首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
J. Prygiel  M. Leitao 《Hydrobiologia》1994,289(1-3):85-96
A study was carried out in 1992 on the Val Joly reservoir and the rivers situated downstream: the River Helpe Majeure and the canalized Sambre into which it flows 40 km below the reservoir. Each year, blooms of blue-green algae occur in the reservoir. They are dominated by species such as Aphanizomenon flos-aquae (L.) Ralfs in 1991 or Pseudanabaena tenuis Koppe and Oscillatoria pseudogeminata G. Schmid in 1992. A typical fluvial composition of the phytoplankton was mostly restored above the confluence with the Sambre. Nevertheless, significant quantities of Oscillatoria and Pseudanabaena have been observed in the River Sambre, just below its confluence with the Helpe Majeure. The environmental conditions in the River Sambre do not allow Aphanizomenon to develop, but could favour Oscillatoria blooms.  相似文献   

2.
Taxonomic composition and structure of the phytoplankton were studied in the lowland rivers of the upper Ob basin: Barnaulka, Bol’shaya Losikha, and lower Inya. It has been shown that the phytoplankton of a large river system in Eurasia, exemplified by the Ob basin, is characterized by spatial heterogeneity in its taxonomic composition.  相似文献   

3.
1. River metabolism was measured over an annual cycle at three sites distributed along a 1000 km length of the lowland Murray River, Australia. 2. Whole system metabolism was measured using water column changes in dissolved oxygen concentrations while planktonic and benthic metabolism were partitioned using light‐dark bottles and benthic chambers. 3. Annual gross primary production (GPP) ranged from 775 to 1126 g O2 m?2 year?1 which in comparison with rivers of similar physical characteristics is moderately productive. 4. Community respiration (CR) ranged from 872 to 1284 g O2 m?2 year?1 so that annual net ecosystem production (NEP) was near zero, suggesting photosynthesis and respiration were balanced and that allochthonous organic carbon played a minor role in fuelling metabolism. 5. Planktonic rates of gross photosynthesis and respiration were similar to those of the total channel, indicating that plankton were responsible for much of the observed metabolism. 6. Respiration rates correlated with phytoplankton standing crop (estimated as the sum of GPP plus the chlorophyll concentration in carbon units), yielding a specific respiration rate of ?1.1 g O2 g C?1 day?1. The respiration rate was equivalent to 19% of the maximum rate of phytoplankton photosynthesis, which is typical of diatoms. 7. The daily GPP per unit phytoplankton biomass correlated with the mean irradiance of the water column giving a constant carbon specific photon fixation rate of 0.35 gO2 g Chl a?1 day?1 per μmole photons m?2 s?1 (ca. 0.08 per mole photons m?2 on a carbon basis) indicating that light availability determined daily primary production. 8. Annual phytoplankton net production (NP) estimates at two sites indicated 25 and 36 g C m?2 year?1 were available to support riverine food webs, equivalent to 6% and 11% of annual GPP. 9. Metabolised organic carbon was predominantly derived from phytoplankton and was fully utilised, suggesting that food‐web production was restricted by the energy supply.  相似文献   

4.
The ecological importance of the River Meuse phytoplankton with regard to carbon and nutrient transport has been examined in two reaches of the Belgian course of the river.Field measurements of total particulate organic carbon (POC), particulate organic nitrogen (PON) and particulate phosphorus (PP) show that the large autochtonous production of organic matter strongly affects the carbon and nutrient budget of the aquatic system. During the growing season, phytoplankton accounts for nearly 60% of the POC and dominates the PON. Calculations of the carbon and oxygen budget in the upper reach of the Belgian Meuse demonstrates that the ecosystem is autotrophic, i.e. that autochtonous FPOM (fine particulate organic matter) production is the major carbon input. This suggests that in large lowland rivers, primary production (P) may exceed community respiration (R), i.e. P:R>1, whereas they are assumed to be heterotrophic (P:R<1) in the River Continuum concept.The question of maintenance of phytoplankton in turbid mixed water columns is also addressed, and the case of the River Meuse is treated on the basis of studies of photosynthesis and respiration (ETS measurements). The results suggest that the potamoplankton may show some low-light acclimation, through an increase of chlorophyll a relative to biomass, when it comes to deep downstream reaches, and that algal respiration rate may be reduced. A simulation of the longitudinal development of the algal biomass shows the different phases of algal growth and decline along the river and brings support to the importation hypothesis for explaining maintenance of potamoplankton in the downstream reaches.  相似文献   

5.
The relationship between total phytoplankton cell number, chlorophyll a, cell volume, and the response of these parameters to reactive phosphorus and nitrate in surface waters of Saronicos Gulf (Greece) was examined using simple and partial correlation statistics. Different conclusions could be drawn as to the comparability between biomass parameters and their interrelation with nutrients. Partial correlation analysis is considered to be a better method for comparing ecological data. The analysis of phytoplankton abundance should include determinations of as many biomass characteristics as possible since each has its own specificity.  相似文献   

6.
Jost  Günter  Pollehne  Falk 《Hydrobiologia》1997,352(1-3):107-115
This paper presents the results of a long-term survey of the hydrography, nutrients and phytoplankton in Tolo Harbour carried out between 1982 and 1992. Some nutrients such as total inorganic nitrogen, ammonia and total phosphorus increased during the 10 year period, but chlorophyll a, which indicated algal biomass, did not show an increasing trend. The phytoplankton of Tolo Harbour consisted largely of diatoms. Dinoflagellates and minor algal groups such as cryptomonads and small flagellates constituted a smaller fraction of the phytoplankton population. Densities of diatoms and minor algal groups increased in some stations, but the density of dinoflagellates remained relatively unchanged during the study period. Most nutrient variables were negatively correlated with densities of diatom and total phytoplankton, and positively correlated with densities of minor algal groups. While dinoflagellate densities were positively correlated with total nitrogen in some stations, no correlation existed between dinoflagellate density and most of the nutrient variables. Our results show that there is a gradual change in phytoplankton community in Tolo Harbour,most notably in the nutrient-rich inner harbour waters, with the smaller algae assuming increasing abundance. Thus there was a net increase in density of total phytoplankton even though chlorophyll a concentrations did not increase. No evidence was found in this study to show that increased nutrient loading would inevitably lead to increase in densities of dinoflagellates in Tolo Harbour. Instead, dinoflagellate densities showed stronger correlations with physical variables such as temperature, pH and salinity. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
The clear, shallow, oligotrophic waters of Florida Bay are characterized by low phytoplankton biomass, yet periodic cyanobacteria and diatom blooms do occur. We hypothesized that allochthonous dissolved organic matter (DOM) was providing a subsidy to the system in the form of bound nutrients. Water from four bay sites was incubated under natural light and dark conditions with enrichments of either DOM ( > 1 kD, 2×DOM) or inorganic nutrients (N+P). Samples were analyzed for bacterial numbers, bacterial production, phytoplankton biomass, phytoplankton community structure, and production, nutrients, and alkaline phosphatase (AP) activity. The influence of 2×DOM enrichment on phytoplankton biomass developed slowly during the incubations and was relatively small compared to nutrient additions. Inorganic nutrient additions resulted in an ephemeral bloom characterized initially as cyanobacterial and brown algae but which changed to dinoflagellate and/or brown algae by day six. The DIN:TP ratio decreased 10-fold in the N+P treatments as the system progressed towards N limitation. This ratio did not change significantly for 2×DOM treatments. In addition, these experiments indicated that both autotrophic and heterotrophic microbial populations in Florida Bay may fluctuate in their limitation by organic and inorganic nutrient availability. Both N+P and 2×DOM enrichments revealed significant and positive response in bioavailability of dissolved organic carbon (BDOC). Potential BDOC ranged from 1.1 to 35.5%, with the most labile forms occurring in Whipray Basin. BDOC at all sites was stimulated by the 2×DOM addition. Except for Duck Key, BDOC at all sites was also stimulated by the addition of N+P. BDOC was lower in the dry season than in the wet season (5.56% vs. 16.86%). This may be explained by the distinct chemical characteristics of the DOM produced at different times of year. Thus, both the heterotrophic and autotrophic microbial communities in Florida Bay are modulated by bioavailability of DOM. This has ramifications for the fate of DOM from the Everglades inputs, implicating DOM bioavailability as a contributing factor in regulating the onset, persistence, and composition of phytoplankton blooms.  相似文献   

8.
Abstract

Viruses and virus-like particles (VLP) have been found, in most cases perchance, in about 20 marine phytoplankton species. However only in six of these have there been further investigations on this phenomenon. Different mechanisms of interaction have been hypothesized. These include continuous dynamic viral control on populations (Synechococcus spp.), at times suppressed by external environmental factors (Aureococcus anophagefferens), termination of a bloom caused by viral infection (Emiliania huxleyi and Micromonas pusilla) or by induction of lysogenic cells (Heterosigma akashiwo), and effects on the survivability of specific clones through genetic control (Aureococcus anophagefferens). These examples illustrate the complexity of virus-algae relationships and provide an indication that they may represent a key factor in the dynamics of phytoplankton blooms.  相似文献   

9.
Effects of nutrient conditions on biochemical components (sugars and amino acids) of phytoplankton were examined in Lake Nakanuma in Japan. Phosphate, ammonium and silicate were added to water samples collected at 0 m, which were incubated for 15 days in situ. Chlorophyll a in phosphate-added samples increased much more than that in other samples. Total amino acids and total neutral sugars in phosphate-added samples also increased more than those in other samples. The increase of total amino acids and chlorophyll began faster than that of total neutral sugars during the first 5 days of incubation. Total neutral sugars in the phosphate-added samples increased rapidly after 8 days. The composition of amino acids did not change so much. However, the composition of neutral sugars changed according to the different nutrient addition. Phosphate-added samples changed greatly during the incubation. These changes were explained at least partly by changes in nutrient conditions. Addition of limiting nutrients decreased glucose content, whereas depletion of nutrients increased the content. This study indicates that measurements of the biochemical components contribute to the analysis of effects of nutrients on phytoplankton in natural waters.  相似文献   

10.
The relative importance of biotic (top-down) vs. abiotic (bottom-up) controls on phytoplankton dynamics was investigated in the York River estuary, Virginia (USA) by a combination of extensive analyses of long-term data sets collected by the U.S. Environmental Protection Agency (EPA) monitoring program over 17 years (1984–2001), field studies (1996–1997) and ecosystem modeling analyses. Results from the analysis of long-term data records collected at three stations along the salinity gradient suggested that phytoplankton are more likely controlled by abiotic mechanisms such as resource limitation than biotic mechanisms such as grazing since annual cycles of primary production and phytoplankton biomass were similar and no grazing effects were evident based on the observed relationship between phytoplankton and zooplankton biomass (R 2 < 0.2, p > 0.1). This scenario was supported by short-term field observations made over an annual cycle at three stations in the mid-channel of the estuary where both chlorophyll a and primary production demonstrated similar patterns of seasonal variation. Ratios of fluorescence before and after acidification at all study sites were relatively high suggesting low grazing pressure in the estuary. A tidally-averaged, size-structured plankton ecosystem model was previously developed and verified for the lower York River estuary. The validated ecosystem model was also used to examine this issue and simulation results supported the importance of bottom-up control in the York River estuary.  相似文献   

11.
In the Schelde continuum, a succession in the phytoplankton community is observed along the transition from the river to the freshwater tidal reaches of the estuary and from the freshwater to brackish reaches of the estuary. The goal of this study was to experimentally evaluate the contribution of changes in salinity and light climate to this succession. In summer 2000 and in spring 2001, phytoplankton communities from the river, the freshwater tidal reaches and the brackish reaches of the estuary were incubated under high or low light intensities and exposed to a change in salinity. HPLC analysis was used to evaluate the response of different algal groups to changes in light intensity and salinity. When incubated at a light intensity corresponding to the mean underwater light intensity of the freshwater tidal reaches, growth of phytoplankton from the river as well as from freshwater tidal reaches was significantly lower than when incubated at a light intensity corresponding to the mean underwater light intensity of the river. The phytoplankton community from the freshwater tidal reaches did not appear to be better adapted to low light intensities than the phytoplankton community from the river. Although diatoms were expected to be less sensitive to a reduction in light intensity than green algae, the opposite response was observed. Freshwater and brackish water phytoplankton were negatively affected by respectively an increase or decrease in salinity. However, the effect of salinity was not strong enough to explain the disappearance of freshwater and brackish water phytoplankton between a salinity of 0.5 and 10 psu, suggesting that other factors also play a role. In the freshwater phytoplankton communities from the river and the freshwater tidal reaches, green algae and diatoms responded in a similar way to an increase in salinity. In the brackish water phytoplankton community, fucoxanthin displayed a different response to salinity than lutein and chlorophyll a.  相似文献   

12.
Jamet  Dominique  Aleya  Lofti  Devaux  Jean 《Hydrobiologia》1995,(1):49-56
The diel changes of the size fractioned alkaline phosphatase activity (APA) were studied in relation to several abiotic and biotic factors in Villerest reservoir (located on the Loire river, near the city of Roanne, France), bihourly during two days in July 1992. The APA measured in this work exceeded considerably those reported in the literature, suggesting that dissolved mineral phosphorus was not available to microorganisms. At 1 m, the APA was primarily due to bacteria which actively assimilated organic P compounds released by photosynthetic algal metabolism. At 5, 10 and 20 m, the APA was predominantly algal. The high concentrations in SRP (soluble reactive phosphorus) would indicate that orthophosphates were not bioavailable. The reverse (i. e availability to phytoplankton) would have resulted in undetectable levels of P-POinf4sup3–due to the massive proliferation of algae in Villerest reservoir.  相似文献   

13.
The phytoplankton succession in Lake Orta, heavy metals and ammonium polluted for decades and subjected to liming intervention in 1989–90, was studied during 1994. The existence of three main succession stages, with different structures of the community emerged. Chlorophyta are the most important taxonomic group in every season. The spring community was dominated by chlorophytes, Dinobryon sertularia and Kephyrion sp., the summer by Synedra sp. and Westella botryoides, the autumn by Rhizosolenia eriensis and W. botryoides, the winter by Synedra sp., R. eriensis and Synechococcus sp. The abundance of Chlorophyta, less important in other deep subalpine lakes, and the dominance of taxa able to thrive in polluted environments, could be related to the presence of trace metals in the sediments.  相似文献   

14.
Inés O'Farrell 《Hydrobiologia》1994,289(1-3):109-117
The phytoplankton of fifteen lowland courses of the River Plate Basin is compared and characterized by means of multivariate analyses.The cluster analysis performed with the more abundant species of each fluvial system reveals three main groups. Rivers with a high discharge and a large floodplain are grouped on the basis of the dominance of several Aulacoseira species. An eutrophic flora typified by Cyclotella meneghiniana, Synedra ulna and several green algae occurs in the smaller rivers with high conductivity, low transparency and important discharge variations. A third group comprises the Uruguay River and its tributaries, characterized by the presence of several pennatae diatoms and flagellates: Amphipleura pellucida, Surirella tenera, Terpsinoe musica, Navicula cuspidata, Eudorina elegans, Pandorina morum and Peridinium gatunense.The Principal Component Analysis based on a data matrix of physical, chemical and hydrological parameters revealed similar results. The ordination according to the first two components reflects the geographic location of these systems in the River Plate Basin, responding to a decreasing gradient of conductivity, pH and solids and an increasing minimum temperature. The rivers were ordinated by means of a Correspondence Analysis based on the main algal groups.  相似文献   

15.
The role of phytoplankton photosynthesis in global biogeochemical cycles   总被引:4,自引:0,他引:4  
Phytoplankton biomass in the world's oceans amounts to only 1–2% of the total global plant carbon, yet these organisms fix between 30 and 50 billion metric tons of carbon annually, which is about 40% of the total. On geological time scales there is profound evidence of the importance of phytoplankton photosynthesis in biogeochemical cycles. It is generally assumed that present phytoplankton productivity is in a quasi steady-state (on the time scale of decades). However, in a global context, the stability of oceanic photosynthetic processes is dependent on the physical circulation of the upper ocean and is therefore strongly influenced by the atmosphere. The net flux of atmospheric radiation is critical to determining the depth of the upper mixed layer and the vertical fluxes of nutrients. These latter two parameters are keys to determining the intensity, and spatial and temporal distributions of phytoplankton blooms. Atmospheric radiation budgets are not in steady-state. Driven largely by anthropogenic activities in the 20th century, increased levels of IR- absorbing gases such as CO2, CH4 and CFC's and NOx will potentially increase atmospheric temperatures on a global scale. The atmospheric radiation budget can affect phytoplankton photosynthesis directly and indirectly. Increased temperature differences between the continents and oceans have been implicated in higher wind stresses at the ocean margins. Increased wind speeds can lead to higher nutrient fluxes. Throughout most of the central oceans, nitrate concentrations are sub-micromolar and there is strong evidence that the quantum efficiency of Photosystem II is impaired by nutrient stress. Higher nutrient fluxes would lead to both an increase in phytoplankton biomass and higher biomass-specific rates of carbon fixation. However, in the center of the ocean gyres, increased radiative heating could reduce the vertical flux of nutrients to the euphotic zone, and hence lead to a reduction in phytoplankton carbon fixation. Increased desertification in terrestrial ecosystems can lead to increased aeolean loadings of essential micronutrients, such as iron. An increased flux of aeolean micronutrients could fertilize nutrient-replete areas of the open ocean with limiting trace elements, thereby stimulating photosynthetic rates. The factors which limit phytoplankton biomass and photosynthesis are discussed and examined with regard to potential changes in the Earth climate system which can lead the oceans away from steady-state. While it is difficult to confidently deduce changes in either phytoplankton biomass or photosynthetic rates on decadal time scales, time-series analysis of ocean transparency data suggest long-term trends have occurred in the North Pacific Ocean in the 20th century. However, calculations of net carbon uptake by the oceans resulting from phytoplankton photosynthesis suggest that without a supply of nutrients external to the ocean, carbon fixation in the open ocean is not presently a significant sink for excess atmospheric CO2.The submitted paper has been authored under Contract No. DE-AC02-76H00016 with the US Department of Energy. Accordingly, the US Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes.  相似文献   

16.
The chemistry of aquatic phosphate: inorganic processes in rivers   总被引:1,自引:1,他引:1  
Lewis E. Fox 《Hydrobiologia》1993,253(1-3):1-16
Phosphate levels in turbid rivers with low calcium concentrations are controlled by a solid ferric hydroxide-phosphate solution present in colloidal suspensions or suspended particulates. A chemical model, based on this behavior, is consistent with data from dialyzed suspensions of iron and phosphorus prepared in the laboratory as well as from the Amazon, Zaire, Orinoco, Sepik, Delaware, Hudson, Negro, and Mullica rivers. Data indicate that solid Fe/P ratios are related to solid activity coefficients by an exponential parameter, y, which represents the deviation of solid-solution from ideality. The model is mathematically consistent with Langmuir and Freundlich sorption isotherms under equilibrium conditions, and demonstrates that the isotherm parameters consist of a combination of selected constants and variables defined by solution theory. The reciprocal of the model parameter-y is shown to be equivalent to the exponential parameter in a Freundlich isotherm. The Langmuir parameter and Freundlich exponential parameter are related through the model parameter-y in systems at constant pH and ionic strength.From a presentation given at the Third International Workshop on Phosphorus in Sediments, Woudscholten/Utrecht, The Netherlands, September 30, 1991, under the auspices of: International Association of Theoretical and Applied Limnology, Limnological Institute (Royal Netherlands Academy of Arts and Sciences), Institute for Inland Water Management and Waste Water Treatment, and the Netherlands Institute for Sea Research.  相似文献   

17.
Sediment samples from the Ave river basin were collected with the aim of determining metal total pollution contents. Cr, Cu, Fe, Mn, Pb, Zn and VM at 550 °C were determined. Some physico-chemical parameters were also quantified in water samples collected in the water column just above the sediments.

Metal contamination factors (CF) indicated that sediments were not contaminated with Cu and Pb, slightly with Zn and moderately with Cr.

For sediments with high metal pollution loadings, the original BCR (Community Bureau of Reference) metal speciation protocol was also applied. Speciation studies showed that chromium was mainly associated with the oxidisable plus residual fractions (>85%). These results suggest that changes in the physico-chemical properties of the river water (e.g. pH, Eh) should not be accompanied by a significative release of chromium from sediments.

The relationships between chromium speciation fractions, physic-chemical parameters of the sediments and water samples were studied by Principal Component Analysis, and allowed to reduce the dimensionality of the data matrix from 14 to 3 significant components accounting for 89% of the variance. It was found that hydrous Fe/Mn oxides and organic matter are the “carriers” of chromium associated to fractions exchangeable and oxidable.  相似文献   


18.
From September 1978 till October 1979 limnological investigations of Lake Bled, Slovenia, were carried out at monthly intervals. Vertical profiles of physical and chemical variables and phytoplankton were determined. The effect of artificial inflow from the River Radovna on the lake was studied. The results indicate that the lake is still very eutrophic. During summer stratification the Radovna's inflow positively affects those variables whose dynamics depend on the lake's anaerobic conditions.  相似文献   

19.
F. Fiocca  A. Lugliè  N. Sechi 《Plant biosystems》2013,147(4-6):1016-1031
Abstract

The phytoplankton study on the S'Ena Arrubia Lagoon started in 1990, after dystrophic events, leading to high fish mortality and consequently great economic losses. This study presents a general picture of the conditions of the lagoon between 1990 and 1995, and reports on the quali-quantitative changes in the phytoplanktonic populations, as well as the trends of temperature, salinity, pH, dissolved oxygen, algal nutrients and chlorophyll a. The lagoon was characterized by great changes in salinity between years and within the same year, by high nutrient contents and by a phytoplankton trend characterized by sudden intense blooms mostly due to the Chlorophyceae and the Bacillariophyceae. The number of species found, decreased from 1990 to 1994, followed by a slight increase in 1995. The same trend was also found for total density and chlorophyll a.  相似文献   

20.
Based on experiments of periphyte response to different trophic levels and their impact on macrophyte production, it was found that the periphyte biomass increased with the nutrient concentrations. Increased trophic level and periphyte biomass resulted in decreased macrophyte photosynthesis. It was suggested that the periphytes could cause resilience and hysteresis in the system shifts between macrophyte and phytoplankton domination. Other factors, such as fish farming, storm induced waves and mechanical destruction, and high water levels could be the perturbations during the system shifts, but these are not the key factors. Instead, the nutrient loading and periphyte abundance could determine the shift in lake ecosystem between macrophyte and phytoplankton domination. This finding could theoretically elucidate the mechanism of ecosystem shifts between macrophyte and phytoplankton domination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号