首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bacillus subtilis RecO plays a central role in recombinational repair and genetic recombination by (i) stimulating RecA filamentation onto SsbA-coated single-stranded (ss) DNA, (ii) modulating the extent of RecA-mediated DNA strand exchange and (iii) promoting annealing of complementary DNA strands. Here, we report that RecO-mediated strand annealing is facilitated by cognate SsbA, but not by a heterologous one. Analysis of non-productive intermediates reveals that RecO interacts with SsbA-coated ssDNA, resulting in transient ternary complexes. The self-interaction of ternary complexes via RecO led to the formation of large nucleoprotein complexes. In the presence of homology, SsbA, at the nucleoprotein, removes DNA secondary structures, inhibits spontaneous strand annealing and facilitates RecO loading onto SsbA–ssDNA complex. RecO relieves SsbA inhibition of strand annealing and facilitates transient and random interactions between homologous naked ssDNA molecules. Finally, both proteins lose affinity for duplex DNA. Our results provide a mechanistic framework for rationalizing protein release and dsDNA zippering as coordinated events that are crucial for RecA-independent plasmid transformation.  相似文献   

2.
We have investigated the structural, biochemical and cellular roles of the two single-stranded (ss) DNA-binding proteins from Bacillus subtilis, SsbA and SsbB. During transformation, SsbB localizes at the DNA entry pole where it binds and protects internalized ssDNA. The 2.8-Å resolution structure of SsbB bound to ssDNA reveals a similar overall protein architecture and ssDNA-binding surface to that of Escherichia coli SSB. SsbA, which binds ssDNA with higher affinity than SsbB, co-assembles onto SsbB-coated ssDNA and the two proteins inhibit ssDNA binding by the recombinase RecA. During chromosomal transformation, the RecA mediators RecO and DprA provide RecA access to ssDNA. Interestingly, RecO interaction with ssDNA-bound SsbA helps to dislodge both SsbA and SsbB from the DNA more efficiently than if the DNA is coated only with SsbA. Once RecA is nucleated onto the ssDNA, RecA filament elongation displaces SsbA and SsbB and enables RecA-mediated DNA strand exchange. During plasmid transformation, RecO localizes to the entry pole and catalyzes annealing of SsbA- or SsbA/SsbB-coated complementary ssDNAs to form duplex DNA with ssDNA tails. Our results provide a mechanistic framework for rationalizing the coordinated events modulated by SsbA, SsbB and RecO that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.  相似文献   

3.
Bacillus subtilis RecA preferentially hydrolyzes dATP over ATP and supports an efficient DNA strand exchange reaction in the presence of dATP when compared to ATP. Saturating amounts of SsbA, independently of the order of addition, reduce the single-stranded (ss) DNA-dependent dATPase activity of RecA, and block the ATPase activity. SsbA added prior to RecA slightly stimulates the dATP-dependent DNA strand exchange activity, whereas added after RecA greatly enhances the extent of strand exchange. In the presence of ATP, 10 times more RecA is required to achieve a comparable level of strand exchange than in the presence of dATP. We propose that dATP binding and hydrolysis as well as SsbA provide different levels of regulation of the dynamic RecA nucleoprotein filament.  相似文献   

4.
Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.  相似文献   

5.
Bacillus subtilis competence-induced RecA, SsbA, SsbB, and DprA are required to internalize and to recombine single-stranded (ss) DNA with homologous resident duplex. RecA, in the ATP·Mg2+-bound form (RecA·ATP), can nucleate and form filament onto ssDNA but is inactive to catalyze DNA recombination. We report that SsbA or SsbB bound to ssDNA blocks the RecA filament formation and fails to activate recombination. DprA facilitates RecA filamentation; however, the filaments cannot engage in DNA recombination. When ssDNA was preincubated with SsbA, but not SsbB, DprA was able to activate DNA strand exchange dependent on RecA·ATP. This work demonstrates that RecA·ATP, in concert with SsbA and DprA, catalyzes DNA strand exchange, and SsbB is an accessory factor in the reaction. In contrast, RecA·dATP efficiently catalyzes strand exchange even in the absence of single-stranded binding proteins or DprA, and addition of the accessory factors marginally improved it. We proposed that the RecA-bound nucleotide (ATP and to a lesser extent dATP) might dictate the requirement for accessory factors.  相似文献   

6.
Genetic data have revealed that the absence of Bacillus subtilis RecO and one of the end-processing avenues (AddAB or RecJ) renders cells as sensitive to DNA damaging agents as the null recA, suggesting that both end-resection pathways require RecO for recombination. RecA, in the rATP·Mg2+ bound form (RecA·ATP), is inactive to catalyze DNA recombination between linear double-stranded (ds) DNA and naked complementary circular single-stranded (ss) DNA. We showed that RecA·ATP could not nucleate and/or polymerize on SsbA·ssDNA or SsbB·ssDNA complexes. RecA·ATP nucleates and polymerizes on RecO·ssDNA·SsbA complexes more efficiently than on RecO·ssDNA·SsbB complexes. Limiting SsbA concentrations were sufficient to stimulate RecA·ATP assembly on the RecO·ssDNA·SsbB complexes. RecO and SsbA are necessary and sufficient to ‘activate’ RecA·ATP to catalyze DNA strand exchange, whereas the AddAB complex, RecO alone or in concert with SsbB was not sufficient. In presence of AddAB, RecO and SsbA are still necessary for efficient RecA·ATP-mediated three-strand exchange recombination. Based on genetic and biochemical data, we proposed that SsbA and RecO (or SsbA, RecO and RecR in vivo) are crucial for RecA activation for both, AddAB and RecJ–RecQ (RecS) recombinational repair pathways.  相似文献   

7.
Naturally transformable bacteria recombine internalized ssDNA with a homologous resident duplex (chromosomal transformation) or complementary internalized ssDNAs (plasmid or viral transformation). Bacillus subtilis competence-induced DprA, RecA, SsbB, and SsbA proteins are involved in the early processing of the internalized ssDNA, with DprA physically interacting with RecA. SsbB and SsbA bind and melt secondary structures in ssDNA but limit RecA loading onto ssDNA. DprA binds to ssDNA and facilitates partial dislodging of both single-stranded binding (SSB) proteins from ssDNA. In the absence of homologous duplex DNA, DprA does not significantly increase RecA nucleation onto protein-free ssDNA. DprA facilitates RecA nucleation and filament extension onto SsbB-coated or SsbB plus SsbA-coated ssDNA. DprA facilitates RecA-mediated DNA strand exchange in the presence of both SSB proteins. DprA, which plays a crucial role in plasmid transformation, anneals complementary strands preferentially coated by SsbB to form duplex circular plasmid molecules. Our results provide a mechanistic framework for conceptualizing the coordinated events modulated by SsbB in concert with SsbA and DprA that are crucial for RecA-dependent chromosomal transformation and RecA-independent plasmid transformation.  相似文献   

8.
Escherichia coli dinD is an SOS gene up-regulated in response to DNA damage. We find that the purified DinD protein is a novel inhibitor of RecA-mediated DNA strand exchange activities. Most modulators of RecA protein activity act by controlling the amount of RecA protein bound to single-stranded DNA by affecting either the loading of RecA protein onto DNA or the disassembly of RecA nucleoprotein filaments bound to single-stranded DNA. The DinD protein, however, acts postsynaptically to inhibit RecA during an on-going DNA strand exchange, likely through the disassembly of RecA filaments. DinD protein does not affect RecA single-stranded DNA filaments but efficiently disassembles RecA when bound to two or more DNA strands, effectively halting RecA-mediated branch migration. By utilizing a nonspecific duplex DNA-binding protein, YebG, we show that the DinD effect is not simply due to duplex DNA sequestration. We present a model suggesting that the negative effects of DinD protein are targeted to a specific conformational state of the RecA protein and discuss the potential role of DinD protein in the regulation of recombinational DNA repair.  相似文献   

9.
PcrA is a conserved DNA helicase present in all gram-positive bacteria. Bacteria lacking PcrA show high levels of recombination. Lethality induced by PcrA depletion can be overcome by suppressor mutations in the recombination genes recFOR. RecFOR proteins load RecA onto single-stranded DNA during recombination. Here we test whether an essential function of PcrA is to interfere with RecA-mediated DNA recombination in vitro. We demonstrate that PcrA can inhibit the RecA-mediated DNA strand exchange reaction in vitro. Furthermore, PcrA displaced RecA from RecA nucleoprotein filaments. Interestingly, helicase mutants of PcrA also displaced RecA from DNA and inhibited RecA-mediated DNA strand exchange. Employing a novel single-pair fluorescence resonance energy transfer-based assay, we demonstrate a lengthening of double-stranded DNA upon polymerization of RecA and show that PcrA and its helicase mutants can reverse this process. Our results show that the displacement of RecA from DNA by PcrA is not dependent on its translocase activity. Further, our results show that the helicase activity of PcrA, although not essential, might play a facilitatory role in the RecA displacement reaction.  相似文献   

10.
Natural chromosomal transformation is one of the primary driving forces of bacterial evolution. This reaction involves the recombination of the internalized linear single-stranded (ss) DNA with the homologous resident duplex via RecA-mediated integration in concert with SsbA and DprA or RecO. We show that sequence divergence prevents Bacillus subtilis chromosomal transformation in a log-linear fashion, but it exerts a minor effect when the divergence is localized at a discrete end. In the nucleotide bound form, RecA shows no apparent preference to initiate recombination at the 3′- or 5′-complementary end of the linear duplex with circular ssDNA, but nucleotide hydrolysis is required when heterology is present at both ends. RecA·dATP initiates pairing of the linear 5′ and 3′ complementary ends, but only initiation at the 5′-end remains stably paired in the absence of SsbA. Our results suggest that during gene transfer RecA·ATP, in concert with SsbA and DprA or RecO, shows a moderate preference for the 3′-end of the duplex. We show that RecA-mediated recombination initiated at the 3′- or 5′-complementary end might have significant implication on the ecological diversification of bacterial species with natural transformation.  相似文献   

11.
Cytological and genetic evidence suggests that the Bacillus subtilis DNA uptake machinery localizes at a single cell pole and takes up single-stranded (ss) DNA. The integration of homologous donor DNA into the recipient chromosome requires RecA, while plasmid establishment, which is independent of RecA, requires at least RecO and RecU. RecA and RecN colocalize at the polar DNA uptake machinery, from which RecA forms filamentous structures, termed threads, in the presence of chromosomal DNA. We show that the transformation of chromosomal and of plasmid DNA follows distinct pathways. In the absence of DNA, RecU accumulated at a single cell pole in competent cells, dependent on RecA. Upon addition of any kind of DNA, RecA formed highly dynamic thread structures, which rapidly grew and shrank, and RecU dissipated from the pole. RecO visibly accumulated at the cell pole only upon addition of plasmid DNA, and, to a lesser degree, of phage DNA, but not of chromosomal DNA. RecO accumulation was weakly influenced by RecN, but not by RecA. RecO annealed ssDNA complexed with SsbA in vitro, independent of any nucleotide cofactor. The DNA end-joining Ku protein was also found to play a role in viral and plasmid transformation. On the other hand, transfection with SPP1 phage DNA required functions from both chromosomal and plasmid transformation pathways. The findings show that competent bacterial cells possess a dynamic DNA recombination machinery that responds in a differential manner depending if entering DNA shows homology with recipient DNA or has self-annealing potential. Transformation with chromosomal DNA only requires RecA, which forms dynamic filamentous structures that may mediate homology search and DNA strand invasion. Establishment of circular plasmid DNA requires accumulation of RecO at the competence pole, most likely mediating single-strand annealing, and RecU, which possibly down-regulates RecA. Transfection with SPP1 viral DNA follows an intermediate route that contains functions from both chromosomal and plasmid transformation pathways.  相似文献   

12.
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.  相似文献   

13.
The recO gene product is required for DNA repair and some types of homologous recombination in wild-type Escherichia coli cells. RecO protein has been previously purified and shown to bind to single- and double-stranded DNA and to promote the renaturation of complementary single-stranded DNA molecules. In this study, purified RecO protein was shown to catalyze the assimilation of single-stranded DNA into homologous superhelical double-stranded DNA, an activity also associated with RecA protein. The RecO protein-promoted strand assimilation reaction requires Mg2+ and is ATP independent. Because of the biochemical similarities between RecO and RecA proteins, the ability of RecO protein to substitute for RecA protein in DNA repair in vivo was also assessed in this study. The results show that overexpression of RecO protein partially suppressed the UV repair deficiency of a recA null mutant and support the hypothesis that RecO and RecA proteins are functionally similar with respect to strand assimilation and the ability to enhance UV survival. These results suggest that RecO and RecA proteins may have common functional properties.  相似文献   

14.
The Bacillus subtilis RecU protein is able to catalyze in vitro DNA strand annealing and Holliday-junction resolution. The interaction between the RecA and RecU proteins, in the presence or absence of a single-stranded binding (SSB) protein, was studied. Substoichiometric amounts of RecU enhanced RecA loading onto single-stranded DNA (ssDNA) and stimulated RecA-catalyzed D-loop formation. However, RecU inhibited the RecA-mediated three-strand exchange reaction and ssDNA-dependent dATP or rATP hydrolysis. The addition of an SSB protein did not reverse the negative effect exerted by RecU on RecA function. Annealing of circular ssDNA and homologous linear 3′-tailed double-stranded DNA by RecU was not affected by the addition of RecA both in the presence and in the absence of SSB. We propose that RecU modulates RecA activities by promoting RecA-catalyzed strand invasion and inhibiting RecA-mediated branch migration, by preventing RecA filament disassembly, and suggest a potential mechanism for the control of resolvasome assembly.  相似文献   

15.
In rapidly growing cells, with recombinational DNA repair required often and a new replication fork passing every 20 min, the pace of RecA-mediated DNA strand exchange is potentially much too slow for bacterial DNA metabolism. The enigmatic RadD protein, a putative SF2 family helicase, exhibits no independent helicase activity on branched DNAs. Instead, RadD greatly accelerates RecA-mediated DNA strand exchange, functioning only when RecA protein is present. The RadD reaction requires the RadD ATPase activity, does not require an interaction with SSB, and may disassemble RecA filaments as it functions. We present RadD as a new class of enzyme, an accessory protein that accelerates DNA strand exchange, possibly with a helicase-like action, in a reaction that is entirely RecA-dependent. RadD is thus a DNA strand exchange (recombination) synergist whose primary function is to coordinate closely with and accelerate the DNA strand exchange reactions promoted by the RecA recombinase. Multiple observations indicate a uniquely close coordination of RadD with RecA function.  相似文献   

16.
The DNA-binding, annealing and recombinational activities of purified RecA-DNA complexes stabilized by ATP gamma S (a slowly hydrolysable analog of ATP) are described. Electrophoretic analysis, DNase protection experiments and observations by electron microscopy suggest that saturated RecA complexes formed with single- or double-stranded DNA are able to accommodate an additional single strand of DNA with a stoichiometry of about one nucleotide of added single-stranded DNA per nucleotide or base-pair, respectively, of DNA resident in the complex. This strand uptake is independent of complementarity or homology between the added and resident DNA molecules. In the complex, the incoming and resident single-stranded DNA molecules are in close proximity as the two strands can anneal in case of their complementarity. Stable RecA complexes formed with single-stranded DNA bind double-stranded DNA efficiently when the added DNA is homologous to the complexed strand and then initiate a strand exchange reaction between the partner DNA molecules. Electron microscopy of the RecA-single-stranded DNA complexes associated with homologous double-stranded DNA suggests that a portion of duplex DNA is taken into the complex and placed in register with the resident single strand. Our experiments indicate that both DNA binding sites within RecA helical filaments can be occupied by either single- or double-stranded DNA. Presumably, the same first DNA binding site is used by RecA during its polymerization on single- or double-stranded DNA and the second DNA binding site becomes available for subsequent interaction of the protein-saturated complexes with naked DNA. The way by which additional DNA is taken into RecA-DNA complexes shows co-operative character and this helps to explain how topological problems are avoided during RecA-mediated homologous recombination.  相似文献   

17.
Optimal conditions for RecA protein-mediated DNA strand exchange include 6-8 mm Mg(2+) in excess of that required to form complexes with ATP. We provide evidence that the free magnesium ion is required to mediate a conformational change in the RecA protein C terminus that activates RecA-mediated DNA strand exchange. In particular, a "closed" (low Mg(2+)) conformation of a RecA nucleoprotein filament restricts DNA pairing by incoming duplex DNA, although single-stranded overhangs at the ends of a duplex allow limited DNA pairing to occur. The addition of excess Mg(2+) results in an "open" conformation, which can promote efficient DNA pairing and strand exchange regardless of DNA end structure. The removal of 17 amino acid residues at the Escherichia coli RecA C terminus eliminates a measurable requirement for excess Mg(2+) and permits efficient DNA pairing and exchange similar to that seen with the wild-type protein at high Mg(2+) levels. Thus, the RecA C terminus imposes the need for the high magnesium ion concentrations requisite in RecA reactions in vitro. We propose that the C terminus acts as a regulatory switch, modulating the access of double-stranded DNA to the presynaptic filament and thereby inhibiting homologous DNA pairing and strand exchange at low magnesium ion concentrations.  相似文献   

18.
RecA recombinases play a central role in homologous recombination. Once assembled on single-stranded (ss) DNA, RecA nucleoprotein filaments mediate the pairing of homologous DNA sequences and strand exchange processes. We have designed two experiments based on tethered particle motion (TPM) to investigate the fates of the invading and the outgoing strands during E. coli RecA-mediated pairing and strand exchange at the single-molecule level in the absence of force. TPM experiments measure the tethered bead Brownian motion indicative of the DNA tether length change resulting from RecA binding and dissociation. Experiments with beads labeled on either the invading strand or the outgoing strand showed that DNA pairing and strand exchange occurs successfully in the presence of either ATP or its non-hydrolyzable analog, ATPγS. The strand exchange rates and efficiencies are similar under both ATP and ATPγS conditions. In addition, the Brownian motion time-courses suggest that the strand exchange process progresses uni-directionally in the 5′-to-3′ fashion, using a synapse segment with a wide and continuous size distribution.  相似文献   

19.
W Rosselli  A Stasiak 《The EMBO journal》1991,10(13):4391-4396
The role of ATP hydrolysis during the RecA-mediated recombination reaction is addressed in this paper. Recent studies indicated that the RecA-promoted DNA strand exchange between completely homologous double- and single-stranded DNA can be very efficient in the absence of ATP hydrolysis. In this work we demonstrate that the energy derived from the ATP hydrolysis is strictly needed to drive the DNA strand exchange through the regions where the interacting DNA molecules are not in a homologous register. Therefore, in addition to the role of the ATP hydrolysis in promoting the dissociation of RecA from the products of the recombination reaction, as described earlier, ATP hydrolysis also plays a crucial role in the actual process of strand exchange, provided that the lack of homologous register obstructs the process of branch migration.  相似文献   

20.
Vaze MB  Muniyappa K 《Biochemistry》1999,38(10):3175-3186
To gain insights into inefficient allele exchange in mycobacteria, we compared homologous pairing and strand exchange reactions promoted by RecA protein of Mycobacterium tuberculosis to those of Escherichia coli RecA protein. The extent of single-stranded binding protein (SSB)-stimulated formation of joint molecules by MtRecA was similar to that of EcRecA over a wide range of pH values. In contrast, strand exchange promoted by MtRecA was inhibited around neutral pH due to the formation of DNA networks. At higher pH, MtRecA was able to overcome this constraint and, consequently, displayed optimal strand exchange activity. Order of addition experiments suggested that SSB, when added after MtRecA, was vital for strand exchange. Significantly, with shorter duplex DNA, MtRecA promoted efficient strand exchange without network formation in a pH-independent fashion. Increase in the length of duplex DNA led to incomplete strand exchange with concomitant rise in the formation of intermediates and networks in a pH-dependent manner. Treatment of purified networks with S1 nuclease liberated linear duplex DNA and products, consistent with a model in which the networks are formed by the invasion of hybrid DNA by the displaced linear single-stranded DNA. Titration of strand exchange reactions with ATP or salt distinguished a condition under which the formation of networks was blocked, but strand exchange was not significantly affected. We discuss how these results relate to inefficient allele exchange in mycobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号