The cdc2 gene product (p34cdc2) has been thought to play a central role in control of the mitotic cell cycle of yeasts and animals. To approach an understanding of the cell-cycle-control system in higher plants, we isolated, from an Arabidopsis thaliana cDNA library, two clones (CDC2a and CDC2b) similar to the Schizosaccharomyces pombe cdc2 gene. Genomic Southern-blot analysis with the CDC2a and CDC2b cDNA probes suggested that the A. thaliana genome contains several additional cdc2-like genes, which together with the CDC2a and CDC2b genes may constitute a CDC2 gene family. The CDC2a cDNA expressed in Sc. pombe corrected the elongated morphology, caused by the temperature-sensitive cdc2-33 mutation, to the normal shapes, indicating that the A. thaliana CDC2a gene product resembles Sc. pombe p34cdc2 functionally as well as structurally. These results support the view that the cell cycle of higher plants is controlled by an analogue of a p34cdc2-centered regulatory system like that of yeasts and animals.  相似文献   

4.
A putative protein tyrosine phosphatase (PTPase) gene, PTP2, was cloned from Saccharomyces cerevisiae. The complete yeast PTP2 gene encodes a 750-amino acid residue protein with a predicted mass of 86 kDa. The conserved PTPase domain was localized in the C-terminal half of the protein. Amino acid sequence alignment of the yeast PTPase domain with other phosphatases indicated approximately 20-25% sequence identity with the mammalian PTPase and a similar degree of identity with the PTPase encoded by the yeast PTP1 gene. The PTP2 gene is closely linked to the yeast RET1 and STE4 genes and is localized on the right arm of chromosome 15. Gene disruption experiments demonstrated that neither PTP2 alone nor PTP2 in combination with PTP1 was essential for growth under the conditions tested. The ability of PTP2 to complement the cdc25-22 mutant of Schizosaccharomyces pombe was also examined, and unlike the human T-cell PTPase, which was able to complement the cdc25-22 mutant, the S. cerevisiae PTP2 was unable to complement the cdc25-22 mutant of S. pombe.  相似文献   

5.
The gene cdc25+ is a mitotic inducer controlling transition from the G2 to the M phase of the cell cycle in the fission yeast, Schizosaccharomyces pombe. Using phenotypic complementation of a mutant of S. pombe, we have cloned a human homolog (CDC25Hu2) of the cdc25+ gene that differs markedly in structure from CDC25 (referred to here as CDC25Hu1), the first such homolog to be isolated. The carboxyl-terminal region of p63CDC25Hu2 shares significant sequence similarity with cdc25 protein homologs from other eukaryotes and possesses full complementation activity. CDC25Hu2 is expressed in human cell lines 10 to 100 times more than CDC25Hu1, and its expression is particularly high in some cancers, including SV40-transformed fibroblasts. Whereas CDC25Hu1 is predominantly expressed in G2, CDC25Hu2 is expressed throughout the cell cycle with a moderate increase in G2. Thus, at least two homologs of the cdc25 gene exist and are both expressed in human cells. The implications of CDC25Hu2 overexpression in some cancer cells are discussed.  相似文献   

6.
Summary Using probes obtained by PCR amplification, we have isolated two cognate rice cDNAs (cdc2Os-1 andcdc2Os-2) encoding structural homologues of thecdc2 +/CDC28(cdc2) protein kinase from a cDNA library prepared from cultured rice cells. Comparison of the deduced amino acid sequences of cdc2Os-1 and cdc2Os-2 showed that they are 83 % identical. They are 62 % identical toCDC28 ofSaccharomyces cerevisiae and much more similar to the yeast and mammalian p34cdc2 kinases than to riceR2, acdc2-related kinase isolated previously by screening the same rice cDNA library with a different oligonucleotide probe. Southern blot analysis indicated that the three rice clones (cdc2Os-1,cdc2Os-2 andR2) are derived from distinct genes and are each found in a single copy per rice haploid genome. RNA blot analysis revealed that these genes are expressed in proliferating rice cells and in young rice seedlings.cdc2Os-1 could complement a temperature-sensitive yeast mutant ofcdc28. However, despite the similarity in structure, bothcdc2Os-2 andR2 were unable to complement the same mutant. Thus, the present results demonstrate the presence of structurally related, but functionally distinct cognates of thecdc2 cell cycle kinase in rice.The nucleotide sequence data in this paper have been deposited in the EMBL database under accession number X60374 (cdc2Os-1) and X60375 (cdc2Os-2)  相似文献   

7.
8.
9.
10.
11.
We identified an Arabidopsis thaliana gene, AtMAP3Kepsilon1, and a Brassica napus cDNA, BnMAP3Kepsilon1, encoding functional protein serine/threonine kinases closely related to cdc7p and Cdc15p from Schizosaccharomyces pombe and Saccharomyces cerevisiae, respectively. This is the first report of cdc7-related genes in non-fungal eukaryotes; no such genes have as yet been identified in Metazoans. The B. napus protein is able to partially complement a cdc7 loss of function mutation in S. pombe. RT-PCR and in situ hybridisation revealed that the A. thaliana and B. napus genes are expressed in both the sporophytic and the gametophytic tissues of the respective plant species and revealed further that expression is highest in dividing cells. Moreover, AtMAP3Kepsilon1 gene expression is cell cycle-regulated, with higher expression in G2-M phases. Our results strongly suggest that the plant cdc7p-related protein kinases are involved in a signal transduction pathway similar to the SIN pathway, which positively regulates cytokinesis in S. pombe.  相似文献   

12.
The cdc2+ gene of Schizosaccharomyces pombe is homologous to the CDC28 gene of Saccharomyces cerevisiae. Both genes share limited homology with vertebrate protein kinases and have protein kinase activity. cdc2+ has been subjected to mutagenesis in vitro. A null allele of the gene, constructed by insertion of the S. cerevisiae LEU2 gene into a site within the gene, has a phenotype similar to that of many temperature-sensitive alleles of cdc2. Mutations within the predicted ATP-binding site and in a region which may be a site of phosphorylation result in loss of cdc2+ activity. A single substitution of Gly-146 to Asp-146 has been identified in cdc2-1w, a dominant activated allele of the gene. The four introns within the cdc2+ gene have been deleted. The resulting gene not only functions in fission yeast but also rescues cdc28(Ts) strains of S. cerevisiae, a property which is not shared by the genomic cdc2+ gene.  相似文献   

13.
We have constructed a Xenopus oocyte cDNA library in a Saccharomyces cerevisiae expression vector and used this library to isolate genes that can function in yeast cells to suppress the temperature sensitive [corrected] defect of the cdc15 mutation. Two maternally expressed Xenopus cDNAs which fulfill these conditions have been isolated. One of these clones encodes Xenopus N-ras. In contrast to the yeast RAS genes, Xenopus N-ras rescues the cdc15 mutation. Moreover, overexpression of Xenopus N-ras in S. cerevisiae does not activate the RAS-cyclic AMP (cAMP) pathway; rather, it results in decreased levels of intracellular cAMP in both mutant cdc15 and wild-type cells. Furthermore, we show that lowering cAMP levels is sufficient to allow cells with a nonfunctional Cdc15 protein to complete the mitotic cycle. These results suggest that a key step of the cell cycle is dependent upon a phosphorylation event catalyzed by cAMP-dependent protein kinase. The second clone, beta TrCP (beta-transducin repeat-containing protein), encodes a protein of 518 amino acids that shows significant homology to the beta subunits of G proteins in its C-terminal half. In this region, beta Trcp is composed of seven beta-transducin repeats. beta TrCP is not a functional homolog of S. cerevisiae CDC20, a cell cycle gene that also contains beta-transducin repeats and suppresses the cdc15 mutation.  相似文献   

14.
cdc25 is a specific tyrosine phosphatase that directly activates p34cdc2   总被引:116,自引:0,他引:116  
cdc25 controls the activity of the cyclin-p34cdc2 complex by regulating the state of tyrosine phosphorylation of p34cdc2. Drosophila cdc25 protein from two different expression systems activates inactive cyclin-p34cdc2 and induces M phase in Xenopus oocytes and egg extracts. We find that the cdc25 sequence shows weak but significant homology to a phylogenetically diverse group of protein tyrosine phosphatases. cdc25 itself is a very specific protein tyrosine phosphatase. Bacterially expressed cdc25 directly dephosphorylates bacterially expressed p34cdc2 on Tyr-15 in a minimal system devoid of eukaryotic cell components, but does not dephosphorylate other tyrosine-phosphorylated proteins at appreciable rates. In addition, mutations in the putative catalytic site abolish the in vivo activity of cdc25 and its phosphatase activity in vitro. Therefore, cdc25 is a specific protein phosphatase that dephosphorylates tyrosine and possibly threonine residues on p34cdc2 and regulates MPF activation.  相似文献   

15.
16.
The CDC8 gene, whose product is required for DNA replication in Saccharomyces cerevisiae, has been isolated on recombinant plasmids. The yeast vector YCp50 bearing the yeast ARS1, CEN4, and URA3 sequences, to provide for replication, stability, and selection, respectively, was used to prepare a recombinant plasmid pool containing the entire yeast genome. Plasmids capable of complementing the temperature-sensitive cdc8-1 mutation were isolated by transformation of a cdc8-1 mutant and selection for clones able to grow at the nonpermissive temperature. The entire complementing activity is carried on a 0.75-kilobase fragment, as revealed by deletion mapping. This fragment lies 1 kilobase downstream from the well-characterized sup4 gene, a gene known to be genetically linked to CDC8, thus confirming that the cloned gene corresponds to the chromosomal CDC8 gene. Two additional recombinant plasmids that complement the cdc8-1 mutation but that do not contain the 0.75-kilobase fragment or any flanking DNA were also identified in this study. These plasmids may contain genes that compensate for the lack of CDC8 gene product.  相似文献   

17.
Cdc42p is a highly conserved low-molecular-weight GTPase that is involved in controlling cellular morphogenesis. We have isolated the Cdc42p homolog from the fission yeast Schizosaccharomyces pombe by its ability to complement the Saccharomyces cerevisiae cdc42-1ts mutation. S. pombe Cdc42p is 85% identical in predicted amino acid sequence to S. cerevisiae Cdc42p and 83% identical to the human Cdc42p homolog. The Cdc42p protein fractionates to both soluble and particulate fractions, suggesting that it exists in two cellular pools. We have disrupted the cdc42+ gene and shown that it is essential for growth. The cdc42 null phenotype is an arrest as small, round, dense cells. In addition, we have generated three site-specific mutations, G12V, Q61L, and D118A, in the Cdc42p GTP-binding domains that correspond to dominant-lethal mutations in S. cerevisiae CDC42. In contrast to the S. cerevisiae cdc42 mutations, the S. pombe cdc42 mutant alleles were not lethal when overexpressed. However, the cdc42 mutants did exhibit an abnormal morphological phenotype of large, misshapen cells, suggesting that S. pombe Cdc42p is involved in controlling polarized cell growth.  相似文献   

18.
The U1 snRNP is known to play a critical role in spliceosome assembly, at least in part through base pairing of its RNA moiety to the substrate, but many details remain to be elucidated. To further dissect U1 snRNA function, we have analyzed 14 single point mutations in the six nucleotides complementary to the 5' splice site for their effects on growth and splicing in the fission yeast Schizosaccharomyces pombe. Three of the four alleles previously found to support growth of Saccharomyces cerevisiae are lethal in S. pombe, implying a more critical role for the 5' end of U1 in fission yeast. Furthermore, a comparison of phenotypes for individual nucleotide substitutions suggests that the two yeasts use different strategies to modulate the extent of pairing between U1 and the 5' splice site. The importance of U1 function in S. pombe is further underscored by the lethality of several single point mutants not examined previously in S. cerevisiae. In total, only three alleles complement the U1 gene disruption, and these strains are temperature-sensitive for growth. Each viable mutant was tested for impaired splicing of three different S. pombe introns. Among these, only the second intron of the cdc2 gene (cdc2-I2) showed dramatic accumulation of linear precursor. Notably, cdc2-I2 is spliced inefficiently even in cells containing wild-type U1, at least in part due to the presence of a stable hairpin encompassing its 5' splice site. Although point mutations at the 5' end of U1 have no discernible effect on splicing of pre-U6, significant accumulation of unspliced RNA is observed in a metabolic depletion experiment. Taken together, these observations indicate that the repertoire of U1 activities is used to varying extents for splicing of different pre-mRNAs in fission yeast.  相似文献   

19.
cdc25+ functions as an inducer in the mitotic control of fission yeast   总被引:114,自引:0,他引:114  
P Russell  P Nurse 《Cell》1986,45(1):145-153
In the fission yeast S. pombe the cdc25+ gene function is required to initiate mitosis. We have cloned the cdc25+ gene and have found that increased cdc25+ expression causes mitosis to initiate at a reduced cell size. This shows that cdc25+ functions as a dosage-dependent inducer in mitotic control, the first such mitotic control element to be specifically identified. DNA sequencing of the cdc25+ gene has shown that it can encode a protein of MW 67,000. Evidence is described showing that cdc25+ functions to counteract the activity of the mitotic inhibitor wee1+, and indicating that both mitotic control elements act independently to regulate the initiation of mitosis.  相似文献   

20.
p34cdc2 acts as a lamin kinase in fission yeast   总被引:10,自引:3,他引:7  
The nuclear lamina is an intermediate filament network that underlies the nuclear membrane in higher eukaryotic cells. During mitosis in higher eukaryotes, nuclear lamins are phosphorylated by a mitosis-specific kinase and this induces disassembly of the lamina structure. Recently, p34cdc2 protein kinase purified from starfish has been shown to induce phosphorylation of lamin proteins and disassembly of the nuclear lamina when incubated with isolated chick nuclei suggesting that p34cdc2 is likely to be the mitotic lamin kinase (Peter, M., J. Nakagawa, M. Dorée, J.C. Labbe, and E.A. Nigg. 1990b. Cell. 45:145-153). To confirm and extend these studies using genetic techniques, we have investigated the role of p34cdc2 in lamin phosphorylation in the fission yeast. As fission yeast lamins have not been identified, we have introduced a cDNA encoding the chicken lamin B2 protein into fission yeast. We report here that the chicken lamin B2 protein expressed in fission yeast is assembled into a structure that associates with the nucleus during interphase and becomes dispersed throughout the cytoplasm when cells enter mitosis. Mitotic reorganization correlates with phosphorylation of the chicken lamin B2 protein by a mitosis-specific yeast lamin kinase with similarities to the mitotic lamin kinase of higher eukaryotes. We show that a lamin kinase activity can be detected in cell-free yeast extracts and in p34cdc2 immunoprecipitates prepared from yeast cells arrested in mitosis. The fission yeast lamin kinase activity is temperature sensitive in extracts and immunoprecipitates prepared from strains bearing temperature-sensitive mutations in the cdc2 gene. These results in conjunction with the previously reported biochemical studies strongly suggest that disassembly of the nuclear lamina at mitosis in higher eukaryotic cells is a consequence of direct phosphorylation of nuclear lamins by p34cdc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号